Acquisition technique
Retrograde colonic distension is contraindicated in the presence of high-grade bowel obstruction, when a standard contrast-enhanced CT acquisition reliably investigates the site and cause of obstruction, thanks to the pre-existent bowel dilatation with intraluminal fluid. Before WE-MDCT, bowel cleansing is obtained using an iso-osmolar non-absorbable laxative solution (typically 4–6 doses of polyethylene glycol dissolved in 500 ml water per dose) the day before the examination, in association with a low-fibre diet for 3 days. Patients fast for 12 h after a liquid dinner the evening before the scheduled examination [9].
The patient is positioned on the CT scanner table and is instructed to turn to the left lateral decubitus. A lubricated enema tube is gently inserted into the rectum and connected to a bag that contains 1.5–2 l of warm tap water. Retrograde colonic distension through gravity is obtained within a few minutes and is stopped when the patient complains of abdominal distension. Compared with surgically naive patients, distension of the operated colon requires a reduced amount of water, depending on the extent of resection. Then, the patient is turned to his/her right side to improve water distribution in the colon and finally positioned supine for CT acquisition. During retrograde filling, pharmacological hypotonisation is induced with either 20 mg hyoscine buthylbromide i.v. or 1 mg glucagon i.m. to improve the patient’s comfort and obtain colonic wall distension. In patients with a colostomy WE-MDCT may be also performed using a Foley balloon catheter positioned and inflated into the stoma opening (Fig. 1). Volumetric CT acquisition of the abdomen and pelvis during a single breath-hold is performed during intravenous injection of 110–130 ml of non-ionic iodinated contrast medium using an automated power injection at a 2.5 ml/s flow rate, with a 75-s scan delay. The water enema is drained externally by placing the water bag on the floor before removing the patient from the CT scanner table. The radiation exposure from WE-MDCT is analogous to that of a standard contrast-enhanced CT study of the abdomen and pelvis of the same patient on the same scanner. The total examination time generally does not exceed 10–15 min [9].
Rationale and comparison with other CT techniques
In patients with a history of partial colonic resection for CRC, Neri et al. used CT colonography (CTC) after incomplete endoscopy to assess the colonic mucosa and pericolic tissues searching for local recurrence, metachronous polyps and tumours. Although the residual colon was always entirely visualised with 100% sensitivity for AS, in their experience CTC findings were not sufficiently reliable to differentiate fibrotic from neoplastic strictures. Furthermore, in patients with right hemicolectomy retrograde insufflation of the anastomosed ileum may cause suboptimal distension of the residual colon [14].
Compared with full-dose contrast-enhanced CTC, WE-MDCT has a shorter learning curve for radiologists, is less cumbersome for the patient without the need for rotation from the prone to supine position and generates a lower radiation dose because it involves a single CT acquisition during contrast medium injection. Although no studies compared the comfort between the two different techniques, Ridereau-Zins et al. observed that the retrograde introduction of warm water was well, moderately and poorly tolerated by 86.2%, 12.2% and 1.7% of patients, respectively [2]. Furthermore, WE-MDCT does not seem to suffer from the occasional but potentially severe complications associated with air or carbon dioxide CTC, including a 0.04% perforation rate [15]. At our centre, the vast majority of patients do not experience side effects and consistently feel WE-MDCT is less disagreeable than those receiving colonic distension using litres of air [9]. After WE-MDCT, Paparo et al. reported four (1.3%) mild adverse events (nausea, abdominal discomfort) and one episode of diarrhoea in a cohort of 30 patients with a high proportion of underlying bowel disorders. In the same study, the frequency of side effects with WE-MDCT was the lowest compared with peroral CT enterography (CTE), CT enteroclysis with intubation and combined CTE plus WE-MDCT [16].
Although prospective trials comparing accuracy for lesion detection between CTC and WE-MDCT are lacking, some authors have compared the degree of colonic distension between the two techniques, concluding that the sigmoid and left colon were better assessed using both WE-MDCT and prone CTC compared with the supine CTC acquisition [13]. Therefore, we started to use WE-MDCT to assess diverticular disease and chronic inflammatory bowel diseases [9] and suspected abnormalities of surgical anastomoses. Together with the two leading French groups, we believe that—compared with CTC—retrograde filling using water does not overdistend the colonic lumen and thus allows a better assessment of the true mural thickness of the irregular external edges that define T3-stage CRC and of peritumoral lymph nodes [2,3,4,5].
In the setting of chronic IBD, WE-MDCT has been validated by the Genoa group, consistently provides superior distension of the large bowel compared with CTE and optimally reproduces the well-known mural and extraluminal features of CD [10,11,12]. Furthermore, without the patient having to ingest polyethylenglycole solution, WE-MDCT achieves adequate luminal filling of the neoterminal ileum in a high proportion of patients with ileocecal resection (ICR) [9,10,11,12].
Interpretation
Similarly to the preoperative setting [17], interpretation of CT studies focused on the large bowel benefits from multiplanar image review: therefore, WE-MDCT images should be routinely reconstructed along the axial, coronal and sagittal planes. We suggest that radiologists should review the study on a workstation to save oblique or curved-planar reconstruction images focused on the key findings, such as surgical anastomoses and strictures.
Interpretation of WE-MDCT scans benefits from the excellent contrast between the intraluminal water, enhanced colonic wall and normal fat-attenuation perivisceral planes. In surgically treated patients, WE-MDCT allows depicting the anatomy and position of the residual large bowel in arbitrary planes, including the coronal orientation, which is most appealing for surgeons. Study interpretation benefits from precise knowledge of the type of resection and reconstruction performed and of recent endoscopic findings. Surgical anastomoses should be evaluated for site, configuration, patency and mural features. Ileo-colic and colo-colic anastomoses can be either manual (hand-sewn) or mechanical, with the latter clearly identified by the presence of hyperattenuating circular or linear staple lines. Focused maximum-intensity projection (MIP) images may be helpful to assess the configuration and integrity of a stapled anastomosis (Fig. 3, image c). Known or indeterminate strictures should be assessed for length, configuration, mural thickness, entity and pattern of enhancement (homogeneous or stratified) and associated extraluminal changes.