Krauss B (2018) Dual-energy computed tomography: technology and challenges. Radiol Clin North Am 56:497–506. https://doi.org/10.1016/j.rcl.2018.03.008
Article
PubMed
Google Scholar
Jacobsen M, Schellingerhout D, Wood C et al (2017) Intermanufacturer comparison of dual-energy CT iodine quantification and monochromatic attenuation: a phantom study. Radiology 287:170896. https://doi.org/10.1148/radiol.2017170896
Article
Google Scholar
Megibow AJ, Kambadakone A, Ananthakrishnan L (2018) Dual-energy computed tomography: image acquisition, processing, and workflow. Radiol Clin North Am 56:507–520. https://doi.org/10.1016/j.rcl.2018.03.001
Article
PubMed
Google Scholar
van Ommen F, de Jong HWAM, Dankbaar JW et al (2019) Dose of CT protocols acquired in clinical routine using a dual-layer detector CT scanner: a preliminary report. Eur J Radiol 112:65–71. https://doi.org/10.1016/j.ejrad.2019.01.011
Article
PubMed
Google Scholar
Siegel MJ, Mhlanga JC, Salter A, Ramirez-Giraldo JC (2021) Comparison of radiation dose and image quality between contrast-enhanced single- and dual-energy abdominopelvic computed tomography in children as a function of patient size. Pediatr Radiol. https://doi.org/10.1007/s00247-021-05127-3
Article
PubMed
Google Scholar
Forghani R, De Man B, Gupta R (2017) Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 1. Neuroimaging Clin N Am 27:371–384. https://doi.org/10.1016/j.nic.2017.03.002
Article
PubMed
Google Scholar
Jamali S, Michoux N, Coche E, Dragean CA (2019) Virtual unenhanced phase with spectral dual-energy CT: is it an alternative to conventional true unenhanced phase for abdominal tissues? Diagn Interv Imaging 100:503–511. https://doi.org/10.1016/j.diii.2019.04.007
Article
CAS
PubMed
Google Scholar
Parakh A, Macri F, Sahani D (2018) Dual-energy computed tomography: dose reduction, series reduction, and contrast load reduction in dual-energy computed tomography. Radiol Clin North Am 56:601–624. https://doi.org/10.1016/j.rcl.2018.03.002
Article
PubMed
Google Scholar
Ananthakrishnan L, Rajiah P, Ahn R et al (2017) Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT. Abdom Radiol (NY) 42:702–709. https://doi.org/10.1007/s00261-016-1036-9
Article
Google Scholar
Durieux P, Gevenois PA, Van MA et al (2018) Abdominal attenuation values on virtual and true unenhanced images obtained with third-generation dual-source dual-energy CT. AJR Am J Roentgenol 210:1042–1058. https://doi.org/10.2214/AJR.17.18248
Article
PubMed
Google Scholar
Slebocki K, Kraus B, Chang D-H et al (2017) Incidental Findings in Abdominal Dual-Energy Computed Tomography: Correlation Between True Noncontrast and Virtual Noncontrast Images Considering Renal and Liver Cysts and Adrenal Masses. J Comput Assist Tomogr 41:294–297. https://doi.org/10.1097/RCT.0000000000000503
Article
PubMed
Google Scholar
Grosse Hokamp N, Gilkeson R, Jordan MK et al (2019) Virtual monoenergetic images from spectral detector CT as a surrogate for conventional CT images: Unaltered attenuation characteristics with reduced image noise. Eur J Radiol 117:49–55. https://doi.org/10.1016/j.ejrad.2019.05.019
Article
PubMed
Google Scholar
Atwi NE, Smith DL, Flores CD et al (2019) Dual-energy CT in the obese: a preliminary retrospective review to evaluate quality and feasibility of the single-source dual-detector implementation. Abdom Radiol (NY) 44:783–789. https://doi.org/10.1007/s00261-018-1774-y
Article
Google Scholar
Matsumoto K, Jinzaki M, Tanami Y et al (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259:257–262. https://doi.org/10.1148/radiol.11100978
Article
PubMed
Google Scholar
Wei L, Li S, Gao Q et al (2016) Use of low tube voltage and low contrast agent concentration yields good image quality for aortic CT angiography. Clin Radiol 71:1313.e5-1313.e10. https://doi.org/10.1016/j.crad.2016.07.018
Article
CAS
Google Scholar
Higashigaito K, Schmid T, Puippe G et al (2016) CT Angiography of the Aorta: Prospective Evaluation of Individualized Low-Volume Contrast Media Protocols. Radiology 280:960–968. https://doi.org/10.1148/radiol.2016151982
Article
PubMed
Google Scholar
Ippolito D, Talei Franzesi C, Fior D et al (2015) Low kV settings CT angiography (CTA) with low dose contrast medium volume protocol in the assessment of thoracic and abdominal aorta disease: a feasibility study. Br J Radiol 88:20140140. https://doi.org/10.1259/bjr.20140140
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung YE, You JS, Lee H-J et al (2015) Possible contrast media reduction with low keV monoenergetic images in the detection of focal liver lesions: a dual-energy CT animal study. PLoS One 10:e0133170. https://doi.org/10.1371/journal.pone.0133170
Article
CAS
PubMed
PubMed Central
Google Scholar
Shuman WP, O’Malley RB, Busey JM et al (2017) Prospective comparison of dual-energy CT aortography using 70% reduced iodine dose versus single-energy CT aortography using standard iodine dose in the same patient. Abdom Radiol (NY) 42:759–765. https://doi.org/10.1007/s00261-016-1041-z
Article
Google Scholar
Hickethier T, Kroeger JR, Lennartz S et al (2019) Venous-phase chest CT with reduced contrast medium dose: Utilization of spectral low keV monoenergetic images improves image quality. Eur J Radiol 122:108756. https://doi.org/10.1016/j.ejrad.2019.108756
Article
PubMed
Google Scholar
Noda Y, Goshima S, Nakashima Y et al (2019) Iodine dose optimization in portal venous phase virtual monochromatic images of the abdomen: Prospective study on rapid kVp switching dual energy CT. Eur J Radiol 122:108746. https://doi.org/10.1016/j.ejrad.2019.108746
Article
PubMed
Google Scholar
Tsang DS, Merchant TE, Merchant SE et al (2017) Quantifying potential reduction in contrast dose with monoenergetic images synthesized from dual-layer detector spectral CT. Br J Radiol 90:20170290. https://doi.org/10.1259/bjr.20170290
Article
PubMed
PubMed Central
Google Scholar
Clark ZE, Bolus DN, Little MD, Morgan DE (2015) Abdominal rapid-kVp-switching dual-energy MDCT with reduced IV contrast compared to conventional MDCT with standard weight-based IV contrast: an intra-patient comparison. Abdom Imaging 40:852–858. https://doi.org/10.1007/s00261-014-0253-3
Article
PubMed
Google Scholar
Parakh A, Negreros-Osuna AA, Patino M et al (2019) Low-keV and Low-kVp CT for Positive Oral Contrast Media in Patients with Cancer: A Randomized Clinical Trial. Radiology 291:620–629. https://doi.org/10.1148/radiol.2019182393
Article
PubMed
Google Scholar
Patino M, Murcia DJ, Iamurri AP et al (2017) Impact of low-energy CT imaging on selection of positive oral contrast media concentration. Abdom Radiol (NY) 42:1298–1309. https://doi.org/10.1007/s00261-016-0993-3
Article
Google Scholar
Fulton N, Rajiah P (2018) Abdominal applications of a novel detector-based spectral CT. Curr Probl Diagn Radiol 47:110–118. https://doi.org/10.1067/j.cpradiol.2017.05.001
Article
PubMed
Google Scholar
Wellenberg RHH, Boomsma MF, van Osch JAC et al (2017) Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses. Eur J Radiol 88:61–70. https://doi.org/10.1016/j.ejrad.2017.01.002
Article
CAS
PubMed
Google Scholar
Hakvoort ET, Wellenberg RHH, Streekstra GJ (2019) Quantifying near metal visibility using dual energy computed tomography and iterative metal artifact reduction in a fracture phantom. Phys Med 69:9–18. https://doi.org/10.1016/j.ejmp.2019.11.006
Article
PubMed
Google Scholar
Lu X, Lu Z, Yin J, et al (2019) Effects of radiation dose levels and spectral iterative reconstruction levels on the accuracy of iodine quantification and virtual monochromatic CT numbers in dual-layer spectral detector CT: an iodine phantom study. Quant Imaging Med Surg 9:188–200. https://doi.org/10.21037/qims.2018.11.12
Kim H, Park CM, Kang CK et al (2018) Effect of CT acquisition parameters on iodine density measurement at dual-layer spectral CT. AJR Am J Roentgenol 211:748–754. https://doi.org/10.2214/AJR.17.19381
Article
PubMed
Google Scholar
Wortman JR, Sodickson AD (2018) Pearls, pitfalls, and problems in dual-energy computed tomography imaging of the body. Radiol Clin North Am 56:625–640. https://doi.org/10.1016/j.rcl.2018.03.007
Article
PubMed
Google Scholar
Jacobsen MC, Cressman ENK, Tamm EP et al (2019) Dual-energy CT: lower limits of iodine detection and quantification. Radiology 292:414–419. https://doi.org/10.1148/radiol.2019182870
Article
PubMed
Google Scholar
Grosse Hokamp N, Abdullayev N, Persigehl T et al (2019) Precision and reliability of liver iodine quantification from spectral detector CT: evidence from phantom and patient data. Eur Radiol 29:2098–2106. https://doi.org/10.1007/s00330-018-5744-0
Article
PubMed
Google Scholar
Patel BN, Vernuccio F, Meyer M et al (2019) Dual-energy CT material density iodine quantification for distinguishing vascular from nonvascular renal lesions: normalization reduces intermanufacturer threshold variability. AJR Am J Roentgenol 212:366–376. https://doi.org/10.2214/AJR.18.20115
Article
PubMed
Google Scholar
Boning G, Feldhaus F, Adelt S et al (2019) Clinical routine use of virtual monochromatic datasets based on spectral CT in patients with hypervascularized abdominal tumors - evaluation of effectiveness and efficiency. Acta Radiol 60:425–432. https://doi.org/10.1177/0284185118786077
Article
PubMed
Google Scholar
Park JH, Kim SH, Park HS et al (2011) Added value of 80 kVp images to averaged 120 kVp images in the detection of hepatocellular carcinomas in liver transplantation candidates using dual-source dual-energy MDCT: results of JAFROC analysis. Eur J Radiol 80:e76-85. https://doi.org/10.1016/j.ejrad.2010.08.018
Article
PubMed
Google Scholar
Lv P, Lin XZ, Chen K, Gao J (2012) Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol 22:2117–2124. https://doi.org/10.1007/s00330-012-2485-3
Article
PubMed
Google Scholar
Anzidei M, Di Martino M, Sacconi B et al (2015) Evaluation of image quality, radiation dose and diagnostic performance of dual-energy CT datasets in patients with hepatocellular carcinoma. Clin Radiol 70:966–973. https://doi.org/10.1016/j.crad.2015.05.003
Article
CAS
PubMed
Google Scholar
Grosse Hokamp N, Obmann VC, Kessner R et al (2018) Improved visualization of hypodense liver lesions in virtual monoenergetic images from spectral detector CT: Proof of concept in a 3D-printed phantom and evaluation in 74 patients. Eur J Radiol 109:114–123. https://doi.org/10.1016/j.ejrad.2018.11.001
Article
CAS
PubMed
Google Scholar
Sun H, Hou X-Y, Xue H-D et al (2015) Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: image quality, radiation dose and diagnostic performance. Eur J Radiol 84:884–891. https://doi.org/10.1016/j.ejrad.2015.01.013
Article
PubMed
Google Scholar
Ascenti G, Sofia C, Mazziotti S et al (2016) Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma. Clin Radiol 71:938.e1–9. https://doi.org/10.1016/j.crad.2016.05.002
Article
CAS
Google Scholar
Su L, Hu L, Liang P et al (2019) Clinical efficacy of spectral computed tomography for evaluating liver function in patients with Budd–Chiari syndrome. Acad Radiol 26:461–466. https://doi.org/10.1016/j.acra.2018.05.003
Article
CAS
PubMed
Google Scholar
Wang N, Ju Y, Wu J et al (2019) Differentiation of liver abscess from liver metastasis using dual-energy spectral CT quantitative parameters. Eur J Radiol 113:204–208. https://doi.org/10.1016/j.ejrad.2019.02.024
Article
PubMed
Google Scholar
Pfeiffer D, Parakh A, Patino M et al (2018) Iodine material density images in dual-energy CT: quantification of contrast uptake and washout in HCC. Abdom Radiol (NY) 43:3317–3323. https://doi.org/10.1007/s00261-018-1636-7
Article
Google Scholar
Gao L, Lv Y, Jin Y et al (2019) Differential diagnosis of hepatic cancerous nodules and cirrhosis nodules by spectral CT imaging: a feasibility study. Acta Radiol. https://doi.org/10.1177/0284185119840230
Article
PubMed
Google Scholar
Bottari A, Silipigni S, Carerj ML et al (2019) Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. Radiol Med. https://doi.org/10.1007/s11547-019-01089-7
Article
PubMed
Google Scholar
Hyodo T, Yada N, Hori M et al (2017) Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: clinical evaluation. Radiology 283:108–118. https://doi.org/10.1148/radiol.2017160130
Article
PubMed
Google Scholar
Hyodo T, Hori M, Lamb P et al (2017) Multimaterial decomposition algorithm for the quantification of liver fat content by using Fast–Kilovolt–Peak switching dual-energy CT: experimental validation. Radiology 282:381–389. https://doi.org/10.1148/radiol.2016160129
Article
PubMed
Google Scholar
Zheng X, Ren Y, Phillips WT et al (2013) Assessment of hepatic fatty infiltration using spectral computed tomography imaging: a pilot study. J Comput Assist Tomogr 37:134–141. https://doi.org/10.1097/RCT.0b013e31827ddad3
Article
PubMed
Google Scholar
Wu J, Lv Y, Wang N et al (2019) The value of single-source dual-energy CT imaging for discriminating microsatellite instability from microsatellite stability human colorectal cancer. Eur Radiol 29:3782–3790. https://doi.org/10.1007/s00330-019-06144-5
Article
PubMed
Google Scholar
Kramer H, Pickhardt PJ, Kliewer MA et al (2017) Accuracy of liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy. AJR Am J Roentgenol 208:92–100. https://doi.org/10.2214/AJR.16.16565
Article
PubMed
Google Scholar
Zhang YN, Fowler KJ, Hamilton G et al (2018) Liver fat imaging-a clinical overview of ultrasound, CT, and MR imaging. Br J Radiol 91:20170959. https://doi.org/10.1259/bjr.20170959
Article
PubMed
PubMed Central
Google Scholar
El Kayal N, Lennartz S, Ekdawi S et al (2019) Value of spectral detector computed tomography for assessment of pancreatic lesions. Eur J Radiol 118:215–222. https://doi.org/10.1016/j.ejrad.2019.07.016
Article
PubMed
Google Scholar
Nagayama Y, Tanoue S, Inoue T et al (2019) Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. Eur Radiol. https://doi.org/10.1007/s00330-019-06337-y
Article
PubMed
Google Scholar
Beer L, Toepker M, Ba-Ssalamah A et al (2019) Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma. Eur Radiol 29:3617–3625. https://doi.org/10.1007/s00330-019-06116-9
Article
PubMed
PubMed Central
Google Scholar
Noda Y, Goshima S, Kaga T et al (2019) Virtual monochromatic image at lower energy level for assessing pancreatic ductal adenocarcinoma in fast kV-switching dual-energy CT. Clin Radiol. https://doi.org/10.1016/j.crad.2019.11.012
Article
PubMed
Google Scholar
Martin SS, Trapp F, Wichmann JL et al (2019) Dual-energy CT in early acute pancreatitis: improved detection using iodine quantification. Eur Radiol 29:2226–2232. https://doi.org/10.1007/s00330-018-5844-x
Article
PubMed
Google Scholar
Mohammed MF, Elbanna KY, Mohammed AME et al (2018) Practical applications of dual-energy computed tomography in the acute abdomen. Radiol Clin North Am 56:549–563. https://doi.org/10.1016/j.rcl.2018.03.004
Article
PubMed
Google Scholar
Yin Q, Zou X, Zai X et al (2015) Pancreatic ductal adenocarcinoma and chronic mass-forming pancreatitis: Differentiation with dual-energy MDCT in spectral imaging mode. Eur J Radiol 84:2470–2476. https://doi.org/10.1016/j.ejrad.2015.09.023
Article
PubMed
Google Scholar
Murray N, Darras KE, Walstra FE et al (2019) Dual-Energy CT in Evaluation of the Acute Abdomen. Radiographics 39:264–286. https://doi.org/10.1148/rg.2019180087
Article
PubMed
Google Scholar
Li H, He D, Lao Q et al (2015) Clinical value of spectral CT in diagnosis of negative gallstones and common bile duct stones. Abdom Imaging 40:1587–1594. https://doi.org/10.1007/s00261-015-0387-y
Article
PubMed
Google Scholar
Kiewiet JJS, Leeuwenburgh MMN, Bipat S et al (2012) A systematic review and meta-analysis of diagnostic performance of imaging in acute cholecystitis. Radiology 264:708–720. https://doi.org/10.1148/radiol.12111561
Article
PubMed
Google Scholar
Wertz JR, Lopez JM, Olson D, Thompson WM (2018) Comparing the diagnostic accuracy of ultrasound and CT in evaluating acute cholecystitis. AJR Am J Roentgenol 211:W92–W97. https://doi.org/10.2214/AJR.17.18884
Article
PubMed
PubMed Central
Google Scholar
Morgan DE (2018) The role of dual-energy computed tomography in assessment of abdominal oncology and beyond. Radiol Clin North Am 56:565–585. https://doi.org/10.1016/j.rcl.2018.03.005
Article
PubMed
Google Scholar
Ascenti G, Mileto A, Krauss B et al (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23:2288–2295. https://doi.org/10.1007/s00330-013-2811-4
Article
PubMed
Google Scholar
Mileto A, Allen BC, Pietryga JA et al (2017) Characterization of incidental renal mass with dual-energy CT: diagnostic accuracy of effective atomic number maps for discriminating nonenhancing cysts from enhancing masses. AJR Am J Roentgenol 209:W221–W230. https://doi.org/10.2214/AJR.16.17325
Article
PubMed
Google Scholar
Mileto A, Marin D, Ramirez-Giraldo JC et al (2014) Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol 202:W466–W474. https://doi.org/10.2214/AJR.13.11450
Article
PubMed
Google Scholar
Bellini D, Panvini N, Laghi A et al (2019) Systematic review and meta-analysis investigating the diagnostic yield of dual-energy CT for renal mass assessment. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.18.20625
Article
PubMed
Google Scholar
Mileto A, Sofue K, Marin D (2016) Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you? Eur Radiol 26:3677–3690. https://doi.org/10.1007/s00330-015-4180-7
Article
PubMed
Google Scholar
Soesbe TC, Ananthakrishnan L, Lewis MA et al (2018) Pseudoenhancement effects on iodine quantification from dual-energy spectral CT systems: a multi-vendor phantom study regarding renal lesion characterization. Eur J Radiol 105:125–133. https://doi.org/10.1016/j.ejrad.2018.06.002
Article
PubMed
Google Scholar
Patel BN, Farjat A, Schabel C et al (2018) Energy-specific optimization of attenuation thresholds for low-energy virtual monoenergetic images in renal lesion evaluation. AJR Am J Roentgenol 210:W205–W217. https://doi.org/10.2214/AJR.17.18641
Article
PubMed
Google Scholar
Mileto A, Marin D, Alfaro-Cordoba M et al (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273:813–820. https://doi.org/10.1148/radiol.14140171
Article
PubMed
Google Scholar
Shuman WP, Mileto A, Busey JM et al (2019) Dual-energy CT urography With 50% reduced iodine dose versus single-energy CT urography with standard iodine dose. AJR Am J Roentgenol 212:117–123. https://doi.org/10.2214/AJR.18.19720
Article
PubMed
Google Scholar
Ananthakrishnan L, Duan X, Xi Y et al (2018) Dual-layer spectral detector CT: non-inferiority assessment compared to dual-source dual-energy CT in discriminating uric acid from non-uric acid renal stones ex vivo. Abdom Radiol (NY) 43:3075–3081. https://doi.org/10.1007/s00261-018-1589-x
Article
Google Scholar
Lombardo F, Bonatti M, Zamboni GA et al (2017) Uric acid versus non-uric acid renal stones: in vivo differentiation with spectral CT. Clin Radiol 72:490–496. https://doi.org/10.1016/j.crad.2017.01.018
Article
CAS
PubMed
Google Scholar
Grosse Hokamp N, Salem J, Hesse A et al (2018) Low-dose characterization of kidney stones using spectral detector computed tomography: an ex vivo study. Invest Radiol 53:457–462. https://doi.org/10.1097/RLI.0000000000000468
Article
CAS
PubMed
Google Scholar
Adam SZ, Nikolaidis P, Horowitz JM et al (2016) Chemical shift MR imaging of the adrenal gland: principles, pitfalls, and applications. Radiographics 36:414–432. https://doi.org/10.1148/rg.2016150139
Article
PubMed
Google Scholar
Helck A, Hummel N, Meinel FG et al (2014) Can single-phase dual-energy CT reliably identify adrenal adenomas? Eur Radiol 24:1636–1642. https://doi.org/10.1007/s00330-014-3192-z
Article
CAS
PubMed
Google Scholar
Botsikas D, Triponez F, Boudabbous S et al (2014) Incidental adrenal lesions detected on enhanced abdominal dual-energy CT: can the diagnostic workup be shortened by the implementation of virtual unenhanced images? Eur J Radiol 83:1746–1751. https://doi.org/10.1016/j.ejrad.2014.06.017
Article
PubMed
Google Scholar
Connolly MJ, McInnes MDF, El-Khodary M et al (2017) Diagnostic accuracy of virtual non-contrast enhanced dual-energy CT for diagnosis of adrenal adenoma: a systematic review and meta-analysis. Eur Radiol 27:4324–4335. https://doi.org/10.1007/s00330-017-4785-0
Article
PubMed
Google Scholar
Ju Y, Liu A, Dong Y et al (2015) The value of nonenhanced single-source dual-energy CT for differentiating metastases from adenoma in adrenal glands. Acad Radiol 22:834–839. https://doi.org/10.1016/j.acra.2015.03.004
Article
PubMed
Google Scholar
Liu W-D, Wu X-W, Hu J-M et al (2015) Monochromatic energy computed tomography image for active intestinal hemorrhage: a model investigation. World J Gastroenterol 21:214–220. https://doi.org/10.3748/wjg.v21.i1.214
Article
PubMed
PubMed Central
Google Scholar
Potretzke TA, Brace CL, Lubner MG et al (2015) Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model. Radiology 275:119–126. https://doi.org/10.1148/radiol.14140875
Article
PubMed
Google Scholar
Lourenco PDM, Rawski R, Mohammed MF et al (2018) Dual-energy CT iodine mapping and 40-keV monoenergetic applications in the diagnosis of acute bowel ischemia. AJR Am J Roentgenol 211:564–570. https://doi.org/10.2214/AJR.18.19554
Article
PubMed
Google Scholar
Oda S, Nakaura T, Utsunomiya D et al (2017) Clinical potential of retrospective on-demand spectral analysis using dual-layer spectral detector-computed tomography in ischemia complicating small-bowel obstruction. Emerg Radiol 24:431–434. https://doi.org/10.1007/s10140-017-1511-9
Article
PubMed
Google Scholar
Darras KE, McLaughlin PD, Kang H et al (2016) Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70keV maximizes mural enhancement in acute small bowel obstruction. Eur J Radiol 85:950–956. https://doi.org/10.1016/j.ejrad.2016.02.019
Article
PubMed
Google Scholar
Kim YS, Kim SH, Ryu HS, Han JK (2018) Iodine quantification on spectral detector-based dual-energy CT enterography: correlation with Crohn’s disease activity index and external validation. Korean J Radiol 19:1077–1088. https://doi.org/10.3348/kjr.2018.19.6.1077
Article
PubMed
PubMed Central
Google Scholar
Peng JC, Feng Q, Zhu J et al (2016) Usefulness of spectral computed tomography for evaluation of intestinal activity and severity in ileocolonic Crohn’s disease. Therap Adv Gastroenterol 9:795–805. https://doi.org/10.1177/1756283X16668309
Article
PubMed
PubMed Central
Google Scholar
Lee SM, Kim SH, Ahn SJ et al (2018) Virtual monoenergetic dual-layer, dual-energy CT enterography: optimization of keV settings and its added value for Crohn’s disease. Eur Radiol 28:2525–2534. https://doi.org/10.1007/s00330-017-5215-z
Article
PubMed
Google Scholar
Elbanna KY, Mohammed MF, Chahal T et al (2018) Dual-energy CT in differentiating nonperforated gangrenous appendicitis from uncomplicated appendicitis. AJR Am J Roentgenol 211:776–782. https://doi.org/10.2214/AJR.17.19274
Article
PubMed
Google Scholar
Eliahou R, Azraq Y, Carmi R et al (2010) Dual-energy based spectral electronic cleansing in non-cathartic computed tomography colonography: an emerging novel technique. Semin Ultrasound CT MR 31:309–314. https://doi.org/10.1053/j.sult.2010.05.005
Article
PubMed
Google Scholar
Taguchi N, Oda S, Imuta M et al (2018) Dual-energy computed tomography colonography using dual-layer spectral detector computed tomography: Utility of virtual monochromatic imaging for electronic cleansing. Eur J Radiol 108:7–12. https://doi.org/10.1016/j.ejrad.2018.09.011
Article
PubMed
Google Scholar
Tachibana R, Näppi JJ, Ota J, et al (2018) Deep Learning Electronic Cleansing for Single- and Dual-Energy CT Colonography. Radiographics 38:2034–2050. https://doi.org/10.1148/rg.2018170173
Yeh BM, Obmann MM, Westphalen AC et al (2018) Dual energy computed tomography scans of the bowel: benefits, pitfalls, and future directions. Radiol Clin North Am 56:805–819. https://doi.org/10.1016/j.rcl.2018.05.002
Article
PubMed
Google Scholar
Wei W, Yu Y, Lv W et al (2014) Predictive value of dual-energy spectral computed tomographic imaging on the histological origin of carcinomas in the ampullary region. Abdom Imaging 39:702–710. https://doi.org/10.1007/s00261-014-0098-9
Article
PubMed
Google Scholar
Yang C-B, Yu N, Jian Y-J et al (2019) Spectral CT imaging in the differential diagnosis of small bowel adenocarcinoma from primary small intestinal lymphoma. Acad Radiol 26:878–884. https://doi.org/10.1016/j.acra.2018.08.020
Article
PubMed
Google Scholar
Zhou Y, Hou P, Zha K et al (2019) Spectral computed tomography for the quantitative assessment of patients with carcinoma of the gastroesophageal junction: initial differentiation between a diagnosis of squamous cell carcinoma and adenocarcinoma. J Comput Assist Tomogr 43:187–193. https://doi.org/10.1097/RCT.0000000000000826
Article
PubMed
Google Scholar
Zhang X, Bai L, Wang D et al (2019) Gastrointestinal stromal tumor risk classification: spectral CT quantitative parameters. Abdom Radiol (NY) 44:2329–2336. https://doi.org/10.1007/s00261-019-01973-w
Article
Google Scholar
Gong H-X, Zhang K-B, Wu L-M et al (2016) Dual energy spectral CT imaging for colorectal cancer grading: a preliminary study. PLoS One 11:e0147756. https://doi.org/10.1371/journal.pone.0147756
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Zhang X, Fang M et al (2019) Preoperative diagnosis of regional lymph node metastasis of colorectal cancer with quantitative parameters from dual-energy CT. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.18.20843
Article
PubMed
Google Scholar
Al-Najami I, Lahaye MJ, Beets-Tan RGH, Baatrup G (2017) Dual-energy CT can detect malignant lymph nodes in rectal cancer. Eur J Radiol 90:81–88. https://doi.org/10.1016/j.ejrad.2017.02.005
Article
CAS
PubMed
Google Scholar
Zhou Z, Liu Y, Meng K et al (2019) Application of spectral CT imaging in evaluating lymph node metastasis in patients with gastric cancers: initial findings. Acta Radiol 60:415–424. https://doi.org/10.1177/0284185118786076
Article
PubMed
Google Scholar
Al-Najami I, Drue HC, Steele R, Baatrup G (2017) Dual energy CT—a possible new method to assess regression of rectal cancers after neoadjuvant treatment. J Surg Oncol 116:984–988. https://doi.org/10.1002/jso.24761
Article
CAS
PubMed
Google Scholar
Benveniste AP, de Castro FS, Broering G et al (2017) Potential application of dual-energy CT in gynecologic cancer: initial experience. AJR Am J Roentgenol 208:695–705. https://doi.org/10.2214/AJR.16.16227
Article
PubMed
Google Scholar
Elsherif SB, Zheng S, Ganeshan D et al (2020) Does dual-energy CT differentiate benign and malignant ovarian tumours? Clin Radiol 75:606–614. https://doi.org/10.1016/j.crad.2020.03.006
Article
CAS
PubMed
Google Scholar
Rizzo S, Femia M, Radice D et al (2018) Evaluation of deep myometrial invasion in endometrial cancer patients: is dual-energy CT an option? Radiol Med 123:13–19. https://doi.org/10.1007/s11547-017-0810-2
Article
PubMed
Google Scholar
Jiang C, Yang P, Lei J et al (2017) The application of iodine quantitative information obtained by dual-source dual-energy computed tomography on chemoradiotherapy effect monitoring for cervical cancer: a preliminary study. J Comput Assist Tomogr 41:737–745. https://doi.org/10.1097/RCT.0000000000000603
Article
PubMed
Google Scholar
Tawfik AM, Razek AA, Kerl JM et al (2014) Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes. Eur Radiol 24:574–580. https://doi.org/10.1007/s00330-013-3035-3
Article
PubMed
Google Scholar