Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R (2019) Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 12:1946–1954 https://doi.org/10.1016/j.jcmg.2018.11.024
PubMed
PubMed Central
Google Scholar
Mannil M, von Spiczak J, Manka R, Alkadhi H (2018) Texture analysis and machine learning for detecting myocardial infarction in noncontrast low-dose computed tomography: unveiling the invisible. Invest Radiol 53:338–343 https://doi.org/10.1097/RLI.0000000000000448
PubMed
Google Scholar
Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069 https://doi.org/10.1016/j.crad.2004.07.008
CAS
PubMed
Google Scholar
Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320 https://doi.org/10.1148/radiology.213.2.r99nv49317
CAS
PubMed
Google Scholar
Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341 https://doi.org/10.1016/j.mri.2012.05.001
PubMed
PubMed Central
Google Scholar
Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 7:36–42
Google Scholar
Kresanova Z, Kostolny J. Comparison of Software for Medical Segmentation, p 15
Lay-Khoon Lee, Siau-Chuin Liew (2015) A survey of medical image processing tools. https://doi.org/10.13140/RG.2.1.3364.4241
Google Scholar
Baeßler B, Weiss K, Pinto dos Santos D (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Invest Radiol 54:221–228 https://doi.org/10.1097/RLI.0000000000000530
PubMed
Google Scholar
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597
Wichtmann B, Attenberger U, Harder FM et al (2018) Influence of image processing on the robustness of radiomic features derived from magnetic resonance imaging—a phantom study. In: ISMRM 2018, p 5
Google Scholar
Altazi BA, Zhang GG, Fernandez DC et al (2017) Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. J Appl Clin Med Phys 18:32–48 https://doi.org/10.1002/acm2.12170
PubMed
PubMed Central
Google Scholar
Bailly C, Bodet-Milin C, Couespel S et al (2016) Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One 11:e0159984 https://doi.org/10.1371/journal.pone.0159984
PubMed
PubMed Central
Google Scholar
Leijenaar RTH, Nalbantov G, Carvalho S et al (2015) The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075 https://doi.org/10.1038/srep11075
CAS
PubMed
PubMed Central
Google Scholar
Shafiq-ul-Hassan M, Zhang GG, Latifi K et al (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44:1050–1062 https://doi.org/10.1002/mp.12123
CAS
PubMed
Google Scholar
van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107 https://doi.org/10.1158/0008-5472.CAN-17-0339
PubMed
PubMed Central
Google Scholar
Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. arXiv:1612.07003
Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91 https://doi.org/10.1016/j.mri.2003.09.001
CAS
PubMed
Google Scholar
Vallières M, Freeman CR, Skamene SR, Naqa IE (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496 https://doi.org/10.1088/0031-9155/60/14/5471
PubMed
Google Scholar
Yip SSF, Aerts HJWL (2016) Applications and limitations of radiomics. Phys Med Biol 61:R150–R166 https://doi.org/10.1088/0031-9155/61/13/R150
CAS
PubMed
PubMed Central
Google Scholar
Riley RD, Snell KI, Ensor J et al (2019) Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med 38:1276–1296 https://doi.org/10.1002/sim.7992
PubMed
Google Scholar
Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R (2018) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced Cine MR images. Radiology 286:103–112 https://doi.org/10.1148/radiol.2017170213
PubMed
Google Scholar
Baessler B, Luecke C, Lurz J et al (2018) Cardiac MRI texture analysis of T1 and T2 maps in patients with infarctlike acute myocarditis. Radiology 289:357–365 https://doi.org/10.1148/radiol.2018180411
PubMed
Google Scholar
Baessler B, Luecke C, Lurz J et al (2019) Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology 292:608–617 https://doi.org/10.1148/radiol.2019190101
PubMed
Google Scholar
Baeßler B, Mannil M, Maintz D, Alkadhi H, Manka R (2018) Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-preliminary results. Eur J Radiol 102:61–67 https://doi.org/10.1016/j.ejrad.2018.03.013
PubMed
Google Scholar
Baessler B, Nestler T, Pinto dos Santos D et al (2020) Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection. Eur Radiol 30:2334–2345 https://doi.org/10.1007/s00330-019-06495-z
PubMed
Google Scholar
Di Noto T, von Spiczak J, Mannil M et al (2019) Radiomics for distinguishing myocardial infarction from myocarditis at late gadolinium enhancement at MRI: comparison with subjective visual analysis. Radiol Cardiothorac Imaging 1:e180026 https://doi.org/10.1148/ryct.2019180026
PubMed
PubMed Central
Google Scholar
van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Lambin P (2017) Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol 56:1537–1543 https://doi.org/10.1080/0284186X.2017.1350285
PubMed
Google Scholar
Sullivan DC, Obuchowski NA, Kessler LG et al (2015) Metrology standards for quantitative imaging biomarkers. Radiology 277:813–825 https://doi.org/10.1148/radiol.2015142202
PubMed
Google Scholar
Collins GS, Reitsma JB, Altman DG, Moons KGM (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594–g7594 https://doi.org/10.1136/bmj.g7594
PubMed
Google Scholar
Chalkidou A, O’Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 10:e0124165 https://doi.org/10.1371/journal.pone.0124165
PubMed
PubMed Central
Google Scholar
van Timmeren J, Leijenaar RTH, van Elmpt W et al (2016) Test–retest data for radiomics feature stability analysis: generalizable or study-specific? Tomography 2:361–365 https://doi.org/10.18383/j.tom.2016.00208
PubMed
PubMed Central
Google Scholar
Mühlberg A, Katzmann A, Heinemann V et al (2020) The technome - a predictive internal calibration approach for quantitative imaging biomarker research. Sci Rep 10:1103 https://doi.org/10.1038/s41598-019-57325-7
PubMed
PubMed Central
Google Scholar
Du Q, Baine M, Bavitz K et al (2019) Radiomic feature stability across 4D respiratory phases and its impact on lung tumor prognosis prediction. PLoS One 14:e0216480 https://doi.org/10.1371/journal.pone.0216480
PubMed
PubMed Central
Google Scholar
Mahon RN, Hugo GD, Weiss E (2019) Repeatability of texture features derived from magnetic resonance and computed tomography imaging and use in predictive models for non-small cell lung cancer outcome. Phys Med Biol 64:145007 https://doi.org/10.1088/1361-6560/ab18d3
Google Scholar
Tanaka S, Kadoya N, Kajikawa T et al (2019) Investigation of thoracic four-dimensional CT-based dimension reduction technique for extracting the robust radiomic features. Phys Med 58:141–148 https://doi.org/10.1016/j.ejmp.2019.02.009
PubMed
Google Scholar
Tunali I, Hall LO, Napel S et al (2019) Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Med Phys 46:5075–5085 https://doi.org/10.1002/mp.13808
PubMed
Google Scholar
Zwanenburg A, Leger S, Agolli L et al (2019) Assessing robustness of radiomic features by image perturbation. Sci Rep 9:614 https://doi.org/10.1038/s41598-018-36938-4
PubMed
PubMed Central
Google Scholar
Berenguer R, Pastor-Juan MDR, Canales-Vázquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288:407–415 https://doi.org/10.1148/radiol.2018172361
PubMed
Google Scholar
Desseroit M-C, Tixier F, Weber WA et al (2017) Reliability of PET/CT shape and heterogeneity features in functional and morphologic components of non–small cell lung cancer tumors: a repeatability analysis in a prospective multicenter cohort. J Nucl Med 58:406–411 https://doi.org/10.2967/jnumed.116.180919
CAS
PubMed
PubMed Central
Google Scholar
Larue RTHM, van Timmeren JE, de Jong EEC et al (2017) Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol 56:1544–1553 https://doi.org/10.1080/0284186X.2017.1351624
PubMed
Google Scholar
Larue RTHM, Van De Voorde L, van Timmeren JE et al (2017) 4DCT imaging to assess radiomics feature stability: An investigation for thoracic cancers. Radiother Oncol 125:147–153 https://doi.org/10.1016/j.radonc.2017.07.023
PubMed
Google Scholar
Hu P, Wang J, Zhong H et al (2016) Reproducibility with repeat CT in radiomics study for rectal cancer. Oncotarget 7 https://doi.org/10.18632/oncotarget.12199
Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006 https://doi.org/10.1038/ncomms5006
CAS
PubMed
Google Scholar
Balagurunathan Y, Gu Y, Wang H et al (2014) Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol 7:72–87 https://doi.org/10.1593/tlo.13844
PubMed
PubMed Central
Google Scholar
Balagurunathan Y, Kumar V, Gu Y et al (2014) Test–retest reproducibility analysis of lung CT image features. J Digit Imaging 27:805–823 https://doi.org/10.1007/s10278-014-9716-x
PubMed
PubMed Central
Google Scholar
Fried DV, Tucker SL, Zhou S et al (2014) Prognostic value and reproducibility of pretreatment ct texture features in stage III non-small cell lung cancer. Int J Radiat Oncol 90:834–842 https://doi.org/10.1016/j.ijrobp.2014.07.020
Google Scholar
Hunter LA, Krafft S, Stingo F et al (2013) High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images: Robust quantitative image features. Med Phys 40:121916 https://doi.org/10.1118/1.4829514
PubMed
PubMed Central
Google Scholar
Hepp T, Othman A, Liebgott A, Kim JH, Pfannenberg C, Gatidis S (2020) Effects of simulated dose variation on contrast-enhanced CT-based radiomic analysis for Non-Small Cell Lung Cancer. Eur J Radiol 124:108804 https://doi.org/10.1016/j.ejrad.2019.108804
PubMed
Google Scholar
Piazzese C, Foley K, Whybra P, Hurt C, Crosby T, Spezi E (2019) Discovery of stable and prognostic CT-based radiomic features independent of contrast administration and dimensionality in oesophageal cancer. PLoS One 14:e0225550 https://doi.org/10.1371/journal.pone.0225550
CAS
PubMed
PubMed Central
Google Scholar
Robins M, Solomon J, Hoye J, Abadi E, Marin D, Samei E (2019) Systematic analysis of bias and variability of texture measurements in computed tomography. J Med Imaging 6:033503 https://doi.org/10.1117/1.JMI.6.3.033503
Google Scholar
Ger RB, Zhou S, Chi P-CM et al (2018) Comprehensive investigation on controlling for CT imaging variabilities in radiomics studies. Sci Rep 8:13047 https://doi.org/10.1038/s41598-018-31509-z
PubMed
PubMed Central
Google Scholar
Mackin D, Ger R, Dodge C et al (2018) Effect of tube current on computed tomography radiomic features. Sci Rep 8:2354 https://doi.org/10.1038/s41598-018-20713-6
PubMed
PubMed Central
Google Scholar
Shafiq-ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E (2018) Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep 8:10545 https://doi.org/10.1038/s41598-018-28895-9
PubMed
PubMed Central
Google Scholar
Buch K, Li B, Qureshi MM, Kuno H, Anderson SW, Sakai O (2017) Quantitative assessment of variation in CT parameters on texture features: pilot study using a nonanatomic phantom. AJNR Am J Neuroradiol 38:981–985 https://doi.org/10.3174/ajnr.A5139
CAS
PubMed
PubMed Central
Google Scholar
Mackin D, Fave X, Zhang L et al (2017) Harmonizing the pixel size in retrospective computed tomography radiomics studies. PLoS One 12:e0178524 https://doi.org/10.1371/journal.pone.0178524
PubMed
PubMed Central
Google Scholar
Shafiq-ul-Hassan M, Zhang GG, Hunt DC et al (2017) Accounting for reconstruction kernel-induced variability in CT radiomic features using noise power spectra. J Med Imaging 5:1 https://doi.org/10.1117/1.JMI.5.1.011013
Google Scholar
Lo P, Young S, Kim HJ, Brown MS, McNitt-Gray MF (2016) Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features: Variability in CT lung-nodule quantification. Med Phys 43:4854–4865 https://doi.org/10.1118/1.4954845
CAS
PubMed
PubMed Central
Google Scholar
Solomon J, Mileto A, Nelson RC, Choudhury KR, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi–detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194 https://doi.org/10.1148/radiol.2015150892
PubMed
Google Scholar
Fave X, Cook M, Frederick A et al (2015) Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput Med Imaging Graph 44:54–61 https://doi.org/10.1016/j.compmedimag.2015.04.006
PubMed
Google Scholar
Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG (2015) Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol 8:524–534 https://doi.org/10.1016/j.tranon.2015.11.013
PubMed
PubMed Central
Google Scholar
Choe J, Lee SM, Do K-H et al (2019) Deep learning–based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology 292:365–373 https://doi.org/10.1148/radiol.2019181960
PubMed
Google Scholar
Ligero M, Torres G, Sanchez C, Diaz-Chito K, Perez R, Gil D (2019) Selection of radiomics features based on their reproducibility. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Berlin, pp 403–408
Google Scholar
Varghese BA, Hwang D, Cen SY et al (2019) Reliability of CT-based texture features: Phantom study. J Appl Clin Med Phys 20:155–163 https://doi.org/10.1002/acm2.12666
PubMed
PubMed Central
Google Scholar
Bogowicz M, Riesterer O, Bundschuh RA et al (2016) Stability of radiomic features in CT perfusion maps. Phys Med Biol 61:8736–8749 https://doi.org/10.1088/1361-6560/61/24/8736
CAS
PubMed
Google Scholar
Kim H, Park CM, Lee M et al (2016) Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability. PLoS One 11:e0164924 https://doi.org/10.1371/journal.pone.0164924
PubMed
PubMed Central
Google Scholar
Lu L, Ehmke RC, Schwartz LH, Zhao B (2016) Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS One 11:e0166550 https://doi.org/10.1371/journal.pone.0166550
PubMed
PubMed Central
Google Scholar
Zhao B, Tan Y, Tsai W-Y et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428 https://doi.org/10.1038/srep23428
CAS
PubMed
PubMed Central
Google Scholar
Kim HG, Chung YE, Lee YH et al (2015) Quantitative analysis of the effect of iterative reconstruction using a phantom: determining the appropriate blending percentage. Yonsei Med J 56:253 https://doi.org/10.3349/ymj.2015.56.1.253
PubMed
Google Scholar
Zhao B, Tan Y, Tsai WY, Schwartz LH, Lu L (2014) Exploring Variability in CT characterization of tumors: a preliminary phantom study. Transl Oncol 7:88–93 https://doi.org/10.1593/tlo.13865
PubMed
PubMed Central
Google Scholar
Qiu Q, Duan J, Duan Z et al (2019) Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg 9:453–464 https://doi.org/10.21037/qims.2019.03.02
PubMed
PubMed Central
Google Scholar
Pavic M, Bogowicz M, Würms X et al (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074 https://doi.org/10.1080/0284186X.2018.1445283
PubMed
Google Scholar
Kalpathy-Cramer J, Mamomov A, Zhao B et al (2016) Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography 2:430–437 https://doi.org/10.18383/j.tom.2016.00235
PubMed
PubMed Central
Google Scholar
Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9:e102107 https://doi.org/10.1371/journal.pone.0102107
PubMed
PubMed Central
Google Scholar
Lee S-H, Cho H, Lee HY, Park H (2019) Clinical impact of variability on CT radiomics and suggestions for suitable feature selection: a focus on lung cancer. Cancer Imaging 19:54 https://doi.org/10.1186/s40644-019-0239-z
PubMed
PubMed Central
Google Scholar
Bagher‐Ebadian H, Siddiqui F, Liu C, Movsas B, Chetty IJ (2017) On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med Phys 44:1755–1770 https://doi.org/10.1002/mp.12188
PubMed
Google Scholar
Konert T, Everitt S, La Fontaine MD et al (2020) Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? PLoS One 15:e0228793 https://doi.org/10.1371/journal.pone.0228793
CAS
PubMed
PubMed Central
Google Scholar
Vuong D, Tanadini-Lang S, Huellner MW et al (2019) Interchangeability of radiomic features between [18F]- FDG PET / CT and [18F]- FDG PET / MR. Med Phys 46:1677–1685 https://doi.org/10.1002/mp.13422
PubMed
Google Scholar
Gallivanone F, Interlenghi M, D’Ambrosio D, Trifirò G, Castiglioni I (2018) Parameters influencing PET imaging features: a phantom study with irregular and heterogeneous synthetic lesions. Contrast Media Mol Imaging 2018:1–12 https://doi.org/10.1155/2018/5324517
Google Scholar
Leijenaar RTH, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397 https://doi.org/10.3109/0284186X.2013.812798
CAS
PubMed
Google Scholar
Pfaehler E, Beukinga RJ, de Jong JR et al (2019) Repeatability of 18 F-FDG PET radiomic features: A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys 46:665–678 https://doi.org/10.1002/mp.13322
PubMed
Google Scholar
Branchini M, Zorz A, Zucchetta P et al (2019) Impact of acquisition count statistics reduction and SUV discretization on PET radiomic features in pediatric 18F-FDG-PET/MRI examinations. Phys Med 59:117–126 https://doi.org/10.1016/j.ejmp.2019.03.005
PubMed
Google Scholar
Carles M, Torres-Espallardo I, Alberich-Bayarri A et al (2017) Evaluation of PET texture features with heterogeneous phantoms: complementarity and effect of motion and segmentation method. Phys Med Biol. 62(2):652–668 https://doi.org/10.1088/1361-6560/62/2/652
CAS
PubMed
Google Scholar
Lovat E, Siddique M, Goh V, Ferner RE, Cook GJ, Warbey VS (2017) The effect of post-injection 18F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1. EJNMMI Res 7:35 https://doi.org/10.1186/s13550-017-0282-3
PubMed
PubMed Central
Google Scholar
Reuzé S, Orlhac F, Chargari C et al (2017) Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget 8 https://doi.org/10.18632/oncotarget.17856
Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509 https://doi.org/10.1007/s00330-017-4859-z
PubMed
Google Scholar
Forgacs A, Pall Jonsson H, Dahlbom M et al (2016) A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One 11:e0164113 https://doi.org/10.1371/journal.pone.0164113
PubMed
PubMed Central
Google Scholar
Grootjans W, Tixier F, van der Vos CS et al (2016) The impact of optimal respiratory gating and image noise on evaluation of intratumor heterogeneity on 18F-FDG PET imaging of lung cancer. J Nucl Med 57:1692–1698 https://doi.org/10.2967/jnumed.116.173112
PubMed
Google Scholar
Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE (2015) Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging 2:041002 https://doi.org/10.1117/1.JMI.2.4.041002
Google Scholar
Cheng NM, Fang YH, Tsan DL, Hsu CH, Yen TC (2016) Respiration-averaged CT for attenuation correction of PET images – impact on pet texture features in non-small cell lung cancer patients. PLoS One 11:e0150509 https://doi.org/10.1371/journal.pone.0150509
PubMed
PubMed Central
Google Scholar
Lasnon C, Majdoub M, Lavigne B et al (2016) 18F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging 43:2324–2335 https://doi.org/10.1007/s00259-016-3441-2
PubMed
Google Scholar
van Velden FHP, Kramer GM, Frings V et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18:788–795 https://doi.org/10.1007/s11307-016-0940-2
PubMed
PubMed Central
Google Scholar
Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ (2015) The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur Radiol 25:2805–2812 https://doi.org/10.1007/s00330-015-3681-8
PubMed
Google Scholar
Yan J, Chu-Shern JL, Loi HY et al (2015) Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med 56:1667–1673 https://doi.org/10.2967/jnumed.115.156927
CAS
PubMed
Google Scholar
Yang F, Simpson G, Young L, Ford J, Dogan N, Wang L (2020) Impact of contouring variability on oncological PET radiomics features in the lung. Sci Rep 10:369 https://doi.org/10.1038/s41598-019-57171-7
CAS
PubMed
PubMed Central
Google Scholar
Hatt M, Laurent B, Fayad H, Jaouen V, Visvikis D, Le Rest CC (2018) Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. Eur J Nucl Med Mol Imaging 45:630–641 https://doi.org/10.1007/s00259-017-3865-3
CAS
PubMed
Google Scholar
Lu L, Lv W, Jiang J et al (2016) Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization. Mol Imaging Biol 18:935–945 https://doi.org/10.1007/s11307-016-0973-6
CAS
PubMed
Google Scholar
Hatt M, Tixier F, Le Rest CC, Pradier O, Visvikis D (2013) Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40:1662–1671 https://doi.org/10.1007/s00259-013-2486-8
PubMed
Google Scholar
Whybra P, Parkinson C, Foley K, Staffurth J, Spezi E (2019) Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging. Sci Rep 9:9649 https://doi.org/10.1038/s41598-019-46030-0
PubMed
PubMed Central
Google Scholar
Presotto L, Bettinardi V, De Bernardi E et al (2018) PET textural features stability and pattern discrimination power for radiomics analysis: An “ad-hoc” phantoms study. Phys Med 50:66–74 https://doi.org/10.1016/j.ejmp.2018.05.024
CAS
PubMed
Google Scholar
Yip SS, Parmar C, Kim J, Huynh E, Mak RH, Aerts HJ (2017) Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur J Radiol 97:8–15 https://doi.org/10.1016/j.ejrad.2017.10.009
PubMed
Google Scholar
Bianchini L, Botta F, Origgi D et al (2020) PETER PHAN: An MRI phantom for the optimisation of radiomic studies of the female pelvis. Phys Med 71:71–81 https://doi.org/10.1016/j.ejmp.2020.02.003
PubMed
Google Scholar
Fiset S, Welch ML, Weiss J et al (2019) Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother Oncol 135:107–114 https://doi.org/10.1016/j.radonc.2019.03.001
PubMed
Google Scholar
Peerlings J, Woodruff HC, Winfield JM et al (2019) Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial. Sci Rep 9:4800 https://doi.org/10.1038/s41598-019-41344-5
PubMed
PubMed Central
Google Scholar
Schwier M, van Griethuysen J, Vangel MG et al (2019) Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci Rep 9:1–16 https://doi.org/10.1038/s41598-019-45766-z
Google Scholar
Bologna M, Corino V, Mainardi L (2019) Technical Note: Virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI-radiomics of the brain. Med Phys 46:5116–5123 https://doi.org/10.1002/mp.13834
PubMed
Google Scholar
Cattell R, Chen S, Huang C (2019) Robustness of radiomic features in magnetic resonance imaging: review and a phantom study. Vis Comput Ind Biomed Art 2:19 https://doi.org/10.1186/s42492-019-0025-6
PubMed
PubMed Central
Google Scholar
Um H, Tixier F, Bermudez D, Deasy JO, Young RJ, Veeraraghavan H (2019) Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Phys Med Biol 64(16):165011 Published 2019 Aug 21. https://doi.org/10.1088/1361-6560/ab2f44
PubMed
Google Scholar
Yang F, Dogan N, Stoyanova R, Ford JC (2018) Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth. Phys Med 50:26–36 https://doi.org/10.1016/j.ejmp.2018.05.017
PubMed
Google Scholar
Traverso A, Kazmierski M, Zhovannik I et al (2020) Machine learning helps identifying volume-confounding effects in radiomics. Phys Med 71:24–30 https://doi.org/10.1016/j.ejmp.2020.02.010
PubMed
Google Scholar
Duron L, Balvay D, Vande Perre S et al (2019) Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One 14:e0213459 https://doi.org/10.1371/journal.pone.0213459
CAS
PubMed
PubMed Central
Google Scholar
Tixier F, Um H, Young RJ, Veeraraghavan H (2019) Reliability of tumor segmentation in glioblastoma: Impact on the robustness of MRI-radiomic features. Med Phys:mp.13624 https://doi.org/10.1002/mp.13624
Zhang X, Zhong L, Zhang B et al (2019) The effects of volume of interest delineation on MRI-based radiomics analysis: evaluation with two disease groups. Cancer Imaging 19:89 https://doi.org/10.1186/s40644-019-0276-7
PubMed
PubMed Central
Google Scholar
Saha A, Harowicz MR, Mazurowski MA (2018) Breast cancer MRI radiomics: An overview of algorithmic features and impact of inter-reader variability in annotating tumors. Med Phys 45:3076–3085 https://doi.org/10.1002/mp.12925
PubMed
Google Scholar
Veeraraghavan H, Dashevsky BZ, Onishi N et al (2018) Appearance constrained semi-automatic segmentation from DCE-MRI is reproducible and feasible for breast cancer radiomics: a feasibility study. Sci Rep 8:4838 https://doi.org/10.1038/s41598-018-22980-9
PubMed
PubMed Central
Google Scholar
Isaksson LJ, Raimondi S, Botta F et al (2020) Effects of MRI image normalization techniques in prostate cancer radiomics. Phys Med 71:7–13 https://doi.org/10.1016/j.ejmp.2020.02.007
PubMed
Google Scholar
Scalco E, Belfatto A, Mastropietro A et al (2020) T2w-MRI signal normalization affects radiomics features reproducibility. Med Phys:14038 https://doi.org/10.1002/mp.14038
Moradmand H, Aghamiri SMR, Ghaderi R (2020) Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. J Appl Clin Med Phys 21:179–190 https://doi.org/10.1002/acm2.12795
PubMed
Google Scholar
Um H, Tixier F, Bermudez D, Deasy JO, Young RJ, Veeraraghavan H (2019) Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Phys Med Biol 64:165011 https://doi.org/10.1088/1361-6560/ab2f44
PubMed
Google Scholar
Valladares A, Beyer T, Rausch I (2020) Physical imaging phantoms for simulation of tumor heterogeneity in PET, CT, and MRI: An overview of existing designs. Med Phys:mp.14045 https://doi.org/10.1002/mp.14045
Zhao B, James LP, Moskowitz CS et al (2009) Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non–small cell lung cancer. Radiology 252:263–272 https://doi.org/10.1148/radiol.2522081593
PubMed
PubMed Central
Google Scholar
Zwanenburg A (2019) Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 46:2638–2655 https://doi.org/10.1007/s00259-019-04391-8
PubMed
Google Scholar
Zhovannik I, Bussink J, Traverso A et al (2019) Learning from scanners: bias reduction and feature correction in radiomics. Clin Transl Radiat Oncol 19:33–38 https://doi.org/10.1016/j.ctro.2019.07.003
PubMed
PubMed Central
Google Scholar
Orlhac F, Boughdad S, Philippe C et al (2018) A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med 59:1321–1328 https://doi.org/10.2967/jnumed.117.199935
CAS
PubMed
Google Scholar
Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I (2019) Validation of A Method to Compensate Multicenter Effects Affecting CT Radiomics. Radiology 291:53–59 https://doi.org/10.1148/radiol.2019182023
PubMed
Google Scholar
Mahon RN, Ghita M, Hugo GD, Weiss E (2020) ComBat harmonization for radiomic features in independent phantom and lung cancer patient computed tomography datasets. Phys Med Biol 65:015010 https://doi.org/10.1088/1361-6560/ab6177
CAS
PubMed
Google Scholar
Götz M, Maier-Hein KH (2020) Optimal statistical incorporation of independent feature stability information into radiomics studies. Sci Rep 10:737 https://doi.org/10.1038/s41598-020-57739-8
PubMed
PubMed Central
Google Scholar
Kalendralis P, Traverso A, Shi Z et al (2019) Multicenter CT phantoms public dataset for radiomics reproducibility tests. Med Phys 46:1512–1518 https://doi.org/10.1002/mp.13385
PubMed
Google Scholar
Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology:191145 https://doi.org/10.1148/radiol.2020191145
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762 https://doi.org/10.1038/nrclinonc.2017.141
PubMed
Google Scholar
Park JE, Kim D, Kim HS et al (2020) Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol 30:523–536 https://doi.org/10.1007/s00330-019-06360-z
PubMed
Google Scholar