There is a wide spectrum of core-needle devices that can be used under ultrasound guidance (Fig. 1). The thickness of the needles can be selected, varying from 18- to 8-gauge; however, 14-gauge conventional Tru-cut devices have been the most commonly used [6]. Nowadays there is a trend towards using 10- to 11-gauge vacuum-assisted devices.
It is very important to correlate mammography, ultrasound and MRI findings, in order to carry out the puncture using the most suitable method of guidance. Sometimes it is necessary to perform several biopsies in the same patient using different techniques of imaging guidance (i.e. microcalcifications under stereotactic guidance and a mass, only visible on ultrasound, under ultrasound guidance). Metallic markers can be placed superficially on the skin close to the lesion or inside the lesion to correlate ultrasound and mammography findings.
The use of high-frequency (10- to 12-MHz) probes, adjustments in the dynamic range and postprocessing grey scales, as well as correct focus, are important to improve the visibility of breast lesions.
The patients should have a complete, thorough level of information about the technique, indications, contraindications, complications and alternative possibilities; therefore, obtaining informed consent is mandatory. Local anaesthesia must be injected superficially and also as deeply as necessary, under sterile conditions. This anaesthesia does not mask the lesion and sometimes can help us to move it to another, more accessible place, deeper or more superficial. However, bubbles mixed with the anaesthesia can mask the lesion; thus, they must be avoided.
After localising the lesion with ultrasound, the procedure is performed in an outpatient setting, using the free-hand technique: one hand holds the probe and the other hand holds the needle (Fig. 2). One of the main advantages of ultrasound-guided CNB is the full control of the needle position in real time, allowing for corrections in the needle direction.
As a general rule, the shortest route from the skin to the lesion should be used. A vertical approach would be the best, but it is not possible under ultrasound guidance. However, an oblique approach, as parallel to the chest wall as possible, should be used (Fig. 3). This is the way to avoid pneumothorax, the worst complication of this technique. This approach also enables the best visualisation of the needle, because even large-gauge needles are difficult to visualise if a steep angle is used because of less reflective echoes. However, when the needle is parallel to the probe, the number of needle-generated reflected echoes that are perpendicular to the ultrasound beam is maximised, so the needle can be identified. This horizontal approach can be used to perform a biopsy for cutaneous lesions (Fig. 4).
It is useful to move the patient to lateral decubitus positions, especially in the case of deeply located lesions or peripheral masses. If possible, an approach through fat is preferable, because the puncture is easier (the fat is soft and the needle can be easily guided; Fig. 5).
It is important to insert the tip of the needle inside the mass, because there is a dead space behind the tip. If the tip is not inserted, then part of the specimen will not belong to the lesion but to the perilesional tissue, and there is a risk of lancing the lesion, especially if it is very hard. Necrotic tissue inside the lesion should not be targeted. Pre-fire and post-fire images are important to ensure the correct position of the needle and to rule out the occurrence of complications (Fig. 6).
In the case of very dense breasts, the punction can be difficult. There are some tricks that can be used:
-
Coaxial technique: once the coaxial needle is inserted in the lesion, the inner trocar can be removed and replaced by the biopsy needle [6].
-
A 16-gauge needle instead of a 14-gauge one. The smaller diameter, the lower friction with the surrounding tissue. The punction is easier and the strength of the shot is greater.
-
Stronger devices, such as vacuum-assisted devices.
-
Devices with diamond-shaped needle tips, because they transverse the fibrous tissue better than conventional needles (Fig. 7).
In the case of deeply located lesions there is a need to use a parallel approach to the chest wall, so that this structure is not penetrated and pneumothorax is avoided. Other tricks that can be used include:
-
The needle can be used as a lever: the entry of the needle has to be located about 2 cm from the edge of the transducer and the lesion is manually lifted away from the chest wall [6].
-
Local anaesthesia can be used to move the lesion to a more convenient place, especially if it is injected deep to the lesion (Fig. 8).
The macroscopic evaluation of the specimens is also important, because it can give additional information about their quality: colour, consistency and grade of immersion of the cylinders in formaldehyde can be useful criteria for knowing their suitability for diagnosis. Intact, white or brown samples that quickly sink are considered more representative and are consequently preferred to fragmented, floating yellow ones, normally containing only adipose tissue [17]. This is the first index of correlation; of course it is not conclusive, but only orientative (Fig. 9). If the biopsied lesion is a cluster of microcalcifications, a specimen radiograph is mandatory to confirm the presence of microcalcifications (Fig. 10).
Four specimens may be enough for a reliable diagnosis, according to Fishman et al. [17]. However, other authors find a diagnosis with only two specimens to be reliable [18].
Vacuum-assisted biopsy devices under ultrasound guidance have been used as an alternative to conventional ultrasound CNB. When VAB is performed, more specimens are removed [19].
However, Philpotts et al. [20] compared the two techniques (181 CNB procedures vs 100 VAB procedures) and found no significant differences in false-negative results, underestimation and complications. The reason for such a result is probably the homogeneity of most ultrasound-detected lesions (a small specimen is representative of the whole lesion) and the low frequency of borderline results (such as atypical ductal hyperplasia and others, which are usually associated with microcalcifications and are not seen on ultrasound).
However, the number of samples should be greater for those lesions with complex radiological features. In these cases, for example parenchymal distortions or asymmetric densities, more samples and/or thicker needles are recommended. The first cylinders are the most important ones, because later the suspicious lesion can be masked by variable degrees of bleeding.