Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379
PubMed
CAS
Google Scholar
Podo F (1999) Tumor phospholipid metabolism. NMR Biomed 12:413–414
Article
PubMed
CAS
Google Scholar
Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263
Article
PubMed
Google Scholar
Hara T, Kosada N, Kondo T et al (1997) Imaging of brain tumor, lung cancer, esophageal cancer, colon cancer, prostate cancer and bladder cancer with (C-11)choline. J Nucl Med 38(Suppl):250P
Google Scholar
Briganti A, Chun FK-H, Salonia A et al (2006) Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol 49:1019–1027
Article
PubMed
Google Scholar
Schiavina R, Scattoni V, Castellucci P et al (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54(2):392–401
Article
PubMed
Google Scholar
Farsad M, Schiavina R, Castellucci P et al (2005) Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10):1642–1649
PubMed
CAS
Google Scholar
Giovacchini G, Picchio M, Coradeschi E et al (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6):1065–1073
Article
PubMed
CAS
Google Scholar
Castellucci P, Fuccio C, Fanti S (2010) Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. doi:10.2967/jnumed.109.072322
PubMed
Google Scholar
Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995
PubMed
CAS
Google Scholar
De Jong I, Pruim J, Elsinga PH et al (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32–38
Article
PubMed
Google Scholar
Krause BJ, Souvatzoglou M, Tincel M et al (2008) The detection rate of 11-C choline PET/TC depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23
Article
PubMed
CAS
Google Scholar
Breeuwsma AJ, Pruim J, Van den Bergh AC et al (2010) Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-choline positron emission tomography. Int J Radiat Oncol Biol Phys 77(1):160–164
Article
PubMed
Google Scholar
Giovacchini G, Picchio M, Scattoni V et al (2010) PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 37(6):1106–1116
Article
PubMed
CAS
Google Scholar
Nanni C, Zamagni E, Cavo M et al (2007) 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 20(5):68
Article
Google Scholar
Hoffman RM (1984) Altered methionine metabolism, DNA methylation and oncogenic expression in carcinogenesis. Biochem Biophys Acta 738:49–87
PubMed
CAS
Google Scholar
Derlon JM, Bourdet C, Bustany P et al (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25:720–728
Article
PubMed
CAS
Google Scholar
Leskinen-Kallio S, Någren K, Lehikoinen P et al (1991) Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 64(6):1121–1124
Article
PubMed
CAS
PubMed Central
Google Scholar
Leskinen-Kallio S, Någren K, Lehikoinen P et al (1992) Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33(5):691–695
PubMed
CAS
Google Scholar
Huang MC, Shih MH, Chung WY et al (2005) Malignancy of intracerebral lesions evaluated with 11C-methionine-PET. J Clin Neurosci 12:775–780
Article
PubMed
CAS
Google Scholar
Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59
Article
PubMed
CAS
Google Scholar
Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507
Article
PubMed
Google Scholar
Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699
Article
PubMed
Google Scholar
Chung JK, Kim YK, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182
Article
PubMed
CAS
Google Scholar
Yamane T, Sakamoto S, Senda M (2010) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37(4):685–690
Article
PubMed
Google Scholar
Tsuyuguchi N, Takami T, Sunada I et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18(4):291–296
Article
PubMed
CAS
Google Scholar
Wong TZ, Van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumours. Neuroimaging Clin N Am 12:615–626
Article
PubMed
Google Scholar
Goldman S, Levivier M, Pirotte B et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462
PubMed
CAS
Google Scholar
Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138
Article
PubMed
CAS
Google Scholar
Heiss WD, Wienhard K, Wagner R et al (1996) F-Dopa as an amino acid tracer to detect brain tumours. J Nucl Med 37(7):1180–1182
PubMed
CAS
Google Scholar
Becherer A, Szabó M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167
PubMed
CAS
Google Scholar
Hardy O, Hernandez-Pampaloni M, Saffer JR et al (2007) Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 150(2):140–145
Article
PubMed
CAS
Google Scholar
Pearce AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic implications of the concept. J Histochem Cytochem 17:303–313
Article
Google Scholar
Gazdar AF, Helman LJ, Israel MA et al (1988) Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res 48:4078–4082
PubMed
CAS
Google Scholar
Hoegerle S, Altehoefer C, Ghanem N et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1):64–71
Article
PubMed
CAS
Google Scholar
Imani F, Agopian VG, Auerbach MS et al (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50(4):513–519
Article
PubMed
Google Scholar
Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7(9):728–734
Article
PubMed
CAS
Google Scholar
Fiebrich HB, Brouwers AH, Kerstens MN et al (2009) 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 94(10):3922–3930
Article
PubMed
CAS
Google Scholar
Bombardieri E, Maccauro M, De Deckere E et al (2001) Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol 12(Suppl 2):S51–S61
Article
PubMed
Google Scholar
Kwekkeboom DJ, Kooj PP, Bakker WH et al (1999) Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumour uptake. J Nucl Med 40:762–767
PubMed
CAS
Google Scholar
Hofmann M, Maecke H, Börner R et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68 Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757
Article
PubMed
CAS
Google Scholar
Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 54(1):61–67
PubMed
CAS
Google Scholar
Maecke HR, Hofmann M, Haberkorn U (2005) 68 Ga-labeled peptides in tumor imaging. J Nucl Med 46:172S–178S
PubMed
CAS
Google Scholar
Baum RP (2005) Receptor PET/CT imaging of neuroendocrine tumors using the Ga-68 labelled, high affinity somatostatin analogue DOTA-1-NaI3-octreotide (DOTA-NOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging 32:109s
Google Scholar
Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77
Article
PubMed
CAS
Google Scholar
Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumours: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518
Article
PubMed
CAS
Google Scholar
Ambrosini V, Nanni C, Zompatori M et al (2010) 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37:722–727
Article
PubMed
Google Scholar
Haug A, Auernhammer CJ, Wängler B et al (2009) Intraindividual comparison of [68Ga]DOTA-TATE and [18F]DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770
Article
PubMed
CAS
Google Scholar
Ambrosini V, Tomassetti P, Castellucci P et al (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35(8):1431–1438
Article
PubMed
CAS
Google Scholar
Campana D, Ambrosini V, Pezzilli R et al (2010) Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 51:353–359
Article
PubMed
Google Scholar
Gabriel M, Andergassen U, Putzer D et al (2010) Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 54(1):92–99
PubMed
CAS
Google Scholar
Howard BV, Howard WJ (1975) Lipids in normal and tumor cells in culture. Prog Biochem Pharmacol 10:135–166
PubMed
CAS
Google Scholar
Luong A, Hannah VC, Brown MS et al (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275(34):26458–26466
Article
PubMed
CAS
Google Scholar
Rigo P, De Landsheere C, Melon P et al (1990) Imaging of myocardial metabolism by positron emission tomography. Cardiovasc Drugs Ther 4(Suppl 4):847–851
Article
PubMed
Google Scholar
Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555
PubMed
CAS
Google Scholar
Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221
PubMed
Google Scholar
Liu RS (2000) Clinical application of (C-11)acetate in oncology. Clin Positron Imaging 3(4):185
Article
PubMed
Google Scholar
Swinnen JV, Van Veldhoven PP, Timmermans L et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903
Article
PubMed
CAS
Google Scholar
Nanni C, Castellucci P, Farsad M et al (2007) 11C/18F-choline PET or 11C/8F-acetate PET in prostate cancer: may a choice be recommended? Eur J Nucl Med Mol Imaging 34:1704–1705
Article
PubMed
Google Scholar
Chierichetti F, Lessi G, Bissoli S et al (2005) Preliminary experience with 11C-acetate and PET7CT in prostate cancer. J Nucl Med 46 (Suppl 2)
Soloviev D, Fini A, Chierichetti F et al (2008) PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging 35(5):942–949
Article
PubMed
Google Scholar
Albrecht S, Buchegger F, Soloviev D et al (2007) (11)C-Acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34:185–196
Article
PubMed
Google Scholar
Iwata Y, Shiomi S, Sasaki N et al (2000) Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med 14:121–126
Article
PubMed
CAS
Google Scholar
Hwang KH, Choi DJ, Lee SY et al (2009) Evaluation of patients with hepatocellular carcinomas using [(11)C]acetate and [(18)F]FDG PET/CT: a preliminary study. Appl Radiat Isot 67(7–8):1195–1198
Article
PubMed
CAS
Google Scholar
Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [18F]FLT and positron emission tomography. Nat Med 4:1334–1336
Article
PubMed
CAS
Google Scholar
Barthel H, Perumal M, Latigo J et al (2005) The uptake of 3’-deoxy-3’-[18F]fluorothymidine into L178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32(3):257–263
Article
PubMed
CAS
Google Scholar
Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150
Article
PubMed
Google Scholar
Buck AK, Schirrmeister H, Hetzel M et al (2002) 3-Deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334
PubMed
CAS
Google Scholar
Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorothymidine. Clin Cancer Res 14(10):2970–2977
Article
PubMed
CAS
Google Scholar
Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952
PubMed
CAS
Google Scholar
Yue J, Chen L, Cabrera AR et al (2010) Measuring tumor cell proliferation with 18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma: a pilot clinical study. J Nucl Med 51(4):528–534
Article
PubMed
Google Scholar
Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of [18F]3’-deoxy-3’-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30(7):988–994
Article
PubMed
CAS
Google Scholar
Blau M, Nagler W, Bender MA (1962) A new isotope for bone scanning. J Nucl Med 3:332–334
PubMed
CAS
Google Scholar
Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37:400–419
Article
PubMed
Google Scholar
Hetzel M, Arslandemir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214
Article
PubMed
Google Scholar
Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297
PubMed
Google Scholar
Groves AM, Win Th, Ben Haim S et al (2007) Non-[18F]FDG PET in clinical oncology. Lancet Oncol 8:822–830
Article
PubMed
Google Scholar
Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med 45:272–278
PubMed
Google Scholar
Iagaru A, Mittra E, Yaghoubi SS et al (2009) Novel strategy for cocktail 18F-flouride and 18F-FDG PET/CT scan for evaluation of malignancy: results of a pilot-phase study. J Nucl Med 50:501–505
Article
PubMed
Google Scholar
Fischer DR, Maquieira GJ, Espinosa N et al (2010) Therapeutic impact of [(18)F]fluoride positron-emission tomography/computed tomography on patients with unclear foot pain. Skeletal Radiol 39(10):987–997
Article
PubMed
Google Scholar
Lewis JS, Welch MJ (2001) PET imaging of hypoxia. Q J Nucl Med 45(2):183–188
PubMed
CAS
Google Scholar
Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304
Article
PubMed
CAS
Google Scholar
Hicks RJ, Rischin D, Fisher R et al (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32:1384–1391
Article
PubMed
Google Scholar
Rajendran JG, Wilson DC, Conrad EU et al (2003) (18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704
Article
PubMed
CAS
Google Scholar
Piert M, Machulla HJ, Picchio M et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113
PubMed
Google Scholar
Komar G, Seppaenen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951
Article
PubMed
Google Scholar
Padhani A (2006) PET imaging of tumour hypoxia. Cancer Imaging 6:S117–S121
Article
PubMed
PubMed Central
Google Scholar
Dehdashti F, Grigsby PW, Mintun MA et al (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response—a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238
Article
PubMed
Google Scholar
Dehdashti F, Mintun MA, Lewis JS et al (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–850
Article
PubMed
CAS
Google Scholar