Referring physicians and patients expect the delivery of optimized imaging services. Factors to consider include the availability of best possible equipment, quality and assurance systems for imaging equipment, room design, patient communication, informed consent, patient transportation, patient surveillance, all aspects of timeliness, standardized (possibly evidence-based) protocols, professional communication, after-hour service, and emergency and disaster preparedness [4, 21]. An integrated comprehensive management and organizational structure of imaging services has clear advantages and is better equipped to meet such high demands.
Standardized workflow
The workflow of an imaging service includes monitoring of the appropriateness of referral, quality assurance for professional and technical staff, report generation, archiving, and last but not least supervision and consultation by highly trained super-specialized radiologists (Fig. 1, adapted from [6]). For some parts of the process, information technology solutions may be beneficial and already available or under development [electronic order entry, automated decision support, computer aided detection (CAD)] [6].
Quality and safety issues
In radiology, the safety of patients and health care personnel permeates most features of the imaging process. According to Hendee, “it includes using the lowest dose of ionizing radiation possible to either achieve the images necessary to arrive at a correct diagnosis or conduct an interventional procedure successfully. Each image should be obtained at the lowest dose consistent with sufficient image quality, a minimum number of images should be acquired consistent with the successful completion of an examination or procedure, and requests for unnecessary or inappropriate examinations should be refused. Every radiologic examination—even those that are performed with US and MR imaging, which do not employ ionizing radiation—expose patients to some element of risk. That risk comes from unwarranted exposure to radiation, as well as from false-positive results that lead to follow-up procedures and false-negative results that fail to demonstrate evidence of disease and injury. Knowledge about why, when, where, how, and for whom imaging should be employed is part of each radiologist’s training” [1].
Thus a quality radiology practice will consistently perform the right procedure at the right time for the right patient, the radiology report will be timely and accurate, and the patient will receive optimal personal care [4, 6, 21]. However, this ideal is not reality, and even 99.99% reliability in a large practice will result in a significant number of adverse events [4]. Accountability of radiology departments is granted by the provider-customer relationship between referring physician and radiologist. Optimization of quality and safety requires a proactive systematic study of workflow, identification of weaknesses that could lead to suboptimal performance, and risk assessment [4]. Certainly, many of the well-known problems in radiology, such as lost or unavailable images and reports, delayed communication of results, and lack of patient information, have all been reduced with implementation of hospital and radiology information systems, voice recognition dictation systems, and picture archiving and communication systems. The quality of care and service has increased, and operational costs have decreased [22].
Quality standards should also assist in determining the technical specifications of new equipment being purchased, based on the facility's clinical imaging requirements. Guidelines should cover the general requirements specified for equipment selection with a view (1) to upgrading or maintaining standards for diagnostic imaging quality, i.e., the system design, construction, and performance, (2) to the extent and cost of service contracts and qualifications and availability of service personnel, and (3) to the cost of the system, system components and ancillary equipment as well as the cost of delivery and installation [23].
24/7 services
Increasingly, customers of imaging services look for timeliness and access [6]. Success of an integrated, comprehensive practice of imaging is related to a “365 by 24” (all day, every day) service that is not only valued but also needed by most referring physicians. In order to provide this continuous service, radiology needs a sufficient flow of patients in all possible technologies and indications also during office hours, particularly for training purposes and preserving expertise for emergency situations [6].
The large variety of procedures and the high levels of expertise available in subspecialized services have to be available also and particularly for emergency situations. For such levels of coverage, a minimum number of trained staff has to be available. This infrastructure is greatly appreciated by nonradiologist physicians and by health service administrators. The costs, however, may be substantial and a potent incentive for consolidated radiology departments.
Decentralized technology
An integrated comprehensive imaging service does not exclude the possibility of decentralizing some of the facilities (equipment) within the hospital [6]. Medicine will begin to take advantage of anytime/anywhere image interpretation enabled by digital acquisition and transmission [24]. Patient-focused decentralized care provides that patients in a given department rarely need to leave their hospital floor, as most of their needs (including administrative and discharge procedures, nutrition, patient support, and laboratory and simple radiographic services) are available on the floor. This method relies on decentralization of services by using mobile X-ray or ultrasound equipment handled by trained professionals belonging to the central imaging facility. Similarly, for image-guided interventions that have to be performed in special locations (operating theaters), radiographers and radiologists would follow the needs of the patient [6].
However, decentralization in radiology is wasteful and inefficient. It can make radiology departments smaller and less stimulating and employees less committed. When specialized work tasks are decentralized and stability in the work force is low, the risk is that specialized work tasks will not be done well. In a central department, technologists usually cover for each other during temporary absences and consult over technical problems. In the decentralized scheme, the technologist is isolated and works without direct supervision [6].
Radiology is a high efficiency, high throughput service. The large volume of procedures as well as clustering of radiological equipment allows optimized use of the scarce trained paramedical and medical personnel. Moreover, more equipment in the same modality offers the possibility of successive investment, allowing for the use of state-of-the-art technology whenever necessary. These advantages are not available for small decentralized facilities [6].
Internal competition
Legislation in a free-market economic system does not tolerate attempts by entities to restrain or limit competition among providers of goods or services. Accordingly, a restraint or limitation on competition generally will be allowed only if it serves some important purpose. Over the years, health care organizations have recognized that a limitation on competition is acceptable if it protects a party from unfair competition. In this context, self-referral can be regarded as unfair internal competition with regard to services provided by a referral-based radiology department. Individual and interdepartmental economic competition and new technologies may renew competitive forces to obtain leadership positions and market share. These forces can become overwhelming and may stimulate detrimental competition for patients, space, and resources [6]. Moreover, internal competition among specialists interested in imaging may result in disagreements and may even begin to strain normally collegial relationships. On the other hand, a mutually beneficial arrangement among the specialties requires minimization of internal competition as well as adequate patient volume and economic resources for all participants. Competition must be therefore based externally on quality and cost, not internally among members of the group [25].