Skip to main content

Table 2 Details in generative methodology as presented in studies for brain tumors

From: Enhancing cancer differentiation with synthetic MRI examinations via generative models: a systematic review

Author

Architecture

Training dataset

Input

G. Arch

D. Arch

Loss function

Optimizer

Batch size

Output

Beers [38]

PGGAN

-

128-d

Noise vector

nearest neighbor

interpolation

CNN

W-distance

Adam

16

256 x 256

Han [39]

DCGAN/

WGAN

61,600 slices

each sequence

Noise vector

Transposed CNN

CNN

GAN loss/

W-distance

Adam/

RMS-prop

64

64 x 64

128 x 128

Han [41]

PGGAN

5,036 tumor

3,853 non-tumor

Noise vector

nearest neighbor

interpolation

CNN

W-distance

& GP

Adam

16

256 x 256

Han [42]

PGGAN/

MUNIT/

SimGAN

154 patients

4,679 tumor &

3,750 non-tumor images

512-d

Noise vector/

Synthetic images

nearest neighbor

interpolation/

Style encoder &

Decoder/

Refiner

CNN/

multi-scale CNN/

CNN

W-distance & GP/

MUNIT loss/

GAN loss with

Self-regularization

Adam/

Adam/

SGD

16/

1/

10

256 x 256

Han [44]

CPGGAN

2,813 tumor images

5,963 bounding boxes

16,962 normal images

Noise vector &

bounding boxes

nearest neighbor

interpolation

CNN

W-distance

& GP

Adam

4

256 x 256

Shin [46]

pix2pix

3,416 pairs of

MRI sequences

Annotated

masks

U-Net

PatchGAN

pix2pix loss

-

-

128 x 128 x 54

Chang [47]

AsynDGAN

170 patients

11,057 images

Tumor mask

9-block ResNet

PatchGAN

Custom

Adam

3

256 x 256

Chang [48]

AsynDGAN

170 patients

11,349 images

Tumor mask

9-block ResNet

PatchGAN

Custom

Adam

10

256 x 256

Deepak [49]

MSG-GAN

-

512-d

Noise vector

Up-sampling &

Convolutions

CNN

W-distance

& GP

RMS-prop

20

128 x 128

Qasim [50]

Red-GAN

14,850 slices

Label masks

7 SPADE

ResNet

PatchGAN

Hinge loss &

Feature matching loss

Adam

-

256 x 256

Kwon [52]

3D-GAN

210 subjects

1000-d

Noise vector

Resize-convolution /

3D-CNN

3D-CNN/

FC

Custom

Adam

4

64 x 64 x 64

Chen [54]

HybridGAN

600 slices

Fake patches &

Constrained noise vector

Encoder–Decoder

CNN

Custom

Adam

30

256 x 256

Pesteie [55]

ICVAE

3,000

Real images

Encoder–Decoder

-

KLD

SGD

100

128 x 128

Hamghalam [56]

Enh-Seg-GAN

200k patches

32 x 32

patches

Recalibration block

Encoder–Decoder

Markovian

CNN

Custom

-

-

32 x 32

Qi [57]

SAG-GAN

225 patients

Real data

ResNet

PatchGAN

Custom

-

-

240 x 240

Guo [58]

SAMR

72 patients

1,080 instances

Lesion mask

Two encoders

Residual blocks &

Decoder

Six multi-scale

Labelwise

PatchGANs

Custom

Adam

8

256 x 256 x 5

Guo [60]

UCG-SAMR

72 patients

1,080 instances

Lesion mask &

Atlases

Encoder–Decoder

Six multi-scale

Labelwise

PatchGANs

Custom

Adam

8

256 x 256 x 5

Ge [66]

Pairwise

GAN

Mutation: 330/modality

Wild-type: 672/modality

Labeled data &

tumor mask

U-Net

Markovian

CNN

Custom

Adam

-

128 x 128 x 4

Ge [67]

Pairwise

GAN

Mutation: 33

Wild-type: 66/

HGG: 126

LGG: 45

Labeled &

Unlabeled data

tumor mask

U-Net

Markovian

CNN

Custom

Adagrad

9

128 x 128 x 4

Carver [68]

GAN model

164 patients

Semantic labels &

Real images

U-Net

VGG-19

& PatchGAN

Custom

-

-

256 x 256

Mok [69]

CB-GAN

220 HGG

54 LGG

Semantic labels

Convolution

Residual block

Transposed

Convolution

CNN

Custom

Adam

-

-

Dikici [72]

cGANe

-

Noise vector

Transposed CNN

CNN

BCE

Adam

8

16 x 16 x 16

Kamli [75]

SMIG

17 patients/

3,416 pairs

Lesion tumor volume /

Normal volume

U-Net

PatchGAN

-

-

-

256 x 256 x 4

Li [77]

DC-AL GAN

-

100-d

Noise vector

Transposed CNN

AlexNet

Custom

Adam

64

512 x 512

  1. G. Arch, Generator Architecture; D. Arch, Discriminator Architecture; 128-d, 128-dimensional; PGGAN, Progressive Growing of Generative Adversarial Networks; CNN, Convolutional Neural Network; W-distance, Wasserstein distance, Adam, Adaptive Moment Estimation; DCGAN, Deep Convolutional GAN; WGAN, Wasserstein GAN; RMS-prop, Root-Mean-Squared propagation; GP, Gradient Penalty; MUNIT, Multimodal Unsupervised Image-to-Image Translation; SimGAN, Simulated and unsupervised images through adversarial training, SGD, Stochastic Gradient Descent; CPGGAN, Conditional Progressive Growing of GAN; AsynDGAN, Asynchronized Discriminator GAN; ResNet, Residual Network; SAG-GAN, Semi-supervised Attention-Guided GAN; SAMR, Synthesis of Anatomic and Molecular MRI images network; UCG-SAMR, Unsupervised Confidence-Guided SAMR; AdaGrad, Adaptive Gradient algorithm; MSM-GAN, Multi-Scale gradient GAN; RMS-prop, Root-Mean-Squared propagation; Enh-Seg-GAN, Enhancement and Segmentation GAN; VGG, Visual Geometry Group; CB-GAN, Coarse-to-fine Boundary aware GAN; cGANe constrained GAN ensembles; SMIG, Synthetic Medical Image Generator; DC-AL GAN, Deep Convolutional AlexNet GAN; FC, Fully Connected; ICVAE, Independent Conditional Variational Auto-Encoder; BCE, Binary Cross-Entropy; KLD, Kullback–Leibler Divergence, symbol ’-’ represents that the corresponding information was not provided in the publication