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Automated vetting of radiology referrals: 
exploring natural language processing 
and traditional machine learning approaches
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Abstract 

Background:  With a significant increase in utilisation of computed tomography (CT), inappropriate imaging is a sig-
nificant concern. Manual justification audits of radiology referrals are time-consuming and require financial resources. 
We aimed to retrospectively audit justification of brain CT referrals by applying natural language processing and 
traditional machine learning (ML) techniques to predict their justification based on the audit outcomes.

Methods:  Two human experts retrospectively analysed justification of 375 adult brain CT referrals performed in a 
tertiary referral hospital during the 2019 calendar year, using a cloud-based platform for structured referring. Cohen’s 
kappa was computed to measure inter-rater reliability. Referrals were represented as bag-of-words (BOW) and term 
frequency-inverse document frequency models. Text preprocessing techniques, including custom stop words (CSW) 
and spell correction (SC), were applied to the referral text. Logistic regression, random forest, and support vector 
machines (SVM) were used to predict the justification of referrals. A test set (300/75) was used to compute weighted 
accuracy, sensitivity, specificity, and the area under the curve (AUC).

Results:  In total, 253 (67.5%) examinations were deemed justified, 75 (20.0%) as unjustified, and 47 (12.5%) as maybe 
justified. The agreement between the annotators was strong (κ = 0.835). The BOW + CSW + SC + SVM outperformed 
other binary models with a weighted accuracy of 92%, a sensitivity of 91%, a specificity of 93%, and an AUC of 0.948.

Conclusions:  Traditional ML models can accurately predict justification of unstructured brain CT referrals. This offers 
potential for automated justification analysis of CT referrals in clinical departments.

Keywords:  Machine learning, Natural language processing, Justification audit, Radiology referral, Clinical decision 
support
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Key points

• Unjustified exposure to CT scans increases lifetime 
radiation risk of stochastic effects.
• Along with budgetary needs, auditing justification 
of radiology referrals is time-consuming.
• CDS ensures audit consistency and less discrepan-
cies between human experts.

• ML algorithms used the clinical indications section 
of radiology referrals for classification.
• ML algorithms can accurately predict justification 
of brain CT referrals.

Background
Computed tomography (CT) scans are associated with 
relatively high radiation doses, and as a result, patients 
are potentially at greater lifetime risk of developing a 
radiation-induced cancer [1]. Many patients undergo 
multiple CT scans; therefore, their cumulative risk of 
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developing a radiation-induced cancer is significantly 
higher [2]. Since 2009, the number of CT examinations 
carried out in Ireland has almost doubled [3]. A similar 
trend is seen in the UK where the CT scan frequency 
between 2012 [4] and 2019 [5] increased by approxi-
mately 74%, while a 20% increase occurred in the USA in 
the 2006–2016 period [6]. Increasing CT frequency poses 
additional population dose burden, as CT is the largest 
dose contributor [7]. National audits from Northern Ire-
land [8], Sweden [9], and Luxembourg [10], report 6%, 
19%, and 39% of unjustified CT examinations, respec-
tively. Furthermore, individual local audits within Europe 
indicate poor justification practice with the rate of unjus-
tified CT examinations between 7 and 30% [11–14]. To 
improve justification of CT examinations in the Euro-
pean Union, the European Commission recently funded 
a 3-year project to co-ordinate audits of justification of 
CT examinations and to develop a common methodol-
ogy for auditing justification of CT referrals [15]. Avoid-
ing unnecessary exposure to ionising radiation is the 
primary evidence-based intervention that reduces cancer 
risk [1, 2]. The information contained in radiology refer-
rals is manually used during justification, for assessing 
their compliance with clinical imaging guidelines which 
aim to improve patient care through evidence-based rec-
ommendations of radiology resources. Clinical decision 
support (CDS) systems are not yet commonly used in 
radiology, and the unstructured form of electronic radiol-
ogy referrals requires preprocessing.

Natural language processing (NLP) refers to a set of 
techniques for preparing text data and converting it into 
a structured form suitable for subsequent machine learn-
ing [16, 17]. It is common in NLP and machine learning 
research to represent natural text as a term frequency-
inverse document frequency (TF-IDF) model, or a bag-
of-words (BOW) model where feature values correspond 
to term frequency in a document. The BOW model con-
verts each text document into an n-dimensional vector 
where n is the number of unique terms or vocabulary 
size, and the vector values are the occurrence counts or 
term frequency (TF) of those terms. It is usual to cor-
rect the counts of common words with an inverse doc-
ument frequency (IDF) term, and the combination of 
both, TF-IDF, is a reasonable model for representing 
the importance of words in a text corpus [18]. Machine 
learning is an automated process of detecting underlying 
patterns within data. In predictive data analytics, clas-
sification models that identify the relationship between 
a set of descriptive features and a target feature on ret-
rospectively collected data are built. When the ground 
truth labels are known, models are in the category of 
supervised machine learning [19]. Although traditional 
machine learning (ML) techniques are often surpassed by 

deep learning methods, they do offer high performance 
on smaller textual datasets with great potential for a real-
time CDS [20–22]. Past research in the field of radiologi-
cal NLP has mainly focused on the radiological report 
[16, 17, 23, 24]. There seems to be a lack of research on 
the use of radiological NLP in referring practices; hence, 
our study aims to explore the potential of CDS in radiol-
ogy by applying NLP-based models to the most common 
CT referral nationally—brain CT [25] to predict justifi-
cation according to audit outcomes. The optimal text 
preprocessing pipeline for unstructured clinical text in 
radiology referrals is not known. Different text preproc-
essing pipelines for unstructured brain CT referrals were 
developed. Subsequently, ML approaches for classifica-
tion of CT referrals from a single tertiary referral hospital 
according to the vetting outcomes were evaluated.

Methods
This retrospective research underwent a local data pro-
tection impact assessment and was exempt from full eth-
ics review. The research was granted an ethics exemption 
(REERN: LS E-21-82-Potocnik-Stowe). All anonymised 
data were encrypted and stored on a university cloud 
storage in a comma-separated values format. Data sci-
ence tasks were performed using Python (version 3.7.11).

Data collection
The study included all adult brain CT examinations 
obtained from a tertiary referral hospital based in Dub-
lin, Ireland, in a single calendar year (2019). Anonymised 
referrals were extracted from the radiology information 
system (Carestream Vue, Rochester, NY, USA). These 
included outpatient, inpatient, and emergency referrals 
with different numbers of referrals in each of these cate-
gories. For each referral, patient gender, patient age, scan 
priority level, and unstructured clinical indications were 
recorded. The referrals at this clinical site were handwrit-
ten and thus were manually transcribed in an encrypted 
Excel spreadsheet without alterations being made to the 
grammatical structure of the unstructured text.

Data annotation
The dataset was manually inspected and independently 
annotated by a consultant neuroradiologist (10  years of 
experience) and a radiographer (5  years of experience). 
Both annotators used xRefer (xWave, Dublin, Ireland), 
a cloud-based CDS tool for structured referring (ver-
sion 1.12.1-uat) [26] based on referral criteria for imag-
ing developed by the European Society of Radiology [27] 
in cooperation with the American College of Radiology 
(ACR) [28], to audit justification of the referrals. Given 
the patient baseline characteristics, xRefer outputs jus-
tification scores associated with imaging modalities and 
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examination types for a selected structured clinical indi-
cation. Considering the ACR scoring system, each refer-
ral could fall into one of the three categories: justified 
(score: 7–9), maybe justified (score: 4–6), and unjusti-
fied (score: 0–3). This process of semi-automated vetting 
with xRefer comprised of four steps. Firstly, 79 (17.4%) 
referrals were discarded due to inadequate clinical infor-
mation. Information was deemed inadequate if a struc-
tured clinical indication could not be extracted from the 
unstructured clinical text due to brief wording or exces-
sive variations in interpretation. To obtain justification 
scores for each referral, patient gender and age were also 
included. Secondly, upon manual interpretation of the 
unstructured clinical text and identifying one or more 
structured clinical indications, the identified structured 
indication was found in the platform’s database via its 
search engine. The structured indication of interest was 
confirmed to produce justification scores. Thirdly, if the 
identified structured indication was not found in the 
xRefer’s database, or the CDS scores were unavailable 
for a selected structured indication, such referrals were 
labelled based on the consultant’s opinion. When two 
or more structured indications were identified on a sin-
gle referral, only the highest scoring indication was taken 
into consideration for justification purposes. If applica-
ble, an alternate, more appropriate imaging method was 
proposed. Lastly, discrepancies in labels obtained using 
xRefer’s CDS system were addressed individually by both 
annotators and a final decision on a label was made by 
consensus. The vetting pipeline is summarised in Fig. 1. 
The annotated referrals were grouped into five catego-
ries depending on adequacy of information and availabil-
ity of CDS with xRefer: (1) all referrals, (2) referrals with 
adequate information, (3) referrals with adequate infor-
mation and with CDS scores, (4) referrals with adequate 
information and without CDS scores, and (5) referrals 
with adequate information and no matching structured 
indication. Cohen’s kappa (κ) was computed for each 
group to determine the inter-rater agreement.

Classification task
Considering the categorisation of referrals in the national 
audits across Europe [8–10], and due to the nature of 
unstructured writing and a non-representative multiclass 
dataset, the referrals of questionable justification have 
been considered as unjustified. The new dataset served as 
an experimental dataset for binary classification.

Text preprocessing
The unstructured clinical indications within each referral 
represent features, as they contain the most information 
that contributes towards examination justification. The 
text was preprocessed using Python’s Natural Language 

Toolkit (NLTK, version 3.6.5) library. All sentences were 
converted to lowercase and tokenised with the NLTK 
WordTokenizer. A default stop word list, containing 
NLTK’s stop words and punctuation marks, was applied 
to filter redundant tokens. Furthermore, custom stop 
words were identified by manually inspecting each refer-
ral and a token list with associated counts. To reduce 
noise, unigrams with document frequency equal to one 
were ignored. Misspelled tokens were corrected with 
Pyspellchecker (version 0.6.2) incorporating a custom 
medical dictionary containing 442 clinical terms that 
were identified in our vocabulary. Rare clinical terms 
were replaced by one of their synonyms. Features were 
represented as a BoW model with CountVectorizer and a 
TF-IDF model with TfidfVectorizer from the Scikit-learn 
library.

Model evaluation
The experimental dataset for binary classification was 
randomly divided (80/20) into a training set and a test set. 
The training set contained 300 (80% of the whole dataset) 
referrals that were used to train the prediction models 
with default hyperparameter settings and balanced class 
weights to penalise misclassification errors for the minor-
ity class. The test set contained 75 (20% of the whole 
dataset) referrals that were used to demonstrate classi-
fier performance on the new, previously unseen referrals. 
Weighted accuracy score, sensitivity, specificity, and area 
under the curve (AUC) were computed for each classifier. 
Scikit-learn (sklearn, version 1.0.1) was used to evaluate 
combinations of different text preprocessing techniques 
and classifiers.

Results
Justification audit
Table  1 demonstrates the kappa scores, as well as the 
number of referrals belonging to each group associated 
with information adequacy and availability of CDS with 
xRefer. There was a significant difference (p < 0.01) in the 
inter-rater agreement between referrals that fall under 
CDS and those without CDS.

In total, 253 (67.5%) examinations were considered 
justified, 75 (20.0%) unjustified, and 47 (12.5%) maybe 
justified. In total, 96 (25.6%) CT scans could have been 
replaced by magnetic resonance imaging (MRI). Symp-
toms of dizziness, syncope/fainting, vision changes, 
chronic headache, headache in cancer patients, maxil-
lofacial headache, sub-dural haemorrhage, tinnitus, and 
dementia may indicate a need for an MRI. All oncology 
referrals (6) were inappropriate, as they required a brain 
CT scan for non-small cell lung cancer (NSCLC) or pros-
tate cancer staging post-treatment cycle. iGuide imaging 
guidelines suggest that a brain CT is justified in cases of 
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Fig. 1  Semi-automated vetting pipeline for brain CT referrals
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NSCLC staging only if MRI is contraindicated, and neu-
rological symptoms are present; however, there was no 
such information provided by the referrer. The absence 
of CDS scores for prostate cancer diagnosis and staging 
meant that such requests were determined by consultant 
opinion which concurred with iGuide recommendations 
for NSCLC imaging. Five (1.3%) patients needed a facial 
bone CT scan, rather than a brain CT scan: four patients 
had sustained facial trauma without accompanying sus-
picion of intracerebral and/or intracranial complication. 
One patient exhibited symptoms of cerebrospinal fluid 
leak post-lumbar decompression, and CT cisternography 
was more appropriate. Another patient with vocal cord 
paralysis for 12 weeks, should have had a brain and neck 
CT instead of brain CT according to iGuide. Three (0.8%) 
of the 375 CT examinations could have been replaced by 
ultrasound (US). Patients experiencing nausea and/or 
vomiting without known head injury should have under-
gone abdominal US scan initially. All indications, except 
for vision changes, specified on referrals of questionable 
justification indicate a need for a head MRI. Symptoms 

of vision changes indicate that an MRI of the orbits is the 
investigation of choice.

ML algorithms
Table  2 shows classifier performance in combination 
with different text preprocessing pipelines on the binary 
dataset. A combination of BOW representation and 
SVM outperformed the rest of the models. The best 
performing models were BOW + DSW + SVM and 
BOW + CSW + SC + SVM with superior AUC of 0.942 
and 0.948, respectively.

Discussion
Based on the Kappa scores, our approach to auditing jus-
tification of radiology referrals with xRefer shows better 
consistency and less discrepancies between the two anno-
tators, compared to auditing radiology referrals with-
out CDS, regardless of the gap in clinical expertise and 
knowledge. Since the performance of a prediction model 
depends significantly on the quality of annotations, the 
audit findings suggest that xRefer can be used to con-
duct a retrospective, semi-automated, evidence-based 

Table 1  Referral grouping and associated inter-rater agreement between the two human experts

Group Frequency κ score

All referrals 454 0.770

Referrals with adequate information 375 0.835

Referrals with adequate information and with CDS scores 327 0.874

Referrals with adequate information and without CDS scores 29 0.408

Referrals with adequate information and no matching structured indication 19 0.506

Table 2  Binary classifier evaluation metrics on test set

BOW bag-of-words, DSW default stop words, CSW custom stop words, LR logistic regression, RF random forest, SC spell checker, SVM support vector machine

Model Weighted accuracy (%) Sensitivity (%) Specificity (%) AUC​

BOW + DSW + LR 88.3 86.7 90.0 0.925

BOW + DSW + SVM 92.8 88.9 96.7 0.942

BOW + DSW + RF 88.3 86.7 86.7 0.930

TF-IDF + DSW + LR 87.2 84.4 90.0 0.923

TF-IDF + DSW + SVM 86.1 88.9 83.3 0.923

TF-IDF + DSW + RF 85.0 86.7 86.7 0.931

BOW + CSW + LR 87.2 84.4 90.0 0.915

BOW + CSW + SVM 88.9 84.4 93.3 0.932

BOW + CSW + RF 85.6 84.4 86.7 0.910

TF-IDF + CSW + LR 85.0 80.0 90.0 0.917

TF-IDF + CSW + SVM 85.0 80.0 90.0 0.926

TF-IDF + CSW + RF 85.6 84.4 86.7 0.910

BOW + CSW + SC + LR 87.2 84.4 90.0 0.932

BOW + CSW + SC + SVM 92.2 91.1 93.3 0.948

BOW + CSW + SC + RF 87.2 84.4 90.0 0.911
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justification analysis of CT referrals, although the plat-
form has been primarily created for structured referring.

The rate of unjustified examinations (20.0%) and 
those of questionable justification (12.5%) indicate that 
clinical imaging guidelines have not been adapted and 
implemented within clinical practice adequately. Sev-
eral factors, such as lack of awareness of clinical imaging 
guidelines, time, patient pressure, along with privatisa-
tion of healthcare and prioritising economic gain [29], 
may influence justification decisions. This correlates with 
our findings such as clinical indications of ‘investigations’ 
and ‘dizziness/Lt tinnitus’ specified on two unjustified 
referrals.

Regular audits of justification are necessary to ensure 
better implementation of clinical imaging guidelines, pre-
vent unnecessary patient radiation dose, limit wasteful 
use of resources, and improve patient care. Retrospective 
audits are costly, time-consuming, and often not feasi-
ble. In this study, an iGuide interpreter was developed 
for automated justification analysis of clinical indications 
specified on brain CT referrals. The NLP model can auto-
matically predict justification of brain CT referrals, con-
sequently offering a potential for automated clinical text 
analysis that could be used as a CDS tool to assist refer-
rers and practitioners with justifying brain CT referrals, 
retrospectively and in real time. This would allow more 
frequent, cost-free justification audits, and better imple-
mentation of imaging referral guidelines within clini-
cal practice to ensure appropriate justification. To our 
knowledge, this is the first study evaluating ML methods 
in predicting justification of radiology referrals. Simi-
lar work has been done where NLP and ML approaches 
were applied to the conclusions section of CT reports 
to automatically predict downstream radiology resource 
utilisation in patients undergoing surveillance for hepa-
tocellular carcinoma [21]. The study demonstrates that 
even with minimal text preprocessing, a linear model 
can achieve an accuracy of 92.2%. In contrast, our study 
involves CT referrals and more data preprocessing which 
may or may not improve classifier performance. Our lin-
ear model achieved a weighted accuracy of 92.8% with 
minimal data preprocessing and 92.2% after introducing 
custom stop words and spell correction with Pyspell-
checker, but the second model had a higher sensitivity 
and AUC. There are three important data preprocessing 
elements that affect classifier performance:

1.	 Data representation—as a group, BOW models tend 
to outperform TF-IDF models. We note that terms 
associated with unjustified referrals also occur in jus-
tified referrals and vice versa (Table 3). In some cases, 
justified and unjustified terms occur together within 

a single referral. All of this neutralises the effect of a 
TF-IDF approach.

2.	 A classifier might deem clinically irrelevant terms 
important for classification of CT referrals and when 
these are ignored, the classifier’s performance may 
decrease. This also challenges machine learning eth-
ics with the question of including clinically irrelevant 
terms to achieve better accuracy.

3.	 Spelling correction We corrected misspelled clinical 
terms with Pyspellchecker. The spell-checking algo-
rithm uses Levenshtein distance and is limited to an 
edit distance of two; therefore, the algorithm is una-
ble to correct misspelled terms if more than two per-
mutations are needed. In some instances, misspelled 
terms were wrongly corrected, so the algorithm’s 
output was either ignored due to producing noise, or 
accepted as a spurious term. For example, one refer-
ral reads: “prostate cancer-re staging” and the algo-
rithm corrected the sentence into “prostate sancerre 
staging”. On the other hand, a misspelled “eposide” 
was replaced with “epoxide” instead of “episode”. We 
note cases where the algorithm did not make any 
corrections as the authentic word was misspelled, 
given a context and yet, grammatically correct: “head 
ache” should have been combined into a single word 
“headache”.

Implementing a custom stop word list and spell-check-
ing algorithm may improve classifier performance. 43.5% 
of referrals in our training set were unjustified. Our test 
set contained 45 justified and 30 unjustified referrals. 
This is a mild degree of imbalance. SVM models tend 
to be less sensitive to class imbalance as they try defin-
ing a hyperplane that separates examples belonging to 
each class in a high-dimensional space, thereby achieving 
higher accuracy compared to other models which strive 
towards minimising the error rate [30].

In terms of false predictions, BOW + CSW + SC + SVM 
made two false-positive and four false-negative predic-
tions. An analysis of false positives revealed that certain 
terms, such as “fall” and “headstrike”, downgraded the 
model’s performance because they are associated with 
both classes, more commonly with a positive class. When 

Table 3  Document frequency of terms associated with justified 
and unjustified referrals

Term Document frequency 
associated with a 
positive class

Document frequency 
associated with a 
negative class

Fall 72 8

Headstrike 8 3

Headaches (chronic) 9 18
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referrers provide clinical indications, a rationale needs to 
be included. Relatively often, the rationale is inappropri-
ate or absent. For example:

1.	 Fall, headstrike, takes aspirin.
2.	 CT brain—fall headstrike uses NOAC.
3.	 Fall with headstrike—bruise L forehead.

A rationale behind the first two referrals justifies a 
brain CT scan as there is a high suspicion of intracerebral 
haemorrhage due to anticoagulant therapy. In contrary, a 
bruised forehead alone is not sufficient to justify a brain 
CT scan after falling; however, the third referral has been 
misclassified as a false positive.

In terms of false negatives, CT referrals include terms 
associated with both categories, but more frequently 
appear in unjustified referrals.

1.	 Ongoing headaches.
2.	 Fall down stairs HI Headaches.
3.	 Ongoing headaches over 12/12. The headaches tend 

to radiate from the back of his neck. ?Aetiology of 
headaches. The DDX include tension-type head-
aches, but the history of episodic blurred vision and 
ataxia make the diagnosis more difficult.

The first referral reads as a chronic headache and with-
out any further rationale it was deemed as unjustified. 
The second referral raises a concern over a post-trau-
matic headache associated with a traumatic brain injury 
[28] which justifies a brain CT scan. The third referral, 
misclassified as a false negative, contains focal neurologi-
cal symptoms in conjunction with a chronic headache; 
therefore, imaging with CT is indicated.

Our study had certain limitations. First, the benefits of 
CDS for auditing justification of CT referrals with xRefer 
were not demonstrated to a full extent, as the compari-
son groups of CDS and non-CDS referrals are signifi-
cantly different in size. Second, our data were sourced 
from a single clinical site; therefore, it is premature to 
make assumptions that NLP-based models can gener-
alise to unseen datasets. Third, as our dataset was small 
and imbalanced, referrals of questionable justification 
were considered as unjustified. While this is acceptable 
[8–10], it is desirable for an iGuide interpreter to clas-
sify referrals into one of the three possible classes as per 
iGuide categorisation. Fourth, trained models do not take 
patient gender, age, urgency level, and prior imaging into 
account. Lastly, the results of this study may not reflect 
true prediction capabilities as hyperparameters were not 
optimised. Nevertheless, the models achieved high accu-
racy regardless of the limitations of the dataset.

Conclusions
Unjustified exposure to CT scans is a global prob-
lem that increases lifetime radiation risk of stochastic 
effects, resource wastage, and CT waiting lists. Our 
NLP-based models can accurately predict justification 
of brain CT referrals and, as a result, offer potential for 
automation of this time-consuming, often costly pro-
cess. More NLP research is needed to address justifica-
tion of other types of CT scans and different imaging 
modalities to explore the potential of automated justifi-
cation analysis in clinical departments.

Abbreviations
ACR​: American College of Radiology; AUC​: Area under the curve; BOW: 
Bag-of-words; CDS: Clinical decision support; CSW: Custom stop words; CT: 
Computed tomography; DSW: Default stop words; LR: Logistic regression; 
ML: Traditional machine learning; MRI: Magnetic resonance imaging; NLP: 
Natural language processing; NLTK: Natural language toolkit; NSCLC: Non-
small cell lung cancer; RF: Random forest; SC: Spell checker; SVM: Support 
vector machine; TF-IDF: Term frequency-inverse document frequency; US: 
Ultrasound.

Author contributions
JP helped in substantial contributions to the conception and design of the 
work (putting a project idea into action, designing project methodology), 
transcribing anonymised data, data analysis (auditing justification of brain CT 
referrals, AI tasks), data interpretation (audit outcomes, classifier evaluation), 
drafting the work, proofreading, final approval of the version to be published, 
agreement to be accountable for all aspects of the work. ET contributed 
to substantial contribution to the design of the work (advising on CT and 
justification literature review, methodology, and discussion), critical revision, 
proofreading, final approval of the version to be published, agreement to be 
accountable for all aspects of the work. RK performed substantial contribution 
to the design of the work (introducing xWave, xWave access), data analysis 
(auditing justification of brain CT referrals), critical revision, final approval of 
the version to be published, agreement to be accountable for all aspects of 
the work. SF was involved in substantial contribution to the design of the 
work (advising on CT and justification literature review and discussion), critical 
revision, proofreading, final approval of the version to be published, agree-
ment to be accountable for all aspects of the work. AL helped in substantial 
contribution to the design of the work (advising on NLP and ML literature 
review, methodology, and discussion), critical revision, final approval of the 
version to be published, agreement to be accountable for all aspects of the 
work. JS contributed to substantial contribution to the conception of the 
work (project idea). Since the co-author is deceased, a final approval of the 
version to be published could not be obtained, as well as agreement to be 
accountable for all aspects of work. All authors read and approved the final 
manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.

Declarations

Ethical approval and consent to participate
This retrospective research underwent a local data protection impact assess-
ment and was exempt from full ethics review. The research was granted an 
ethics exemption from the Human research Ethics Committee—Sciences 
(REERN: LS-E-21-82-Potocnik-Stowe).



Page 8 of 8Potočnik et al. Insights into Imaging          (2022) 13:127 

Consent for publication
Not applicable.

Competing interests
RK discloses competing interests regarding his involvement with xWave. All 
remaining authors declare no competing interests.

Author details
1 University College Dublin School of Medicine, Dublin, Ireland. 2 University 
College Dublin School of Computer Science, Dublin, Ireland. 

Received: 16 May 2022   Accepted: 7 July 2022

References
	1.	 Shao Y-H, Tsai K, Kim S, Wu Y-J, Demissie K (2020) Exposure to tomo-

graphic scans and cancer risks. JNCI Cancer Spectr 4(1):pkz072. https://​
doi.​org/​10.​1093/​jncics/​pkz072

	2.	 Rehani MM, Yang K, Melick ER et al (2020) Patients undergoing recurrent 
CT scans: assessing the magnitude. Eur Radiol 30(4):1828–1836. https://​
doi.​org/​10.​1007/​s00330-​019-​06523-y

	3.	 Gilligan P, Darcy L, Maguire G et al (2018) Irish national 2017 ct population 
and dose reference level survey: a novel gender and aged based survey 
using spreadsheet templates and clinical indications, EuroSafe imaging 
2018. Austria Centre Vienna, 28 February–4 March. European Congress of 
Radiology, Vienna, pp 1–20. https://​doi.​org/​10.​1594/​esi20​18/​ESI-​0055

	4.	 National Health Service England (2013) Diagnostic imaging dataset sta-
tistical release: annual experimental statistics. The Government Statistical 
Service, London. https://​www.​engla​nd.​nhs.​uk/​stati​stics/​stati​stical-​work-​
areas/​diagn​ostic-​imagi​ng-​datas​et/​diagn​ostic-​imagi​ng-​datas​et-​2012-​13-​
data-2/. Accessed 23 June 2021

	5.	 National Health Service England and National Health Service Improve-
ment (2020) Diagnostic imaging dataset statistical release: provisional 
monthly statistics, September 2018 to September 2019. Performance 
Analysis Team, London. https://​www.​engla​nd.​nhs.​uk/​stati​stics/​wp-​conte​
nt/​uploa​ds/​sites/2/​2020/​01/​Provi​sional-​Month​ly-​Diagn​ostic-​Imagi​ng-​
Datas​et-​Stati​stics-​2020-​01-​23.​pdf. Accessed 23 June 2021

	6.	 National Council on Radiation Protection and Measurements (NCRP) 
(2019) Report no. 184—medical radiation exposure of patients in the 
United States. Bethesda, MD: NCRP. https://​ncrpo​nline.​org/​shop/​repor​
ts/​report-​no-​184-​medic​al-​radia​tion-​expos​ure-​of-​patie​nts-​in-​the-​united-​
states-​2019/. Accessed 25 June 2021

	7.	 O’Connor C, Cunningham N, Kelleher K et al (2014) Radiation doses 
received by the Irish population. Radiological Protection Institute Ireland, 
Dublin

	8.	 Public Health England (2018) A retrospective review of justification of 
computed tomography examinations in Northern Ireland. Medical Expo-
sures Group, London

	9.	 Almen A, Wolfram L, Sven R (2009) National survey on justification of 
CT-examinations in Sweden. Swedish Radiation Safety Authority. https://​
inis.​iaea.​org/​colle​ction/​NCLCo​llect​ionSt​ore/_​Public/​40/​029/​40029​225.​
pdf?r=1. Accessed 26 June 2021

	10.	 Bouëtté A, Karoussou-Schreiner A, Pointe HDL et al (2019) National audit 
on the appropriateness of CT and MRI examinations in Luxembourg. 
Insights Imaging 10(1):1–12. https://​doi.​org/​10.​1186/​s13244-​019-​0731-9

	11.	 Sobiecka A, Bekiesińska-Figatowska M, Rutkowska M, Latos T, Walecki J 
(2016) Clinically unjustified diagnostic imaging—a worrisome tendency 
in today’s medical practice. Pol J Radiol 81:325–330. https://​doi.​org/​10.​
12659/​PJR.​896847

	12.	 Dowley A, Foley SJ, Potočnik J et al (2021) A comparison of computed 
tomography (CT) justification practices between core hours and on-call 
hours in irish ct centres [presentation], RPS 200—professional issues: 
radioprotection. Austria Center Vienna. 3 March. https://​conne​ct.​myesr.​
org/​course/​profe​ssion​al-​issues-​radio​prote​ction/

	13.	 Oikarinen H, Meriläinen S, Pääkkö E, Karttunen A, Nieminen MT, Tervonen 
O (2009) Unjustified CT examinations in young patients. Eur Radiol 
19(5):1161–1165. https://​doi.​org/​10.​1007/​s00330-​008-​1256-7

	14.	 Vilar-Palop J, Hernández-Aguado I, Maria P-V, Vilar J (2018) Appropriate 
use of medical imaging in two Spanish public hospitals: a cross-sectional 

analysis. BMJ Open 8(3):1–11. https://​doi.​org/​10.​1136/​bmjop​
en-​2017-​019535

	15.	 European Commission (2020) ENER/D3/2020-74 European co-ordinated 
action on improving justification of computed tomography. https://​
etend​ering.​ted.​europa.​eu/​cft/​cft-​displ​ay.​html?​cftId=​6801/ Accessed 17 
July 2021

	16.	 Cai T, Giannopoulos AA, Yu S (2016) Natural language processing tech-
nologies in radiology research and clinical applications. Radiographics 
36(1):176–191. https://​doi.​org/​10.​1148/​rg.​20161​50080

	17.	 Pons E, Braun LMM, Myriam Hunink MG, Kors JA (2016) Natural language 
processing in radiology: a systematic review. Radiology 279(2):329–343. 
https://​doi.​org/​10.​1148/​radiol.​16142​770

	18.	 Fattahi J, Mejri M (2021) SpaML: a bimodal ensemble learning spam 
detector based on NLP techniques. In: IEEE 5th international conference 
on cryptography, security and privacy (CSP). Beijing Normal University, 
8–10 January. IEEE, Zhuhai, pp 107–112. https://​doi.​org/​10.​1109/​CSP51​
677.​2021.​93575​95

	19.	 Kelleher JD, Mac Namee B, D’Arcy A (2015) Fundamentals of machine 
learning for predictive data analytics: algorithms, worked examples, and 
case studies. The MIT Press, London

	20.	 Carrodeguas E, Lacson R, Swanson W, Khorasani R (2018) Use of machine 
learning to identify follow-up recommendations in radiology reports. J 
Am Coll Radiol 16(3):336-343.g. https://​doi.​org/​10.​1016/j.​jacr.​2018.​10.​020

	21.	 Brown AD, Kachura JR (2019) Natural language processing of radiology 
reports in patients with hepatocellular carcinoma to predict radiology 
resource utilization. J Am Coll Radiol 16(6):840–844. https://​doi.​org/​10.​
1016/j.​jacr.​2018.​12.​004

	22.	 Li MD, Lang M, Deng F et al (2021) Analysis of stroke detection during 
the COVID-19 pandemic using natural language processing of radiology 
reports. AJNR Am J Neuroradiol 42(3):429–434. https://​doi.​org/​10.​3174/​
ajnr.​A6961

	23.	 Casey A, Davidson E, Poon M et al (2021) A systematic review of natural 
language processing applied to radiology reports. BMC Med Inform Decis 
Mak 21(1):179–216. https://​doi.​org/​10.​1186/​s12911-​021-​01533-7

	24.	 Sorin V, Barash Y, Konen E, Klang E (2020) Deep learning for natural lan-
guage processing in radiology—fundamentals and a systematic review. J 
Am Coll Radiol 17(5):639–648. https://​doi.​org/​10.​1016/j.​jacr.​2019.​12.​026

	25.	 Radiological Protection Institute Ireland (RPII) (2014) Radiation doses 
received by the Irish population. RPII, Dublin. https://​inis.​iaea.​org/​colle​
ction/​NCLCo​llect​ionSt​ore/_​Public/​46/​045/​46045​338.​pdf. Accessed 14 
July 2021

	26.	 xWave Technologies (2021) INTRODUCING: xRefer. https://​www.​xwave.​ie/. 
Accessed 17 July 2021

	27.	 European Society of Radiology (2021) ESR iGuide. https://​www.​esrig​uide.​
org/. Accessed 17 July 2021

	28.	 American College of Radiology (2021) ACR appropriateness criteria. 
https://​www.​acr.​org/​Clini​cal-​Resou​rces/​ACR-​Appro​priat​eness-​Crite​ria

	29.	 Gransjøen AM, Wiig S, Lysdahl KB, Hofmann BM (2018) Barriers and 
facilitators for guideline adherence in diagnostic imaging: an explora-
tive study of GPs’ and radiologists’ perspectives. BMC Health Serv Res 
18(1):556–563. https://​doi.​org/​10.​1186/​s12913-​018-​3372-7

	30.	 Drucker H, Donghui W, Vapnik VN (1999) Support vector machines for 
spam categorization. IEEE Trans Neural Netw 10(5):1048–1054. https://​
doi.​org/​10.​1109/​72.​788645

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/jncics/pkz072
https://doi.org/10.1093/jncics/pkz072
https://doi.org/10.1007/s00330-019-06523-y
https://doi.org/10.1007/s00330-019-06523-y
https://doi.org/10.1594/esi2018/ESI-0055
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2012-13-data-2/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2012-13-data-2/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2012-13-data-2/
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/01/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-01-23.pdf
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/01/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-01-23.pdf
https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/01/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-01-23.pdf
https://ncrponline.org/shop/reports/report-no-184-medical-radiation-exposure-of-patients-in-the-united-states-2019/
https://ncrponline.org/shop/reports/report-no-184-medical-radiation-exposure-of-patients-in-the-united-states-2019/
https://ncrponline.org/shop/reports/report-no-184-medical-radiation-exposure-of-patients-in-the-united-states-2019/
https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/029/40029225.pdf?r=1
https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/029/40029225.pdf?r=1
https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/029/40029225.pdf?r=1
https://doi.org/10.1186/s13244-019-0731-9
https://doi.org/10.12659/PJR.896847
https://doi.org/10.12659/PJR.896847
https://connect.myesr.org/course/professional-issues-radioprotection/
https://connect.myesr.org/course/professional-issues-radioprotection/
https://doi.org/10.1007/s00330-008-1256-7
https://doi.org/10.1136/bmjopen-2017-019535
https://doi.org/10.1136/bmjopen-2017-019535
https://etendering.ted.europa.eu/cft/cft-display.html?cftId=6801/
https://etendering.ted.europa.eu/cft/cft-display.html?cftId=6801/
https://doi.org/10.1148/rg.2016150080
https://doi.org/10.1148/radiol.16142770
https://doi.org/10.1109/CSP51677.2021.9357595
https://doi.org/10.1109/CSP51677.2021.9357595
https://doi.org/10.1016/j.jacr.2018.10.020
https://doi.org/10.1016/j.jacr.2018.12.004
https://doi.org/10.1016/j.jacr.2018.12.004
https://doi.org/10.3174/ajnr.A6961
https://doi.org/10.3174/ajnr.A6961
https://doi.org/10.1186/s12911-021-01533-7
https://doi.org/10.1016/j.jacr.2019.12.026
https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/045/46045338.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/045/46045338.pdf
https://www.xwave.ie/
https://www.esriguide.org/
https://www.esriguide.org/
https://www.acr.org/Clinical-Resources/ACR-Appropriateness-Criteria
https://doi.org/10.1186/s12913-018-3372-7
https://doi.org/10.1109/72.788645
https://doi.org/10.1109/72.788645

	Automated vetting of radiology referrals: exploring natural language processing and traditional machine learning approaches
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Key points
	Background
	Methods
	Data collection
	Data annotation
	Classification task
	Text preprocessing
	Model evaluation

	Results
	Justification audit
	ML algorithms

	Discussion
	Conclusions
	References


