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Abstract 

Background:  The application of deep learning has allowed significant progress in medical imaging. However, 
few studies have focused on the diagnosis of benign and malignant spinal tumors using medical imaging and age 
information at the patient level. This study proposes a multi-model weighted fusion framework (WFF) for benign and 
malignant diagnosis of spinal tumors based on magnetic resonance imaging (MRI) images and age information.

Methods:  The proposed WFF included a tumor detection model, sequence classification model, and age information 
statistic module based on sagittal MRI sequences obtained from 585 patients with spinal tumors (270 benign, 315 
malignant) between January 2006 and December 2019 from the cooperative hospital. The experimental results of the 
WFF were compared with those of one radiologist (D1) and two spine surgeons (D2 and D3).

Results:  In the case of reference age information, the accuracy (ACC) (0.821) of WFF was higher than three doctors’ 
ACC (D1: 0.686; D2: 0.736; D3: 0.636). Without age information, the ACC (0.800) of the WFF was also higher than that of 
the three doctors (D1: 0.750; D2: 0.664; D3:0.614).

Conclusions:  The proposed WFF is effective in the diagnosis of benign and malignant spinal tumors with complex 
histological types on MRI.
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Key points

•	 WFF automatically detects spinal tumors from MRI 
for patient-level diagnosis.

•	 Including age information into the AI model can 
improve diagnostic accuracy.

•	 The model showed a higher accuracy of diagnosis 
than doctors.

•	 WFF showed lower error rate for most tumor loca-
tions compared with doctors.
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Background
Spinal tumors include both primary and metastatic 
tumors. Metastatic spinal tumors are usually malignant, 
while primary spinal tumors can be further divided into 
benign and malignant tumors. If benign tumors are not 
diagnosed in time, they may cause local damage and 
show invasive growth into other surrounding tissues, 
whereas malignant tumors may cause systemic multisys-
tem metastasis and threaten the safety of patients. Use 
of magnetic resonance imaging (MRI) for patients in the 
early stage has shown great clinical significance in diag-
nosis of benign and malignant spine tumors.

With the development of deep learning technology, 
an increasing number of researchers have applied it in 
the field of medicine, including tumor segmentation [1, 
2], detection [3, 4], and classification [5, 6]. However, 
most of these methods are based on a single image or 
sequence, and rarely use multiple sequences for patient-
level diagnosis, or refer to clinical information.

In clinical practice, doctors usually locate the tumor 
region first and then make a decision according to mul-
tiple images or sequences, along with the clinical infor-
mation of the patient. Inspired by the diagnostic process 
of doctors, this study proposes a multi-model weighted 
fusion framework (WFF) for the diagnosis of benign 
and malignant spine tumors at the patient level, which 
includes a tumor detection model, sequence classifica-
tion model, and an age information statistic module. 
WFF can automatically locate the tumor region in MRI 
images, combine the rough classification results of the 
tumor detection model with the fine classification results 
of the sequence classification model, aggregate the results 
of different sequences by majority voting, and refer to the 
patient’s age information simultaneously for patient-level 
diagnosis.

Materials and methods
Image data
The final pathological diagnosis reports of consecutive 
patients with spinal tumors visiting the cooperative hos-
pital between January 2006 and December 2019 were 
retrospectively reviewed with approval from the Insti-
tutional Review Board (IRB). This study included sagit-
tal MRI images collected from 585 patients with spinal 
tumors (259 women, 326 men; mean age 48 ± 18  years, 
range 4–82 years), including 270 benign and 315 malig-
nant patients. All patients had definite pathologi-
cal results confirmed by trocar biopsy or surgery and 
were divided into a training set (n = 445; 180 benign, 
265 malignant) and a testing set (n = 140; 90 benign, 50 
malignant), as shown in Table 1. The training set included 
metastases and primary spinal tumors, whereas the test-
ing set only included primary spinal tumors. There were 

2150 sequences obtained from 585 patients, includ-
ing 1625 sequences for training and 525 sequences for 
testing, and the slice thickness ranged from 3 to 7 mm. 
Each patient underwent T1 (T1WI) and T2 (T2WI, FS-
T2WI) sequences. Four radiologists and one spine sur-
geon annotated the tumor regions of these images with 
rectangles using LabelMe [7] and checked the labeled 
regions with each other to ensure reliability. There were 
20,593 annotated images, of which 15,778 were for train-
ing and 4815 for testing. Each patient had an average of 
four sequences, and each sequence had an average of 
nine labeled images. The benign and malignant regions 
of these annotated tumor regions were determined based 
on the patient’s pathological report.

Our dataset is a complex spinal tumor dataset with 
more than 20 histological subtypes, as shown in Fig.  1. 
It should be noted that our cooperative hospital is the 
largest spine tumor center in our country, which has 
received a large number of spine tumor referrals and has 
performed a large number of spine tumor operations 
every year. Therefore, our focus included spinal tumors 
and some neurogenic tumors that extend to or affect the 
spine structure (such as schwannoma and neurofibroma) 
[8, 9], and intradural and intramedullary tumors were 
further referred to the Department of Neurosurgery. The 
tumors were located in different vertebrae, including the 
cervical, thoracic, lumbar, and sacral vertebrae, as shown 
in Table 2. Diagnosing such a complex spinal tumor data-
set is challenging.

Proposed framework
This study proposes a multi-model weighted fusion 
framework (WFF) based on sagittal MRI sequences, 
which can combine the tumor detection model, 

Table 1  The details of spinal tumor dataset

Tumor type Training set Test set

Benign 180 patients/5177 images 90 patients/2576 
images

Malignant 265 patients/10601 images 50 patients/2239 
images

Total 445 patients/15778 images 140 patients/4815 
images

Table 2  Number of cases corresponding to tumor location

Tumor 
location

Cervical 
vertebra

Thoracic 
vertebra

Lumbar 
vertebra

Sacral 
vertebra

Number of 
cases

297 182 174 24

Total 677
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sequence classification model, and age information sta-
tistic module to diagnose benign and malignant spinal 
tumors at the patient level, as shown in Fig.  2, where 
pb and pm in Fig. 2 represent the probability of benign 
and malignant tumors, respectively. First, we used 
Faster-RCNN [10] to detect the tumor region in each 
MRI image and provide a rough probability of being 

benign or malignant. Subsequently, a sequence clas-
sification model was applied to classify the detected 
tumor regions to obtain sequence-level results. Finally, 
a weighted fusion decision was made according to the 
results of the above two models and age information for 
the final diagnostic results. Four-fold cross-validation 
was applied to the training set to train and validate the 

Fig. 1  Pathological distribution of all patients

Fig. 2  The proposed multi-model weighted fusion framework (WFF)
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WFF, and the appropriate hyperparameters of the deep 
models and fused weights were selected.

Detection model for tumor localization and rough 
classification
This study used a Faster-RCNN with tri-class as the 
tumor detection model. With the limited labeled tumor 
regions, the MultiScale-SelfCutMix method [11] was 
used for data augmentation, which randomly extracts 
the labeled tumor regions and scales the width and 
height with a factor from 0.5 to 1. Scaled tumor regions 
were randomly placed in the original image near the spi-
nal region. The detection model was divided into a fea-
ture extraction network (FEN), feature pyramid network 
(FPN) [12], region proposal network (RPN), and region 
of interest (ROI) extraction module. The FEN extracted 
image features which may contain tumor information, 
using ResNeXt101 [13] as the backbone network, which 
is an upgraded version of ResNet101. We also added 
deformable convolution [14] to ResNeXt101 to adapt it to 
various shapes of the tumor regions. Five scales including 
1/4, 1/8, 1/16, 1/32, and 1/64 of the original image were 
used to extract different receptive field feature informa-
tion, as shown in Fig. 3, and the number of feature maps 
was 128, 256, 512, 1024, and 2048, respectively.

The FPN was used to fuse the five different scale fea-
tures. Subsequently, the RPN generated a certain number 
of candidate boxes that may contain tumors, and the ROI 
adjusted the size of the selected candidate boxes to iden-
tify the tumors as benign or malignant. Non-maximum 
suppression (NMS) [15] was used to determine the final 

location of the tumor and the probability of being benign 
or malignant. Figure 4 shows the results of the proposed 
detection model. The green boxes and labels indicate the 
benign tumor and its probability, respectively, the red 
boxes indicate the malignant tumor, and the yellow boxes 
indicate the ground truth.

Sequence classification model for benign and malignant 
diagnosis
The tumor detection model locates and roughly identi-
fies tumor regions of every image from the same patient, 
which may result in false positives. Continuous frames 
contain more contextual information, which is useful for 
accurate diagnosis. Images in each sequence correspond 
to a continuous tumor region; therefore, we proposed a 
sequence classification model based on ResNeXt101 to 
further classify benign or malignant tumors.

In the training stage, we selected the largest labeled 
tumor region in the sequence and obtained N continuous 
regions with this size and location as the tumor region of 
all images in the whole sequence, and then rescaled the 
size to 112× 112× N  pixels. Extraction was repeated 
if the labeled images in the sequence were less than N. 
To expand the training data, there was a 50% probability 
of randomly extracting images with tumor regions and 
a 50% probability of extracting images according to the 
index of Digital Imaging and Communications in Medi-
cine (DICOM). The different sample rates were used to 
maintain a balance between benign and malignant sam-
ples during training, which can prevent the model from 
overfitting a certain tumor category. In the testing stage, 

Fig. 3  Feature maps extracted with five scales
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based on the detected tumor regions from the above 
tumor detection model, we selected the largest detected 
tumor region and obtained N continuous regions of this 
size and location as the tumor region of all images in the 
whole sequence. The size was rescaled to 112× 112× N  
pixels. Multiple adjacent tumor regions of the sequence 
were used as the input, and the probability of a benign 
or malignant of the sequence was the output from the 
sequence classification model.

Age information for benign and malignant diagnosis
We determined the relationship between the prob-
ability of malignant or benign tumors and the age of 
each patient in our training set. Figure 5 shows that the 

probability of malignancy increased with age, and the 
probability of malignancy generally increased to approxi-
mately 50% over the age of 40 years and almost 100% over 
the age of 80 years. We used the statistical probability of 
benign and malignant tumors in different age groups as a 
reference for patient-level diagnoses.

Multi‑model weighted fusion strategy
To further improve the diagnostic performance for 
benign and malignant tumors, we proposed a multi-
model weighted fusion strategy, as shown in Eq. (1).

(1)P
j,p
i = �1 × D

j,p
i + �2 ×M

p
i + �3 × Ap

Fig. 4  Tumor regions detected and rough classification results
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where Pj,p
i  represents the final benign and malignant 

probabilities of the j-th image of the i-th sequence, where 
D
j,p
i  represents the probability from the tumor detection 

model with the j-th image of the i-th sequence of the 
patient, Mp

i  represents the probability from the sequence 
classification model with the i-th sequence of the patient, 
and Ap represents the probability based on the patient’s 
age. �1, �2, �3 are the weights of the three terms.

The benign and malignant tumor categories of all 
images in each sequence were obtained by using Eq. (1), 
and the category with the largest proportion was selected 
as the sequence category. Finally, the category with the 
largest proportion of all sequences was selected as the 
benign or malignant category for this patient.

Metrics
All the models were trained on an Intel E5-2640 CPU 
and an NVIDIA GTX1080Ti GPU. Samples of malig-
nant tumors were considered positive. Area under the 
curve (AUC) [16], accuracy (ACC), sensitivity (SE), 
and specificity (SP) were used as evaluation metrics. 

ACC, SE, and SP are defined in Eqs.  (2), (3), and (4), 
respectively. It should be noted that our task was to 
diagnose tumors based on early images of patients. 
This is a classification task that uses deep learning. 
The AUC, ACC, SE, and SP are the common metrics 
used to measure the classification effect. Evaluation 
methods such as RECIST are not applicable to our 
task.

To show the diagnostic level of radiologists, spine 
surgeons, and our model at the same time, we invited 
three doctors to make a diagnosis based on the images 
and age information of patients in the test set, includ-
ing one radiologist (D1: 18  years’ experience) and two 

(2)ACC =
TP+ TN

TP+ FN+ TN+ FP

(3)SE =
TP

TP+ FN

(4)SP =
TN

TN+ FP

Fig. 5  The probability of benign and malignant tumors with different ages
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spine surgeons (D2: 24  years’ experience, D3: 8  years’ 
experience).

Results
Comparison of different fusion strategies
We compared the results of the six different fusion strat-
egies on the test set. In our experiments, N = 16 for the 
sequence classification model was better than N = 4 or 
N = 8. The results of the different fusion strategies are 
shown in Table 3, where Det, Seq, and Age represent the 
tumor detection model, sequence classification model, 
and age statistical information, respectively. The dif-
ferent strategies correspond to the different λ values in 
Eq. 1. For example, �1 = 0.45 , �2 = 0.45 , �3 = 0.1 for Det-
Seq-Age, �1 = 0.45 , �2 = 0 , �3 = 0.1 for Det-Age, and 
�1 = 0.45 , �2 = 0 , �3 = 0 for Det. All fusion strategies 
are based on the tumor region detected by the detection 
model.

As shown in Table 3, the Det-Seq fusion strategy (ACC: 
0.800, AUC: 0.830) was better than the detection model-
only method Det (ACC: 0.721, AUC: 0.733) and sequence 
classification-only model Seq (ACC: 0.693, AUC: 0.753). 
In addition, after considering age information, the results 
of Det-Seq-Age showed significant improvement (ACC: 
0.821, AUC: 0.839) for benign and malignant tumor 
diagnosis.

Comparison between WFF and doctors
Table  4 shows the comparison results of the WFF and 
three doctors. “MRI” indicates that the doctors did not 
refer to age information, but only referred to MRI images. 
“MRI-Age” indicates that the doctors referred to age 
information and MRI images. The “Avg. Time” represents 
the average time that the doctor or model spent diagnos-
ing a patient, that is, the time between the model and 
doctor seeing the images and making the diagnosis result. 
The average diagnosis time of the WFF for each patient 
was less than one second, which is much faster than that 
for all doctors. Compared to D1, D2, and D3, the ACC 

of the WFF without age information improved by 5%, 
13.6%, and 18.6%, respectively. The ACC of the WFF with 
age improved by 13.5%, 8.5%, and 18.5%, respectively. It 
should be noted that the ACC of D2 and D3 improved 
after referring the age information but decreased for D1 
after referring to the age information because of paying 
too much attention to age. The SE and SP of WFF were 
both higher than those of D1 and D2. Although D3 had 
a higher sensitivity (92.0%) without age information, his 
ACC (61.4%) and specificity (44.4%) were lower.

Comparison of different vertebral locations
To further explore the difference between WFF and doc-
tors, we counted the number of patients with incorrect 
predictions, the error rate in different vertebral locations, 
and the distribution of vertebral locations in the testing 
set, as shown in Fig. 6.

The number of patients with incorrect prediction and 
error rate by WFF in most locations was lower than that 
of the doctors. As shown in Fig. 6a, D2 and D3 had the 
largest incorrect predictions at the cervical vertebra, D1 
had the largest number at the thoracic vertebra, and WFF 
had the largest number at the lumbar vertebra, while 
both WFF and doctors had the lowest number at the 
sacral vertebra. By observing the number distribution in 
different vertebral locations in Fig. 6b, it can be seen that 
the number of patients with tumors in the cervical and 
thoracic vertebrae was large, and the misprediction trend 
of doctors was consistent with the location distribution, 
however, the trend of WFF was opposite. The reason for 
this phenomenon is that for the deep learning model, 
the more samples, the better the diagnosis effect, which 
shows that for the same vertebral location, the model can 
surpass doctors through the learning of a large number of 
samples.

However, as shown in Fig.  6c, the error rate trend of 
WFF and doctors is different from that in Fig. 6b; most 
doctors and WFF have a lower error rate in the cervical 

Table 3  Benign and Malignant tumor prediction results with 
different fusion methods on the test set

The bold highlight the relatively good results

Fusion method ACC​ AUC​ SE SP

Det 0.721 0.733 0.500 0.844

Det-Age 0.736 0.738 0.500 0.867

Seq 0.693 0.753 0.660 0.711

Seq-Age 0.693 0.751 0.660 0.711

Det-Seq 0.800 0.830 0.740 0.833

Det-Seq-Age 0.821 0.839 0.720 0.878

Table 4  Comparison between WFF and three doctors for benign 
and malignant tumor prediction

The bold highlight the relatively good results

Method Avg. time(s) ACC​ SE SP

D1 (MRI) 35.44 0.750 0.660 0.800

D2 (MRI) 51.68 0.664 0.580 0.711

D3 (MRI) 47.62 0.614 0.920 0.444

Det-Seq 0.850 0.800 0.740 0.833
D1 (MRI-Age) 41.75 0.686 0.700 0.678

D2 (MRI-Age) 27.26 0.736 0.720 0.744

D3 (MRI-Age) 37.41 0.636 0.880 0.500

Det-Seq-Age 0.742 0.821 0.720 0.878
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vertebrae and the highest error rate in the lumbar ver-
tebrae. Our test set represented the distribution of the 
overall data of the cooperative hospital. The reason for 
this phenomenon is that both WFF and doctors need to 
accumulate experience from a large number of cases. The 
more cases, the richer the experience and the lower the 
error rate. This shows that for the deep learning model, 
more representative samples can help improve its diag-
nostic performance.

Comparison of different sequences
The above results were obtained by using all sequences 
of patients, including T1 (T1WI) and T2 (T2WI and FS-
T2WI). To verify which sequence had the greatest impact 
on the final result, we further obtained ACC with only 
T1 (T1WI) or T2 (T2WI, FS-T2WI) sequences on the 
test set. For the six fusion methods, as shown in Fig.  7, 
the ACC of the T2 (T2WI, FS-T2WI) sequence showed 
an improvement of approximately 3% to 8% compared to 
that of the T1 (T1WI) sequences, and the results of com-
bining T1 (T1WI) and T2 (T2WI, FS-T2WI) sequences 
were similar to those obtained using only T2 (T2WI, FS-
T2WI) sequences. This shows that the T2 (T2WI and 

FS-T2WI) sequence is more helpful for tumor diagnosis 
in artificial intelligence models. However, the proposed 
WFF is not limited to specific scanning images, such as 
T1 (T1WI) and T2 (T2WI, FS-T2WI). When there are 
enough samples, it is also applicable to other images, 
such as post-contrast images, or even the combination of 
a variety of different images.

Discussion
There have been several studies conducted about spi-
nal tumors, which are similar to the present study. For 
example, Hammon et al. [17] developed an SVM model 
to detect spinal metastases based on CT images of 114 
patients, and similar work was undertaken by O’Connor 
et  al. [18]. In addition to directly identifying tumor cat-
egories, Burns et  al. [19] used a segmentation method 
to detect tumor regions based on images of 49 patients, 
and then used SVM to identify these tumor regions. Chi-
anca et  al. [20] used hCAD and PyRadiomics tools to 
extract image features and then used the machine learn-
ing method to select and recognize features based on sin-
gle-frame images to identify benign and malignant spine 
tumors of 146 patients with the lesion region annotated 

Fig. 6  a Number of patients with wrong prediction in different vertebral locations. b Vertebral location distribution of patients in the testing set. c 
Error rates in different locations
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by the doctor. Wiese et  al. [21] proposed an automated 
method based on a watershed and graph-cut algorithm 
to detect spinal metastases in CT images. Yao et al. [22] 
further proposed an SVM-based algorithm to improve 
initial detection using the watershed algorithm for the 
detection of spinal metastases in CT images. The afore-
mentioned methods use traditional feature extraction 
and machine learning methods on small case scales.

In recent years, with the development of deep-learning 
technology, an increasing number of new technologies 
have been used in the field of medical imaging, includ-
ing lesion segmentation, detection, and classification. 
U-Net series models are usually used to segment lesions 
from CT or MRI [23–26]. The detection models rep-
resented by Faster-RCNN have been used to detect the 
location of lesions in medical images [27–30]. In addi-
tion, some studies have applied deep-learning technology 
to lesion classification [31–34]. For example, Lang et al. 
[35] used the normalized cut algorithm to generate a 3D 
tumor mask, extracted histogram and texture features 
from multiple adjacent image frames used as the input 
of CNN and convolutional long short-term memory for 
differentiating metastatic lesions in the spine originating 
from primary lung and other cancers, which based on a 
dataset containing 61 patients with tumor regions anno-
tated by doctors. Roth et  al. [36] used a deep convolu-
tional neural network as the 2nd stage to refine the lesions 
from the 1st stage from CT images for the detection of 
spinal metastases. Zhang et al. [37] proposed a two-step 
pipeline containing a Faster-RCNN to detect abnormal 
hyperintensity and an RUSBoost classifier to reduce the 

number of false-positives based on 121 patients, of which 
73 were for training, and 48 for validation. Liu et al. [38] 
used six classifiers to distinguish between HRC and non-
HRC statuses based on 89 patients with multiple mye-
loma using MRI. The above methods were evaluated in 
small-scale cases, most of which were directly analyzed 
on manually marked tumor regions without automatic 
tumor detection processing, and some did not use clini-
cal information.

In contrast to the above methods, this paper proposes 
a multi-model weighted fusion framework (WFF) based 
on deep learning to diagnose benign or malignant spinal 
tumors by using patient sagittal MRI sequences and age 
information, which can automatically detect the tumor 
location and make patient-level benign and malignant 
diagnosis based on all sequences of patients. Doctors 
usually refer to clinical information to diagnose spine 
tumors, such as age information. For example, the older 
the patient, the greater is the probability of a malignant 
tumor. However, this conclusion is not absolute, as there 
are still some younger patients with malignant tumors. 
Therefore, the accuracy of doctors may improve or 
decrease after referring to age information, while WFF 
can well adjust the relationship between age informa-
tion and model results, which may avoid misleading the 
fusion results. The experimental results demonstrate the 
effectiveness of the proposed WFF.

Limitations
The retrospective study design would have resulted in 
inevitable bias, and all data were collected from a single 

Fig. 7  The ACC of different fusion methods based on T1, T2, and T1&T2 sequence
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center, thereby limiting the sample size of the study. In 
the proposed method, the detection and classifica-
tion of tumor regions in each image from the sequence 
is the basic and key technology for patient-level diag-
nosis. To improve the recall rate of tumor regions, the 
tumor detection model produces a certain number of 
false-positive regions, which would greatly complicate 
patient-level fusion. At the same time, the visual features 
of some benign and malignant spine tumors are not obvi-
ous, making it difficult to distinguish between benign and 
malignant tumors in some situations. Therefore, improv-
ing the performance of the detection model, reducing the 
false-positive rate, and improving the classification accu-
racy of the model will be the focus of future research. In 
addition, owing to the limitations of the experimental 
conditions, this study only used age information. If more 
clinical information is available, it is believed that diag-
nostic performance will be improved.

Conclusions
Owing to the rich tissue sources, pathological types, and 
diverse clinical symptoms, diagnosis of early benign and 
malignant spine tumors from MR images is very difficult, 
even for medical experts. This study proposes a multi-
model weighted fusion framework (WFF) based on deep 
learning that combines both medical images and age 
information. The experimental results demonstrate the 
effectiveness of the proposed WFF.
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