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STATEMENT

Considerations for artificial intelligence 
clinical impact in oncologic imaging: an AI4HI 
position paper
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Abstract 

To achieve clinical impact in daily oncological practice, emerging AI‑based cancer imaging research needs to have 
clearly defined medical focus, AI methods, and outcomes to be estimated. AI‑supported cancer imaging should 
predict major relevant clinical endpoints, aiming to extract associations and draw inferences in a fair, robust, and 
trustworthy way. AI‑assisted solutions as medical devices, developed using multicenter heterogeneous datasets, 
should be targeted to have an impact on the clinical care pathway. When designing an AI‑based research study in 
oncologic imaging, ensuring clinical impact in AI solutions requires careful consideration of key aspects, including 
target population selection, sample size definition, standards, and common data elements utilization, balanced data‑
set splitting, appropriate validation methodology, adequate ground truth, and careful selection of clinical endpoints. 
Endpoints may be pathology hallmarks, disease behavior, treatment response, or patient prognosis. Ensuring ethical, 
safety, and privacy considerations are also mandatory before clinical validation is performed. The Artificial Intelligence 
for Health Imaging (AI4HI) Clinical Working Group has discussed and present in this paper some indicative Machine 
Learning (ML) enabled decision‑support solutions currently under research in the AI4HI projects, as well as the main 
considerations and requirements that AI solutions should have from a clinical perspective, which can be adopted into 
clinical practice. If effectively designed, implemented, and validated, cancer imaging AI‑supported tools will have the 
potential to revolutionize the field of precision medicine in oncology.
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Key points

• EU-funded research projects address the creation of 
AI-supported clinical decision support solutions.

• AI-based models in oncologic imaging need to be 
fair, robust, and trustworthy.

• Appropriate definition of relevant study parameters 
is essential to ensure clinical adoption.

• Clinical validation phases of AI-based clinical deci-
sion support systems need careful design.

Background
The Artificial Intelligence for Health Imaging (AI4HI) 
projects is a network of five EU-funded research projects 
currently working on Artificial Intelligence (AI) solutions 
based on medical images and related clinical and molec-
ular data, to improve clinical practice. These projects 
are Primage (GA 826494), Chaimeleon (GA 952172), 

Open Access

Insights into Imaging

*Correspondence:  luis_marti@iislafe.es
1 Radiology Department and Biomedical Imaging Research Group 
(GIBI230), La Fe Polytechnics and University Hospital and Health Research 
Institute, Valencia, Spain
Full list of author information is available at the end of the article



Page 2 of 11Marti‑Bonmati et al. Insights into Imaging           (2022) 13:89 

EuCanImage (GA 952103), Incisive (GA 952179), and 
Pro-Cancer-I (GA 952159). Although the projects dif-
fer in several key aspects, some common strategies and 
architectures can be foreseen regarding the efforts to 
construct validated AI tools using medical imaging and 
combining with relevant related data to estimate clini-
cal events in daily oncologic practice. Basically, data 
from electronic health records and PACS is selected and 
extracted based on defined common data elements, de-
identified, harmonized to a common framework, and 
stored in databases and image repositories before the 
AI models are trained, tuned, and validated to improve 
a clinical pathway. In this process, researchers should 
extract and prepare data (data scientists), construct AI 
models (AI scientist) and design the study to maximize 
clinical impact (medical scientist).

In medical imaging, AI-related research is largely based 
upon observational, non-interventional in silico studies 
performed by computer simulation on routinely collected 
Real World Data (RWD). As the patient episode is usu-
ally closed/completed, the dataset in these observational 
studies is retrospectively collected and anonymized, and 
there is no possible link between patients, data collection 
process, and AI-researchers, with such a post hoc study 
recruitment policy. The non-interventional nature is 
guaranteed as researchers only address the design, imple-
mentation, and evaluation of the AI algorithms in a com-
putational environment (Fig.  1). The data used in these 
studies come from Electronic Medical Records (EMRs) 

from the participant hospitals or research biobanks. 
AI4HI projects are involved in the construction of 
research repositories as biobanks for cancer images and 
related data. The created datasets contain use-cases 
whose collection is defined by the clinical objective, 
retrieved data, and clinical endpoints (CEPs) of interest 
(Fig. 2).

These datasets are used for the training, tuning, and 
testing of the AI models developed to improve the repro-
ducibility and estimation of CEP events. The training and 
tuning datasets are used for the construction of the AI 
solution, while the testing dataset is used for the internal 
validation analysis (accuracy and repeatability). An exter-
nal validation set with data from different centers and 
scanners is constructed and used for a final reproducibil-
ity analysis to ensure robustness of the resulting model. 
The dataset constructed from different centers consti-
tutes the basis for external clinical validations [1] (Fig. 3).

Indicative examples of AI models and Machine Learn-
ing (ML) algorithms currently under research and imple-
mentation in the AI4HI projects follow. Researchers are 
developing AI-based models in an open cloud-based 
platform to support decision-making in the clinical man-
agement of two pediatric cancers (neuroblastoma and 
diffuse intrinsic pontine glioma). The project utilizes 
standard-of-care MR and CT images at diagnosis and 
follow-up time points, together with clinical and molecu-
lar data, for the prediction of relevant clinical endpoints 
such as overall survival, time to progression/relapse, and 

Fig. 1 Causality by design: step wise observational case control studies



Page 3 of 11Marti‑Bonmati et al. Insights into Imaging           (2022) 13:89  

response to treatment. In addition, special emphasis 
is given to the automation of the image preparation by 
building image quality control tools based on unsuper-
vised learning techniques (clusterization), creating ML 
models from DICOM metadata for the labeling of MR 
sequences, and training convolutional neural networks 
(CNNs) for the automatic segmentation of tumor and 
adjacent organs.

Regarding breast cancer, mammographic images are 
first passed through a ML-enabled classifier trained with 
both control and abnormal images and related clinical 
and pathological data. If classified as abnormal, a second 
classifier is trained to determine the type of abnormality 
(lesion, calcifications, or both). Depending on the out-
come, different AI-based segmentation models look for 
the respective region of interest and produce the output 
masks. Additional classification models will be trained to 
determine the BIRADS score and breast density, features 

that are of particular importance in the management of 
patients. The AI4HI ML solutions for breast cancer also 
address breast MR images to segment and classify the 
lesions, combining the outputs with other clinical data 
for precise disease staging.

Other challenges include the development of AI-pow-
ered pipelines for data deidentification, curation, annota-
tion, authenticity protection, and image harmonization. 
In particular, the development of image harmonization 
Deep Learning (DL) algorithms is based on either Gener-
ative Adversarial Networks (GANs), where images from 
different manufacturers are converted to a reference, 
and self-supervised learning techniques, where original 
images and simple transformations are used as input data 
to a CNN-based autoencoder, which is then trained to 
reconstruct an harmonized version of the original image.

The application of validated AI-based solutions is 
essential for precision medicine to provide physicians 

Fig. 2 Clinical endpoints (CEPs) and type of data obtained in observational oncology studies

Fig. 3 Flow chart from data recruitment and creation of dataset to data visualization
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with a trustworthy clinical decision support system 
(CDSS) [2]. Having an impact on a specific clinical path-
way is defined by the diagnostic gain in comparison with 
standard of care and the strong relationship between 
algorithm event predictions and final ground truth. 
Ensuring several key aspects, such as clearly defining 
the technical biases and clinical validation phases, and 
the evaluation of the impact through the strength of the 
prediction inference is vital for success. To ensure clini-
cal use, the target population, dataset splitting, validation 
methodology, reference standards, and clinical perfor-
mance metrics should be clearly identified [3]. Further-
more, CEPs must be carefully selected, whether these 
are diagnostic disease behavior, treatment response, or 
patient prognosis or outcome [4–7]. In the field of AI-
assisted tools as medical devices, their clinical acceptance 
requires proven capability of extrapolating the computa-
tional solutions into multicentric studies and heterogene-
ous datasets.

Our objective is to present the main steps for AI 
research that our AI4HI projects share and envision, 
including additional desirable validation steps such as 
largescale external validations which will be mandatory 
before real-life deployment of the research prototypes. 
Any developed, validated or deployed AI solution aimed 
toward specific clinical impact in oncologic imaging must 
be monitored for the following properties: fairness and 
unbiasedness, universality and standardization, robust-
ness, reliability, explainability and trustworthiness, trace-
ability and monitoring, as well as usability and equity in 
transferability [8].

Objectives and initial considerations
The main general objective of AI-based studies involving 
cancer imaging data is to provide decision support tools 
from standard-of-care images and related clinical-molec-
ular data by presenting physicians with estimates or pre-
dictions of disease aggressiveness, expected treatment 
response and final clinical outcome [9]. The data minimi-
zation approach should be considered as collected data 
should not be held unless are essential for the designed 
study, in accordance with data privacy and legal issues 
[10–12].

The selection of the target population depends on the 
primary study objectives and clinical outputs. For the 
AI models to be generalizable, the selected population 
should be representative of the clinical disease spectrum 
and related clinical outputs. Once the target popula-
tion has been defined and to ensure maximum fairness 
and universality, it is important to ensure that a suffi-
ciently large sample size is recruited before the predic-
tion models are developed. The required sample size will 
vary according to several factors, such as the number 

of predictors (variables) used to characterize the target 
population, the type of outcomes (continuous, binary or 
time-to-event) and number of events per variable (e.g., 
patients in different categories) and the expected predic-
tive performance of the model [13].

Continuous improvement in public health data regis-
tries through data digitization and integration with medi-
cal images are facilitating the acquisition of real-world 
data (RWD) in a real-world context. Currently, clini-
cal data, pathological and imaging reports and images 
are included in EMRs contain a wealth of data that can 
be consolidated onto ad-hoc custom created data ware-
houses. After extraction, research data lakes and imag-
ing repositories are created. Unfortunately, most RWD 
elements are frequently highly unstructured, use non-
standard terminologies and lack a common vocabulary, 
hampering multi-center data harmonization [14]. To 
partially address this limitation, multicenter projects 
with complex data specify Common Data Elements 
(CDEs) models, which contain concise, uniformly struc-
tured information stored across different centers that 
will enable standardized data exchange between different 
information systems managed at different data providing 
centers. These CDEs contain standard units and defini-
tions for the clinical data to be registered for the specific 
clinical targets and endpoints, facilitating the creation of 
common data repositories that are among the main goals 
of all the AI4HI projects [15].

The following characteristics might serve as examples 
for observational, analytical, and in silico predictive stud-
ies in oncology:

• Observational nature of the studies. Researchers 
obtain and document post hoc occurring tumor phe-
nomenon as associations with different outcomes 
being evaluated (e.g. tumor radiomics for the estima-
tion of overall free survival).

• The researcher does not have any active intervention 
in the clinical course of the individuals being stud-
ied, as the exposure and endpoints have already hap-
pened before the start of the data collection.

• The observational study is mainly case–control, 
where the investigators simply assess the strength of 
the relationship between exposure to a specific com-
puterized phenotype and a disease endpoint within a 
temporal dimension [16].

• The characteristics of the subjects, context, expo-
sures, timing, confounders, and interactions are 
defined before data collection.

• The recruitment and analysis phases are defined as 
post hoc analyses over known endpoints.

• Data on the relevant events are collected from exist-
ing health records and are analyzed once the clinical 
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episode is closed, endpoints are known, and data is 
de-identified.

• Prediction models are constructed, tested, and vali-
dated in silico on datasets from large repositories, 
linking the multicenter extracted radiomic informa-
tion with the relevant molecular and clinical data.

• Within repositories, data homogeneity is usually a 
limiting factor, as structured data warehouses with 
Common Data Elements (CDEs) standards are not 
usually available.

• Collected data are used in an aggregated format after 
careful multilevel (clinical, molecular, imaging) de-
identification to ensure patient privacy and to fulfil 
General Data Protection Regulations (GDPR).

• The data are stored as de-identified cases in imaging 
repositories where no intervention can be made by 
the researcher on the patient’s medical history. For 
legal reasons, tables of ID correspondence are kept 
at the local level only. The processing of de-identified 
data is allowed for the purpose of archiving data for 
public interest, scientific research, or other statistical 
purposes.

• As research is performed on retrospectively collected 
RWD, patient informed consent is usually waived by 
the Ethics Committee at the data provider sites (such 
is the case in all AI4HI projects). However, patient 
consent is usually required if data is prospectively 
collected before the episode is finalized. The access to 
high-quality large datasets for training and validation 
is mandatory for clinically relevant AI solutions.

Checklists for clinically acceptable AI solutions 
using medical imaging
Some relevant items should be clearly defined in AI stud-
ies, which aim to have clinical impact in real world sce-
narios. These include:

• Well-defined target population. This should cover 
the whole disease spectrum relevant for the spe-
cific questions being predicted. Example: within the 
Chaimeleon project (evaluating lung cancer), the tar-
get population include patients with a diagnosis of 
non-small cell lung carcinoma who received immu-
notherapy.

• Adequate sample size calculations. The minimum 
number of cases required to obtain reliable results, 
including the optimal balance between healthy and 
pathological cases needs to be defined [17]. Example: 
the Chaimeleon project aims to recruit nearly 10,000 
prostate patients to enhance the precision and reli-
ability of distinguishing between low-risk from high-

risk tumors; and to inform adequate therapy or fol-
low up.

• Standard criteria for clinical and pathological diag-
nostic considerations. Data dictionary and refer-
ence definitions should also be used for treatment 
response and clinical endpoints. Example: use 
standardized radiological images as recommended 
in guidelines. for instance, in breast cancer, bilateral 
mammography and/or ultrasound of the tumor and 
lymph node is universal. Lesions are characterized 
using the BI-RADS classification system (standard 
Imaging-Reporting and Data System for the breast).

• Specified time points for data collection. Images col-
lected in cancer patients are usually at various time 
points in the disease journey such as at diagnosis, 
loco-regional treatment, neoadjuvant therapy, sur-
gery, adjuvant therapy, radiotherapy, relapse or recur-
rence, last follow-up, and death. The time interval 
between image acquisitions, diagnosis and treat-
ments should be defined. Example: in the Chaime-
leon project, all diagnostic tests must be performed 
within 2 months of the diagnostic pathology report.

• Minimum amount of data to be collected. To adhere 
to data minimization principle, only data essential or 
expected to influence the estimated outcomes under 
investigation should be collected and integrated. 
Example: variables directly affecting diagnostic, treat-
ment, or follow-up risk stratification.

• Relevant co-morbidities. Concurrent patient con-
ditions with the studied disease that might have an 
additional effect on the measured outputs should be 
included where appropriate. Example: hypertension, 
diabetes, obesity, and other primary cancers.

• Standards and units for measurements. All quantita-
tive variables and their units should be standardized, 
choosing the most internationally and frequently 
used if there are several. Example: use of centimeters 
or millimeters for tumor size, or Karnofsky perfor-
mance status for oncological patients in treatment 
response studies [18].

• Image quality criteria. Before images are incorpo-
rated into the de-identified research repository, 
exclusion criteria based on low image quality must 
be defined. Standard procedures for data curation 
and quality control, including protocols addressing 
poor-quality clinical, pathological, and imaging data 
submitted to repositories must be defined. Example: 
several recent solutions have been developed to help 
interrogate MR datasets, MRQy for variations in res-
olution or contrast, imaging artifacts such as noise or 
inhomogeneity [19], or PI-QUAL a prostate-specific 
tool to assess diagnostic quality of images [20].
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• Incorporated source images and extracted data har-
monization. To minimize biases associated with dif-
ferent centers, machines, and acquisition protocols, 
both source images, and extracted data must be nor-
malized to a common framework for reproducibility. 
Example: specific developed programs such as histo-
gram normalization and discretization [21], ComBat 
harmonization [22], or Generative Adversarial Net-
works and unsupervised image-to-image translation 
units [23, 24].

• Massive data extraction and data interoperability. 
Example: the use of Observational Medical Out-
comes Partnership (OMOP) [25] as the Common 
Data Model, together with the definition of oncology 
and imaging extensions is recommended.

• Safety and privacy aspects of repositories. Special 
focus on de-identification and traceability processes 
is encouraged. Traceability is generally considered 
a key requirement for trustworthy AI, being related 
to “the need to maintain a complete account of the 
provenance of data, processes, and artifacts involved 
in the production of an AI model” [26].

Main variables to be used as inputs to the AI 
models
The following are common input variables that are used 
to develop and train AI models:

1. Demographic

a. Age at diagnosis or clinically relevant event: in 
years and to further detail the time intervals 
between main diagnostic and therapeutic actions.

b. Gender: biological sex of the patient.

2. Clinical-analytical

a. Tumor staging: standardized descriptions for the 
amount and spread of the cancer in the patient’s 
body, mainly including tumor size, number, loca-
tion, vascular invasion, presence of lymph nodes, 
and presence of distant metastasis.

b. Patient performance status: a score that estimates 
the patient’s ability to perform certain activities in 
day-to-day life without the help of others. Exam-
ple: ECOG performance status.

c. Circulating analytical biomarkers: indicators 
of the biological state or condition that can be 
accurately and reproducibly measured from 
either blood, urine, or soft tissue samples. Usu-
ally measured to assess the patient status and the 

responses to a given therapeutic intervention. 
Example: prostatic specific antigen (PSA) or car-
cinoembryonic antigen (CEA).

d. Co-morbidities: conditions, other than the pri-
mary interest, that the patient has and might 
influence outcomes. Example: diabetes or arterio-
sclerosis.

3. Pathology (usually used as referent standard for diag-
nosis)

a. Tumor type: lesion classification based on cell 
origin or histological type.

b. Grading: description of a tumor based on how 
abnormal the cancer cells and tissue are, and how 
quickly cancer cells are likely to grow and spread.

c. Staging: Description of the extent of the can-
cer with respect to primary tumor site and size, 
extent of invasion into local tissues and struc-
tures, spread to regional lymph nodes and 
whether it has metastasized to other regions of 
the body.

d. Molecular markers: DNA or gene sequence 
which exact nature and expression levels can be 
accurately and reproducibly measured.

e. Immunohistochemistry determination: visualiza-
tion of the distribution and determination of the 
amount of a given protein in the tissue of interest 
using antigen–antibody reaction-based detection 
methods.

f. Mutation profiles: detection of molecular altera-
tions present in a tumor as determined using 
next-generation sequencing or microarray tech-
nologies.

g. Liquid biopsies: non-invasive analyses of circulat-
ing tumor-derived material, such as tumor DNA 
or RNA, tumor cells, extracellular vesicles, or 
tumor-educated platelets.

4. Imaging

a. Source images: radiological images of different 
parts of the body used for diagnostic and inter-
ventional radiology purposes.

b. Radiomics: quantitative approach used to extract 
and enhance voxel-wise features from radio-
graphic medical images using data-characteriza-
tion algorithms [27].

c. Dynamic modeling: workflow that uses time-
dependent tomographic images of the same 
patient, focusing on the changes in image features 
over time and quantifying them for diagnosis, 
treatment response or prognostic evaluation.
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d. Deep radiomics: use of CNN to analyze and clas-
sify texture features from radiological images.

e. Synthetic images or datasets: artificially gener-
ated results used for augmentation and enhance-
ment of training sets, as well as for bias preven-
tion (gender distribution, feature distribution) 
[28].

5. Annotations: either as box (such as bounding box 
around the malignant tumor), contour/segmentation 
(such as detailed 3D drawing around the tumor), or 
points/dots (such as those drawn on the lesion in a 
mammogram).

6. Treatment Information (needed if a given model is to 
be trained for treatment response prediction)

a. Surgery: Type of surgery regarding size removed 
related to the whole organ (e.g., whole mastec-
tomy or tumorectomy), and used instrumenta-
tion (e.g., laparoscopic, stereotaxic, cryosurgery, 
endoscopy)

b. Chemotherapy, immunotherapy, and radiother-
apy regimes for response prediction.

c. Sequence of administered treatment options 
(neoadjuvant, surgery, adjuvant chemotherapy, 
immunotherapy, radiotherapy).

Main variables to be defined as outputs for AI 
predictions
AI solutions must solve specific clinical problems, 
improve defined clinical pathways, or facilitate targeted 
clinical decisions. From a clinical perspective, some 
desired outputs from the AI tools to be prioritized for 
implementation dealing with oncologic imaging are 
listed:

1. Phenotyping – Tumor Aggressiveness

a. Growth rate: time at which a tumor volume dou-
bles in size.

b. Direct tumor invasion: invasion of the surround-
ing stroma by tumoral cells due to loss of cell-
to-cell adhesion capacity, changes in cell–matrix 
interaction that altered cell motility, or acquired 
migration capacity enabling tumoral cells to 
invade the surrounding stroma.

c. Lymphatic spread: whether tumoral cells are pre-
sent in regional lymph nodes near the primary 
tumor and ultimately, in other parts of the body.

d. Metastasis: when tumoral cells have spread 
beyond the primary tumor to different parts of 
the body and the formation of new tumors (sec-

ondary and tertiary foci) has occurred. Regional 
metastasis is that where cells have spread near 
the primary site, and distant metastasis is defined 
as that where organs or lymph nodes that are dis-
tant from the primary tumor have been affected.

e. Tumor heterogeneity: genetic and phenotypic 
differences between tumors of the same type 
in either different patients or within the same 
patient, and between different cancerous cells 
within a given tumor.

f. Radiogenomics: correlation, if present, between 
cancer imaging features and genomics (gene 
expression patterns, gene mutations and other 
genome-related characteristics [29].

2. Treatment Response Prediction

a. Response to loco-regional treatment: response to 
local treatment (usually ablation, embolization or 
radioembolization) and evaluation of the treat-
ment response after treatment.

b. Response to neoadjuvant treatment: response 
to systemic treatment administered before sur-
gery in patients without metastasis. It is of great 
importance to collect when a complete patholog-
ical response from other categories (partial, stable 
response or progression) has occurred, due to its 
implication in a much better prognosis.

c. Response to adjuvant treatment: response to sys-
temic treatment administered after surgery in 
patients without metastasis.

d. Response to metastatic treatment: response to 
systemic treatment administered in patients with 
metastasis.

e. Response to surgery: response to local treatment 
and evaluation of the treatment response after 
surgery.

f. Response to radiotherapy: response to local treat-
ment and evaluation of the treatment response 
after radiotherapy. Radiotherapy can be used 
either with curative intent for complete tumor 
eradication or local control, or with palliative 
intent to reduce tumor growth and symptom 
control.

g. Response to novel or targeted therapies (alone or 
in combination)

h. Side effects and toxicity effects: development of 
undesired events related to treatment.

3. Clinical Endpoints

a. Downstaging: decrease of the size and extent of 
primary disease or metastases, and/or lymph 
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node involvement of a tumor by means of anti-
cancer therapy.

b. Tumor regression grading: determination of the 
amount of residual tumor in patients who under-
went preoperative therapy.

c. Status of margins affected: determination of 
whether residual tumor remains at the surgical 
resection margins in patients who underwent 
surgery.

d. Overall survival: time length from either the date 
of diagnosis or start of cancer treatment to the 
time of death.

e. Tumor or response-free survival: time length 
after the patient’s primary treatment without any 
signs or symptoms of that cancer.

f. Progression-free survival: time length during and 
after treatment where the disease remains but the 
patient does not worsen.

g. Time to progression: time length from the date of 
diagnosis or start of treatment until the disease 
starts to worsen or spread to other parts of the 
body.

h. Objective Response Rate: percentage of patients 
who have a partial or complete response to the 
treatment within a given time.

i. Complete Response Rate: percentage of patients 
who have a complete response to the treatment 
as determined by complete disappearance of 
lesions within a given time period.

Clinical validation
The main clinical validation steps that all AI4HI pro-
jects will follow deal mainly with models exploring large 
repositories from real-world data. This section discusses 
a general clinical validation process that should be con-
sidered before the developed AI tool is ready for clinical 
implementation. The clinical validation of any AI-based 
CDSS is meant to define the real-life deployment poten-
tial of the tool and the extent to which it may impact the 
daily clinical practice by supporting clinicians to improve 
the outcome of the patient. The transition from research 
to clinical practice can be achieved through appropriately 
planned and conducted studies using internal and exter-
nal cohorts of patients. Clinical applicability should be 
promoted by a robust validation across vendor systems, 
field strengths (for MRI scanners), and institutions [30].

This clinical validation should include both retrospec-
tive data and prospective on patient validation steps. In 
the retrospective validation, the algorithm’s output is val-
idated against independent clinical decisions, reference 
standards, and/or the ‘ground truth’ [31]. In a prospec-
tive validation, one or more clinicians prospectively make 

clinical decisions having seen the algorithm’s output [31–
34]. This decision is then validated against independent 
clinical decisions, investigating for potential introduc-
tion of decision bias [32, 35] (Fig. 4). As an example, the 
prospective validation can evaluate algorithms that pro-
duce contours around tumors or other regions of inter-
est (such as for radiotherapy planning), where the output 
could be deemed ‘good enough’ when prospectively eval-
uated while differences may be revealed when retrospec-
tively evaluated.

A modified ‘Turing test’ [36] may also be used for fur-
ther clinical validation. In this process, several outputs 
from clinical experts and the algorithm under validation 
are pooled and presented to a blind expert whose task is 
to identify if the outputs were generated by a colleague 
or an algorithm [37]. In a similar fashion, the external 
human reader’s preference for automatic or human out-
put generations can be assessed. Furthermore, this vali-
dation might address the effect of AI-based CDSS on 
clinicians’ decision-making, paying special attention to 
differences in AI usage by experienced and less experi-
enced clinicians and identifying potential benefits and 
drawbacks of the integration of AI-based CDSS in clini-
cal practice [38]. Alternatively, a new definition of the 
intended uses and populations for the assessed AI tools 
might be necessary [31, 33].

The next step to follow would be an external compara-
tive study in the form of a targeted Controlled Trial of 
the developed algorithms with the same diagnostic task 
using large-scale, multicenter, multivendor standardized 
dataset that the algorithms were not exposed to dur-
ing previous development phases [31]. There is a ques-
tion of whether such validation should be initiated and/
or funded by the research teams that developed the tool 
or should there be external incentives to validate newly 
developed instruments [30]. It is a broad-scale ini-
tiative that should preferably be conducted by objective 
external research teams or organizations affiliated with 

Fig. 4 Scheme of the main clinical validation steps in real world data 
projects
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regulatory bodies on large datasets to ensure the highest-
quality external validation of algorithms from different 
developers.

The external clinical evaluation, apart from standard 
accuracy assessment with the area under the Receiver-
Operating Characteristic (ROC) curves, sensitivity, spec-
ificity, false positive and false negative rates, and model’s 
confidence levels, should also address the influence of the 
AI tools on the patient’s outcomes [31, 33, 35]. Similar to 
the drug development process, AI tools should undergo 
prospectively planned, pre-registered, diagnostic, tri-
als with clearly defined study population characteristics 
with the patients clinical outcomes as the primary out-
come and accuracy metrics as a secondary one [31–33, 
35, 39]. Clinical Trials should ensure the involvement of 
experienced and less experienced physicians to assess 
the performance of an AI Software as a Medical Device 
(SaMD) against a ‘reference standard’ in real-world data 
situations. At this stage, different types of bias should be 
assessed and addressed to ensure proper performance in 
under-represented sub-groups populations [33, 35].

Finally, there is a question of the longitudinal value 
of currently used methods of validation in the ‘open’ AI 
medical decision support tool that continuously learns 
from the new data (as opposed to the ‘locked’ AI algo-
rithm as defined by the US Federal Drug Administration 
(FDA) [30, 40]. This ‘open AI algorithm’ approach will 
require designing the re-evaluation strategy for clini-
cal utility [30]. It would also require the algorithms to be 
explainable and their decisions to be long-term traceable 
[31].

Ethical and usability considerations in clinical 
applications
Trustworthy, validated, ethically correct, and usable AI 
solutions are linked to human oversight throughout the 
process of design, development, evaluation and eventual 
final practical application and monitoring. There is no 
doubt that physicians need to be always in control of the 
clinical decisions, having the first say in matters related to 
the ways in which AI will support clinical decision-mak-
ing. Clinicians need to be involved and trained to do this 
task properly.

There are currently several misconceptions related to 
the potential, strengths, and weaknesses of AI in clini-
cal practice, such as over- or under-valuing AI tools, 
overgeneralization of the diagnostic task that the AI 
algorithm is meant to support, lack of awareness of the 
strengths and/or limitations of AI tools, unfamiliarity 
of health care professionals with IT supporting medi-
cal practice and difficulty of integrating it in medical 
practice due to lack of time and resources. Even if the 
ideal validation framework for AI could be defined and 

applied to a given AI-based CDSS, AI-related miscon-
ceptions could still be the cause of wrong and poten-
tially harmful use of AI in medical practice. This is 
because there will always be limitations in what AI 
can achieve and to which extent it can support medi-
cal practice. Special emphasis is placed on actions, such 
as training activities, that target the familiarization of 
medical experts with AI tools and support them in fully 
understanding their strengths and limitations. This is 
the only way to ensure that humans are always in con-
trol and that the full potential of AI tools is utilized for 
making informed decisions.

Currently, the question of accountability when an AI-
based system is deployed in real clinical settings and 
either fails or produce unexpected outcomes is still 
open and burning [41]. The problem affects any algo-
rithmic application that supports decision-making, 
being debated in the ethic, social and legal communi-
ties [42].

Another aspect requiring attention and further work in 
conjunction with ethical and legal experts is the situation 
of diagnosing new health issues in a subset of the inves-
tigated cohort that was not diagnosed before, due to the 
lack of appropriate tools. Due to technical issues of de-
identification, the AI researcher on data should have no 
direct responsibility towards patients and the only fore-
seeable solution is to inform the responsible physician. 
There might be several clinical and legal issues in such a 
situation, such as (1) the patient died of the undiagnosed 
condition, (2) the disease progressed without being 
detected, (3) the disease progressed due to late detec-
tion, or (4) the disease failed to be treated due to the late 
detection. These aspects require elaboration while the AI 
algorithms become more precise and sensitive, such as 
the tool capable of predicting future breast cancer based 
on subtle image features [43]. These clinical issues con-
cern physicians and their obligation to deliver the best 
possible care for their patients.

Another important ethical consideration is related 
to possible limitations of the training dataset that will 
be used for AI training, which must represent various 
demographics to the best possible extent to avoid inher-
ent bias [44]. When this is not feasible, vendors should 
clearly inform clinical users of potential biases towards 
gender, ethnicity, age, or any other disparities. Practition-
ers using AI algorithms in clinical practice would need to 
seek such information and make sure they consider any 
inherent bias of the AI algorithm during the interpreta-
tion of its outcome.

Clarity of the design and biases control are extremely 
important items to report when releasing an AI solution 
with medical data and images. Some of the most relevant 
aspects to check include:
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• The scientific background regarding the clinical 
problem.

• The study design regarding target population and 
study sample size.

• Patient recruitment and data extraction.
• Data quality analysis.
• Data curation and image preparation.
• Data anonymization.
• Data annotation.
• Dataset partitioning.
• Reference standard definitions.
• AI models, training procedures, and hyperparam-

eters.
• Metrics used for validation.
• Model robustness and explainability.
• Proposed use in daily clinical practice.

Conclusions
When designing an AI-based research study in oncologic 
imaging, the proper definition of several key aspects is 
essential to ensure the highest possible impact in current 
clinical practice. These include factors related to the right 
selection of the target population, sample size, clinical 
endpoints and proper definition of clinical variables to be 
used both as input and output to the AI models, ensur-
ing safety and patient privacy to fulfill GDPR. AI-assisted 
medical solutions need to be robust and trustworthy, 
with well-designed and performed clinical validation 
phases. In this article, we have discussed the impor-
tance of several key aspects related to AI-based studies 
in oncologic imaging, providing clear definitions to the 
usual type of studies performed and a general checklist 
to be followed when executing both real-world data and 
real-world validation phases to have a final impact in pre-
cision medical oncology [45].
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