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Abstract 

Background:  Accurate cardiac volume and function assessment have valuable and significant diagnostic implica-
tions for patients suffering from ventricular dysfunction and cardiovascular disease. This study has focused on finding 
a reliable assistant to help physicians have more reliable and accurate cardiac measurements using a deep neural 
network. EchoRCNN is a semi-automated neural network for echocardiography sequence segmentation using a com-
bination of mask region-based convolutional neural network image segmentation structure with reference-guided 
mask propagation video object segmentation network.

Results:  The proposed method accurately segments the left and right ventricle regions in four-chamber view 
echocardiography series with a dice similarity coefficient of 94.03% and 94.97%, respectively. Further post-processing 
procedures on the segmented left and right ventricle regions resulted in a mean absolute error of 3.13% and 2.03% 
for ejection fraction and fractional area change parameters, respectively.

Conclusion:  This study has achieved excellent performance on the left and right ventricle segmentation, leading 
to more accurate estimations of vital cardiac parameters such as ejection fraction and fractional area change param-
eters in the left and right ventricle functionalities, respectively. The results represent that our method can predict an 
assured, accurate, and reliable cardiac function diagnosis in clinical screenings.
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Key points

•	 EchoRCNN is a deep video object segmentation neu-
ral network.

•	 EchoRCNN is based on the Mask Region-Based Con-
volutional Neural Network (Mask R-CNN) image 
segmentation architecture.

•	 This network is trained on the ultrasound cardiac 
series to delineate ventricles.

•	 Ejection Fraction for the left ventricle is estimated 
from the network output.

•	 The output area can determine Fractional Area 
Changes for the right ventricle.

Introduction
Quantification of the Left Ventricle (LV) and Right Ven-
tricle (RV) function on echocardiography series in terms 
of characterizing the ventricular size, volume, and Ejec-
tion Fraction (EF) is a key step for cardiac disease diag-
nosis and treatment [1]. By the American Society of 
Echocardiography efforts, these parameters account for 
the standard clinical measurements in guidelines [2]. This 
importance comes from the convenience and availability 
of echocardiography, making it the most frequently uti-
lized imaging system in clinical routines.

LV and RV manual segmentation for functional evalu-
ation is highly time-consuming and prone to inter- and 
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intra-expert variability. This issue intensifies since a 
human observer looks at the entire cardiac cycle in clini-
cal routine to find end-systolic and end-diastolic frames. 
Despite many achievements to overcome these issues by 
automating the process, the problem is still challenging 
due to low signal to noise ratio, edge dropout, low con-
trast, the presence of shadows produced by dense mus-
cles, and a considerable amount of processing data in 
case of entire cardiac cycle segmentation [3].

Most of the studies in this era focus on LV or RV seg-
mentation in specific frames [4–16]. However, due to 
valuable information in a cardiac cycle sequence, it is 
highly effective to utilize this information for cardiac 
chamber segmentation. The most remarkable studies in 
video object segmentation task have contributed to the 
Densely Annotated Video Segmentation (DAVIS) chal-
lenge [17], an annual competition in this field. MaskRNN 
[18], which is a representative of algorithms that use opti-
cal flow information to have insights into movements, 
and Reference-Guided Mask Propagation (RGMP) [19], 
which contains a reference stream along its main path, 
are successful examples of semi-supervised architecture 
on the DAVIS dataset. There are a few studies in the con-
text of echocardiography series segmentation. Research-
ers in [20] targeted the cardiac sequence segmentation 
using their previously presented U-net version [9] to seg-
ment LV in each frame in echocardiography sequences. 
In another work [3], Deep Belief Network (DBN) and 
dynamic models for LV tracking are combined based 
on the Sampling Importance Resampling (SIR) [21]. 
Their proposed model takes advantage of using features 
extracted from all previous and current frames and previ-
ous segmentation contours. In [22], a method with two 
network streams is proposed. The first one is the spati-
otemporal stream which takes the input sequence and 
estimates the EF parameter, and  the second one pro-
cesses each frame independently to segment the desired 
area. The network is semi-supervised and takes the weak 
manual segmentation of the end-diastolic and end-sys-
tolic frames as inputs [22].

This study proposes a novel network architecture, 
EchoRCNN, specifically for echocardiography series. We 
consider training this network for two separate LV and 
RV segmentation tasks in echocardiography sequences 
as a semi-supervised procedure because it is essential to 
involve medical expert control on the algorithm predic-
tions. The network combines Mask Region-Based Con-
volutional Neural Network (Mask R-CNN) structure 
[23], which is a robust image segmentation neural net-
work based on Faster R-CNN object detection network, 
with RGMP video object segmentation network [19]. 
It consists of two streams, one takes the original frame 
and the previous mask, and the other takes the reference 

frame as inputs inspired by the RGMP network [19]. The 
outputs of these two streams are then concatenated as 
the input of the last stage, and the network’s output is a 
binary mask for each frame. Then, using post-process-
ing methods on the segmented area leads to estimating 
particular echocardiography parameters. This approach 
helps radiologists trace heart functionality through time 
at a reasonable speed.

Materials and methods
This section describes the whole process of the ventricles’ 
assessments from gathering data to extracting param-
eters from the segmented series. The process of the LV 
calculations is illustrated in Fig. 1.

Description of the left ventricle dataset
A collection of 2D echocardiography series was prepared. 
The videos were acquired from Tehran Heart Center, 
Tehran, Iran, from 2017 to 2019. The dataset was gath-
ered by Affiniti 70 ultrasound imaging system (Philips). 
The whole data consist of more than 3000 videos 
obtained from different patients in different view angles. 
Three experts investigated all videos and selected 750 
four-chamber view series with proper LV shapes. Each 
selected video has 45 frames on average. Three experts 
delineated the LV region in each frame using the Qlab 
Cardiac Analysis (cardiovascular ultrasound quantifica-
tion software from Philips Co.).

Delineation was performed using Auto 2D Quantifi-
cation (a2DQ) tool in the Qlab Cardiac Analysis. Given 
weak supervision of LV borders in the end-diastolic 
frame by a2DQ, users manually refine the points on 
walls to correct the estimated region for LV. The soft-
ware automatically segments all frames according to the 
end-diastolic delineation, and finally, the user refines the 
segmented region by modifying the borders in the end-
systolic frame. The estimated LV volume at end-dias-
tolic and end-systolic frames, the estimated EF, and the 
end-diastolic and end-systolic frame numbers were also 
extracted from the a2DQ tool for further evaluations and 
analysis.

The resolution of frames is 1110× 581 . The dataset was 
split into train and test sets, such that we have 675 videos 
in the training dataset and 75 videos in the test dataset.

Description of the right ventricle dataset
A set of 2D echocardiography series was prepared 
and acquired from Rajaie Cardiovascular Medical and 
Research Center, Tehran, Iran. The Echocardiography 
series were gathered by EPIQ 7 imaging system (Philips). 
Experts have selected 80 patients for data acquisition. 
At most, three echocardiography series in four-cham-
ber view were obtained with up to 60 frames from each 
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patient. Finally, 175 series were extracted from the whole 
gathered dataset. Two different experts delineated the RV 
region in each frame using TOMTEC Imaging Systems 
GmbH separately.

Delineation was performed using an RV segmentation 
tool in the mentioned software. The tool creates weak 
supervision of RV walls in the end-diastolic phase. After 
the user modifies the borders to have the correct segment 
of the RV region in the end-diastolic frame, the software 
will automatically segment other frames. Finally, the user 
can correct the RV region’s border points in the end-sys-
tolic frame to segment the sequence appropriately.

The resolution of frames is 800× 600 . The dataset was 
split into train and test sets, such that we have 160 videos 
in the training dataset and 15 videos in the test dataset.

Pre‑processing
Both LV and RV video frames are converted to grayscale 
images and resized to 128× 256 . For each image, min–
max scaler normalization is performed, and each image’s 
pixels are normalized to be in the range of 0 and 1. The 
ground truth masks are also binarized to have only 0 and 
1 values.

We have a two-channel input for each batch of data for 
the main stream containing the current grayscale image 
and the previously predicted mask. A two-channel input 

for the reference stream includes the reference grayscale 
image and the ground truth mask for the reference image.

EchoRCNN architecture
The network architecture is inspired by RGMP, Reti-
naNet, and Mask R-CNN networks introduced in [19, 23, 
24]. It consists of a Siamese encoder followed by a Fea-
ture Pyramid Network (FPN) [25], a classification subnet, 
a regression subnet, and a segmentation subnet. Figure 2 
shows the complete architecture of the video segmenta-
tion network. The Siamese encoder path includes the 
main stream and the reference stream. The main stream 
takes the current original frame and the previous frame’s 
predicted mask (guidance mask). The one-channel 
image and one-channel guidance mask are concatenated 
to make a two-channel image. A reference frame, the 
first frame of the cardiac cycle, is fed into the reference 
stream. The user must annotate this frame. Consequently, 
the reference stream takes the original frame in grayscale 
mode concatenated with its annotation as an input. Both 
streams are based on ResNet50 [26], a five-layer feature 
extraction architecture with residual blocks.

The outputs of stage 3, stage 4, and stage 5 in both 
streams are then fed into the FPN for each stream. Same 
as [24], we have used FPN to produce five feature pyra-
mids P3, P4, P5, P6, and P7. All of the feature maps in 
this part of the network have 256 channels, and each level 
is used for object detection on a different scale. Each of 

Fig. 1  The workflow of the algorithm for LV series. After pre-processing, the first frame and its supervision enter into the reference stream, and 
the following frames enter into the main stream one after the other after pre-processing. The inputs are passed through the Siamese encoder, 
FPN, and three final subnets (classification, regression, and segmentation subnets), which are the main components of EchoRCNN. Then, the main 
parameters of LV functionality (length, area, and volume) are extracted after post-processing on the predicted masks. By having these parameters 
for each frame, end-diastolic and end-systolic frames are detected, and finally, the EF parameter can be calculated.
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the produced feature pyramids is fed into both classifica-
tion and regression subnets. The classification subnet’s 
prediction is the probability of an object’s attendance at 
each spatial position for A anchors (A is the number of 
anchors). This subnet is a small, fully convolutional net-
work introduced in [24] that takes each feature map with 
256 channels from pyramid levels. It consists of four con-
volutional layers (with 3 × 3 kernels and 256) followed by 
ReLU activations, a convolutional layer with A filters, and 
a sigmoid activation layer. The regression subnet is like 
the classification subnet with nuance differences in the 
last layer. The last layer is a convolutional layer with 4A 
filters. This network regresses the offset from each anchor 
box to a close ground truth object if it exists. These four 
outputs predict the anchor’s and the ground truth box’s 
affiliate offset for each A anchor per spatial location.

On the other hand, the feature pyramids are fed into 
the anchor building block, producing the translation-
invariant anchor boxes resemblance to [24]. 9 anchors 
are used at each pyramid level with three different aspect 
ratios and scales with 322 to 5122 areas on P3 to P7 pyra-
mid levels. Each anchor is assigned to a classification 
target and a vector of box regression targets. Using Inter-
section-over-Union (IoU) metric, anchors are allocated 
to the ground truth object boxes by the threshold of 0.5, 
and they are considered background if their IoU is in [0, 
0.4). Otherwise, the anchor is unassigned, which means 
the IoU is in [0.4, 0.5), and these anchors are ignored 

during the training procedure. Box regression targets are 
obtained by calculating the offset between each anchor 
and its assigned object box; conversely, an anchor is 
omitted if there is no assignment.

Regression subnets output and the anchors produced 
by the anchor building block are fed into the Regress-
Boxes layer to apply regression to the anchors. To fix the 
boxes’ size to be inside the image shape, they are passed 
through the ClipBoxes layer. New boxes with the clas-
sification subnet output are fed into the Filter detection 
layer in which the top predictions from all levels are 
elided, and by exerting the non-maximum suppression 
and a threshold of 0.5, the final predictions are generated. 
The final boxes are fed into the RoiAlign layer to fix the 
misalignment and produce suitable inputs for the seg-
mentation subnet. The segmentation subnet is a simple 
fully convolutional network with four convolutional lay-
ers (with 3 × 3 kernels and 256), followed by an upsample 
layer, two convolutional layers, and a sigmoid activation 
layer. Based on an index of the highest score of object 
presence probability, the binary mask output is chosen, 
resized, and feedback to the input as the previous mask. 
Figure 3 indicates details about subnets.

Training the network
Two instances of the network illustrated in Fig.  2 are 
trained end-to-end using the backpropagation algorithm 
on LV and RV datasets separately. The initial weights for 

Fig. 2  The complete architecture of EchoRCNN
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the ResNet50 backbone in the main stream and the ref-
erence stream in the LV segmentation network are Ima-
geNet weights, and the rest of the layers have random 
initial weights. For RV segmentation, the initial weights 
of the ResNet50 backbone are obtained from the trained 
LV segmentation model to handle the data shortage of 
the RV segmentation task. The other layers in the RV 
segmentation network have random initial weights. The 
sequences are randomly selected from the whole train-
ing data. The first frame is fed into the reference stream, 
and the rest are fed into the main stream one by one as a 
batch. There is no fine-tuning in the inference procedure 
because of the time limitation that exists in the task of 
echocardiography examinations.

The loss function used in the training procedure con-
sists of 3 losses, including regression loss, classification 
loss, and segmentation loss. We have used the Focal loss 

for classification loss suggested by [27], a loss function 
used in imbalanced dataset cases. In the video object seg-
mentation task, especially in the proposed study (a sin-
gle instance segmentation), most of the pixels belong to 
the background class, so the assigned category for most 
anchors should be set to zero or background class. There-
fore, the classification branch is somehow imbalanced. 
Weighted loss functions are defined to penalize the net-
work more when it wants to put an anchor in the major-
ity class to address this problem. Equation (1) shows the 
formula of the Focal from [27].

We have used the smooth-L1 function proposed in [28] 
for the regression loss. Equation (2) shows the formula of 
this loss function. The function’s key component is the σ 

(1)FL(pt) = −αt(1− pt)
γ log(pt)

Fig. 3  Details of segmentation and box subnets in the EchoRCNN architecture (inspired from RetinaNet)
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hyperparameter, which divides the positive section into two 
parts. For the targets between 0 and σ, the function acts the 
same as the L2 loss function. For the targets beyond the σ 
parameter, the function is the same as the L1 loss function. 
This structure helps to avoid over penalizing the outliers.

We have used the average binary cross-entropy in the 
segmentation branch as the loss function.

Finding the left ventricle parameters
After training the network and predicting the LV region, we 
will go deep into this task’s primary purpose, which is esti-
mating the cardiac most valuable parameters derived from 
the echocardiography sequence. The LV’s most important 
parameters are length, area, volume, and EF. EF is defined 
as the amount of blood LV pumps out in each heart con-
traction. Theoretically, it is the stroke volume ratio (the 
difference between the LV end-diastolic and end-systolic 
volumes) to the LV end-diastolic volume. As these sig-
nificant parameters are defined in the diastolic or systolic 
frames, the first step is to detect them between the whole 
sequence frames.

According to [29], the end-diastolic frame is determined 
using some clues like mitral valve closure, R-wave of Elec-
trocardiogram (ECG), and the LV volume’s maximum size. 
There are also mitral valve opening, the minimum size of 
the LV volume, aortic valve closure, and T-wave signs for 
detecting the end-systolic frame. As we have all the frames’ 
segmented area for LV and it is possible to estimate the LV 
volume from this segmented surface, the most proper way 
to detect end-diastolic and end-systolic frames is to use 
minimum and maximum volume clues. Our previous work 
[8] introduced a post-processing method to calculate LV 
length, area, and volume from the segmented part in each 
frame by finding three critical points on LV shape. These 
points, placed on the apex and the mitral valve joints, are 
detected from the segmented part’s convex hull.

Further calculations from the distances between these 
points can lead us to the LV length, and by having the num-
ber of pixels inside the segmented part, the LV area can be 
estimated. Using modified Simpson’s Rule [30], by having 
the length and area of the LV in the 2D plane, the volume 
can be determined by Eq.  (3), where L and S denote LV 
length and area, respectively.

Here, we have used this method to estimate LV volume 
in each frame and perform the following steps to assess 
LV parameters.

(2)F(x) =

{

0.5
x
2

σ
if |x| < σ

|x| − 0.5σ o.w.

(3)V =
8S2

3πL

1.	 Estimate LV area, length, and volume in each frame
2.	 Find the frame where the LV volume is maximum; 

this frame is the end-diastolic frame
3.	 Find the frame where the LV volume is minimum; 

this frame is the end-systolic frame
4.	 Calculate EF

Finding the right ventricle parameters
After a successful training procedure, we should con-
tinue the vital quantifications in RV functionality. For this 
chamber, the essential parameters are area and Fractional 
Area Change (FAC), which is the percentage of the area 
change within the RV region between end-diastolic and 
end-systolic frames [29].

As mentioned in the previous section, the first step is 
to estimate which frames are in end-diastolic and end-
systolic phases. According to [30], biological signs of 
end-diastolic frames are not involved in RV functional-
ity; therefore, RV segmentation and area tracing cannot 
define the exact end-diastolic and end-systolic frames, so 
a supervisor must determine them. Thus, the following 
steps are performed to estimate the FAC parameter.

1.	 Tracking the RV area through the time
2.	 Define end-diastolic and end-systolic frames in the 

whole sequence by an expert.
3.	 Extract the area of the RV region in the selected 

frames
4.	 Calculate the FAC parameter for RV

Implementation details
We have used a system with 16 GB of RAM, a GPU-based 
graphic card with 2176 CUDA cores (GeForce RTX 2060-
A8G), and an Intel Xeon CPU. The network was imple-
mented in Python environment with Tensorflow 2 [31] 
and Keras 2.2.4 [32]. The hyperparameter optimization is 
done by a random search for learning rates and regulari-
zation parameters on a few iterations. We have used Sto-
chastic Gradient Descent (SGD) as an optimizer to train 
the network, and we have chosen the learning rate to be 
10e-5.

Evaluation metrics
The method is evaluated in two main steps: segmenta-
tion procedure and parameter estimation. For the first 
step, which is upon the network prediction, the seg-
mentation task’s robustness is evaluated based on some 
of the key metrics in this field, such as Dice Similarity 
Coefficient (DSC), Jaccard Similarity Coefficient (JSC), 
precision, and recall. In the second step, LV and RV 
parameters extracted from the segmented frames using 
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post-processing methods are compared to the ground 
truth parameters. Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), R-squared factor, and 
Cronbach’s α are the metrics used for this part. There is 
a thorough explanation of each metric in the “Appendix” 
section.

Results
Table  1 shows the segmentation results for LV and RV 
regions in EchoRCNN compared to the MaskRNN and 
RGMP networks. As mentioned before, we have used 
DSC, JSC, precision, recall, and F1 score to evaluate the 
method. In terms of these metrics, the results illustrate 
robustness and reliability. LV video object segmentation 
has been assessed on 75 echo series. The number of test 
sequences for RV is 15 since the whole of videos for RV 
was significantly less than LV videos. EchoRCNN has 
reached 94.03% of DSC and 88.83% of JSC for LV and 
94.97% of DSC, and 90.61% of JSC for RV segmentation 
tasks. The outperformance of the EchoRCNN compare to 
the MaskRNN and RGMP is evident in Table 1.

After obtaining the segmented RV and LV parts, their 
vital parameters are estimated through the post-pro-
cessing methods explained before. The LV parameters 
include length, area, volume, and EF, and the RV param-
eters consist of the area and FAC. We have reached 0.72 
R-squared for the EF parameter in LV and 0.89 for the 
FAC parameter in the RV series. Cronbach’s α has been 
used for measuring internal consistency between the 
prediction values and the corresponding ground truth. 
The internal consistency for the EF parameter in LV 
has been reached 0.92 and 0.97 for the FAC parameter 
in RV. Tables  2 and 3 illustrate regression metrics for 
each of these parameters in both end-diastolic and end-
systolic phases for LV and RV separately. RGMP and 
MaskRNN networks have weak predictions for end-
systolic phases, especially in RV segmentation. In other 
words, the error is propagating through time, and when 
the chamber dwindles, the network cannot track the 

borders prosperously. In our investigations, these two 
networks cannot segment any region in the end-sys-
tolic phase in most of the sequences. Therefore, further 
calculations of volume, area, and EF are not reliable.

The Bland and Altman analysis and Pearson test are 
also performed on the LV volume and the RV area 
through the whole dataset frames. Figure  4 indicates 
the plots of these two analyses. For the LV volume and 
RV area, a correlation of 0.94 and 0.93 are achieved, 
respectively. Therefore, a strong correlation exists 
between the manual and predicted parameters.

We can better visualize the differences between manual 
and predicted values for each parameter from the Bland 
and Altman diagrams. The width of confidence intervals 
for LV length, area, and volume were 0.90 cm, 5.27 cm2, 

Table 1  Final segmentation results of LV and RV test sequences, comparison between the proposed network EchoRCNN and the 
MaskRNN and RGMP architectures

a Dice similarity coefficient (DSC)
b Jaccard similarity coefficient (JSC)

Network Region DSCa JSCb Precision Recall

EchoRCNN Left ventricle 94.03 ± 0.01 88.83 ± 0.03 94.85 ± 0.02 93.37 ± 0.02

Right ventricle 94.97 ± 0.02 90.61 ± 0.04 97.03 ± 0.01 93.14 ± 0.04

MaskRNN Left ventricle 85.04 ± 0.01 70.56 ± 0.02 83.31 ± 0.01 90.99 ± 0.006

Right ventricle 69.25 ± 0.27 59.68 ± 0.3 80.78 ± 0.21 74.23 ± 0.32

RGMP Left ventricle 81.96 ± 0.1 70.97 ± 0.12 81.02 ± 0.16 74.55 ± 0.14

Right ventricle 65.41 ± 0.26 55.26 ± 0.25 75.76 ± 0.15 63.03 ± 0.3

Table 2  Final estimation results of LV parameters, length, area, 
volume and EF which is calculated directly from the LV volume in 
end-systolic and end-diastolic phases

Parameter Phase RMSE MAE R2 Cronbach’s α

Length ED 0.26 0.20 0.82 0.95

ES 0.29 0.23 0.83 0.96

Area ED 1.34 1.09 0.89 0.97

ES 1.18 0.99 0.89 0.97

Volume ED 8.13 6.37 0.87 0.96

ES 5.33 4.42 0.86 0.96

EF 3.91 3.13 0.72 0.92

Table 3  Final estimation results of RV parameters, area and FAC 
which is directly calculated from the RV area in end-systolic and 
end-diastolic phases

Parameter Phase RMSE MAE R2 Cronbach’s α

Area ED 1.80 1.06 0.97 0.99

ES 0.81 0.64 0.96 0.99

FAC 5.75 2.03 0.89 0.97
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and 29.19 cm3, and the mean values were 0.12 cm, 0.46 
cm2, and 0.62 cm3, respectively. The width of the confi-
dence interval for the RV area is equal to 2.96 cm2, with a 
mean value of 0.68 cm2.

The correlation test is used to evaluate two vital 
parameters EF from LV functionality and FAC from 
RV functionality. Figure  5 indicates that the correlation 
between manual and automatic parameters is thoroughly 
acceptable.

Figure  6 is the boxplots of the error between each 
parameter’s actual and estimated values. This plot shows 
the quantiles of the absolute error for LV parameters, 
length, area, volume, and EF, and RV parameters, area, 
and FAC. It can be observed that the boxes are dense, and 
specifically for the EF and FAC parameters, there are no 
annoying outliers.

In Fig. 7, five frames sampled from two selected LV and 
RV test sequences are depicted with actual and predicted 
borders between end-diastolic and end-systolic phases. 
Obviously, the walls are well followed in the predicted 
regions.

Discussion
EchoRCNN is a novel video object segmentation net-
work based on the robust image segmentation architec-
tures, Mask R-CNN and RetinaNet, and RGMP video 
object segmentation network, specifically designed to 
extract cardiac features from echocardiography series 
in four-chamber view. The method is semi-supervised 
as it takes the manual segmentation of the first frame 
of each sequence as a guide. Using the segmentation 
results of this network and the following post-processing 
algorithms leads to accurate estimations of LV and RV 

Fig. 4  The Bland and Altman and correlation diagrams for the LV volume and RV area which are key parameters in calculating EF and FAC
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Fig. 5  Correlation diagrams for the EF and FAC

Fig. 6  The box plot of the parameters. A Length, area, volume and EF for LV and (B) area and FAC for RV, the diagram show the quantiles of error 
between the true values and the predicted ones
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functionality factors. EF and FAC, which are vital meas-
urements in clinical screenings, are two main objectives 
of this research. For calculating these two, the LV length, 
area and volume, and the RV area are also estimated in 
end-diastolic and end-systolic phases. There is a clini-
cal definition for finding end-diastolic and end-systolic 
frames based on the changes in LV volume through the 
cardiac sequence; therefore, the method can automati-
cally find these phases by following the segmented part 
through the echocardiography series.

EchoRCNN’s key feature is the existence of two 
streams: the main and the reference streams based on the 
concepts in the RGMP network and having a recurrent 
path to handle the sequencing data. The main stream 
accepts the current frame and the previously predicted 
mask, and the reference stream gets the reference frame 
which is assumed to be the first frame and its ground 
truth mask as inputs. A recurrent neural network com-
ponent connects predictions over time in a unifying 
framework and benefits the time dependencies between 
video frames. Both streams include layers for feature 
extraction. Based on the Mask R-CNN network, the rest 
of the network contains three branches for segmentation, 
classification, and bounding box regression tasks. The 
observation on both datasets for the RV and LV segmen-
tation indicates this network’s strength and accuracy in 
the pixel classification task.

Compared to some popular video object segmenta-
tion networks such as MaskRNN, and RGMP, which 
have excellent performance in the DAVIS challenge, the 
proposed EchoRCNN outperforms other methods in the 
echocardiography series. Some assumptions make the 
network prediction more straightforward compared to 

the DAVIS challenge. One of the advantages of the car-
diac dataset over the natural video datasets like DAVIS 
is the invariant property of echocardiography vid-
eos. Therefore, the test examples have the same struc-
ture as the training set, and it seems there is no need to 
fine-tune.

There are also some concerns in the ventricle cham-
bers’ video segmentation. First is the inference speed, 
which matters because the algorithm should respond 
during the patient’s examination. Second is the intrinsic 
noise of ultrasound images, making it hard for the model 
to perceive image sequences. EchoRCNN is a learning 
approach attempts to use echocardiography sequences’ 
advantages and handle the mentioned issues.

Some methods, such as the One-Shot Video Object 
Segmentation (OSVOS) network [27], lack interest in 
frames’ correlation through time, even on the DAVIS 
dataset. In other words, the network with similar archi-
tectures does not have any recurrent path and cannot 
relate the movements between two consecutive frames. 
MaskRNN has used the optical flow algorithm to add 
information about the different movements from one 
frame to another to tackle this problem. It also has a 
recurrent path to have a better insight into the predic-
tions for previous frames. The most crucial disadvantage 
of this network is time and calculation costs. The opti-
cal flow algorithm is an expensive and time-consuming 
method. The RGMP network removed the optical flow 
and created a novel architecture using a reference stream 
and choosing a reference frame that makes the network 
retain the proposed object’s general structure. Despite 
these networks’ remarkable results in the DAVIS chal-
lenge, their performance on the echocardiography 

Fig. 7  The comparison between the predicted and the ground truth regions in five frames sampled from two sequences in the LV and RV test 
series. The green borders indicate actual regions, and the red ones are the EchoRCNN predicted borders
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dataset is not satisfying due to the intrinsic differences 
between the DAVIS dataset and echocardiography series. 
As observed in Table  1 and explained in the result sec-
tion, the performance of these networks decreases in the 
last frames of the cycle. When the cardiac cycle reaches 
the end-systolic phase, as the contraction happens and 
the papillary muscles appear, the network becomes 
more unreliable in prediction, and the error propagates 
through the following frames. For some of the sequences, 
the RGMP and MaskRNN cannot predict any regions in 
the end-systolic phase. EchoRCNN has a robust archi-
tecture that can remarkably follow the chamber through 
frames even when contraction occurs in the end-systolic 
phase. Using Mask R-CNN base components and the 
idea of having a reference region for prediction on each 
frame inspired from RGMP makes the network robust to 
error propagation through the time in noisy echocardiog-
raphy series.

The proper segmentation procedure makes the follow-
ing post-processing methods for extracting the cardiac 
parameters more reliable. An ellipsoid model with single-
plane data, which assumes that the chamber is symmetric 
about the longitudinal axis, is used to extract LV volume 
and EF parameters. The algorithm has been proved to be 
fast and reliable [33, 34]. According to recommendations 
from the American Society of Echocardiography [35], it 
is more accurate to use an ellipsoid model with biplane 
data to calculate LV volume, meaning that two views are 
required to assess this parameter. Nonetheless, process-
ing an extra echocardiography series (the second view) 
for each patient might double calculations, which means 
the algorithm will slow down. Therefore, a slight gain in 
the accuracy should not be compromised by the loss of 
speed, so it has been chosen to use a single view and a 
single-plane model to keep the algorithm fast enough to 
be a useful assistant for radiologists.

It is shown that there is an acceptable inconsistency in 
two main parameters, EF and FAC, extracted from LV 
and RV functionalities, respectively. By comparing our 
results with the manual measurements and consider-
ing the difference between predicted and actual values, 
EchoRCNN has illustrated accurate results.

For the echocardiography sequences chosen for LV 
segmentation, it is possible to estimate end-diastolic 
and end-systolic frames. There is a definition for these 
phases based on the LV volume changes through a car-
diac cycle. Therefore, by having the segmented part 
refer to the LV region in echocardiography sequences, 
it is possible to estimate the end-diastolic phase to 
be the frame with maximum LV volume and the end-
systolic phase to be the frame with minimum LV vol-
ume. However, there is no accurate definition of these 

two phases in RV functionality in the echocardiography 
series, so human supervision must be included to help 
the RV parameter estimation method.

In terms of speed, on only one GPU, the network 
prediction was 0.08 s per frame, which is considerably 
fast. We can refer to it as a real-time method that can 
be used as an assistant and help physicians have more 
accurate and faster diagnoses.

Our results depict a semi-automated cardiac function 
evaluation through deep neural networks and can be a 
significant step in automated cardiac function assess-
ment. The advantage of the proposed method over the 
same studies in this area is its most minor depend-
ency on the user. The user has to delineate just the first 
frame of the sequence, whether it is an end-diastolic/
end-systolic frame or not. The insufficient dataset of 
RV is the conspicuous limitation in our work. How-
ever, despite using this small dataset, the method has 
achieved good performance in the RV segmentation 
task. The main focus of this article is the segmenta-
tion of the LV in the echocardiography series. Because 
of the RV videos amount deficiency, we have used the 
weights of the trained EchoRCNN on the LV dataset as 
initial weights for the RV network; hence, we attained 
reasonable results. In the future, by increasing the data-
sets and improving the network structure by further 
researching, the method can predict better.

Conclusion
We presented EchoRCNN, a deep neural network 
architecture for echocardiography object segmentation. 
It needs just the first frame manual segmentation as a 
guide. Using the segmented part results from passing 
the sequences through the network and performing the 
post-processing procedures on the predicted mask led 
us to have main parameters extracted in echocardiogra-
phy screening, such as EF from the LV functionality and 
the FAC from the RV functionality. This automation 
process speed made us remark the method as a real-
time assistant. EchoRCNN is validated on two datasets 
for evaluating the strategy on LV and RV functionali-
ties. The results indicate a promising performance in 
the segmentation qualification and the cardiac param-
eters’ estimation. Future work will focus on validating 
the method on other chambers in the echocardiogra-
phy series and using a unique network to evaluate all 
chambers simultaneously.
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Appendix
For the first part of the evaluation, Dice Similarity 
Coefficient (DSC), Jaccard Similarity Coefficient (JSC), 
precision, and recall metrics are used to evaluate the 
relativeness of the segmented parts in each frame.

The first evaluation metric is DSC introduced in [36] 
and is valuable for ecological community data. Given 
two subsets X and Y  , DSC is defined as Eq. (1).

JSC is another metric that is not very different from 
DSC in form and is first introduced in [37]. The main 
difference is that JSC satisfies the triangle inequality as 
a proper distance. It is also known as Intersection-over-
Union (IoU). The form of this metric for two subsets X 
and Y  is demonstrated in Eq. (2).

Precision is another helpful metric in the object seg-
mentation task, also called the positive predicted val-
ues. It is defined as the fraction of relative instances 
among the whole set [38]. Equation  (3) defines preci-
sion for the X and Y  sets, where TP is the true positive 
value and FP is the false positive value.

The recall metric is in the context of precision and is 
also called sensitivity. It is defined as the fraction of the 
number of relevant pixels retrieved [38]. Equation  (4) 
indicated the recall in a mathematical view where the 
FN denotes the false negative value.

For the second part evaluation, which analyzes the 
extracted echocardiography parameters’ accuracy, 
regression metrics seem suitable because the param-
eters are continuous variables predicted after the post-
processing algorithms on the segmented part. Root 
Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), the Coefficient of Determination or R-squared 
value, and the Cronbach’s α are the most popular 
regression metrics used here.

The RMSE is defined as the root of the mean of the 
squared errors over the data instances [39], and the 
MAE is the absolute value of the errors over the whole 
dataset [40]. Equations  (5) and (6) describe the RMSE 
and MAE formulas. ŷ  is the expected value.

(1)DSC =
2|X ∩ Y |

|X | + |Y |

(2)JSC =
|X ∩ Y |

|X ∪ Y |

(3)Precision =
TP

TP+ FP

(4)Recall =
TP

TP+ FN

The R-squared is also defined as the ratio of the 
explained variation to total variations [41]. Equation  (7) 
indicates the R-squared formula. ŷ is the expected value 
and y is the average value of y.

The Cronbach’s α is a reliability metric; it assumes that 
all test data points are equivalent test batches and relate 
the whole test set features by extending one batch’s fea-
tures [42]. Equation (8) indicates the formula of this met-
ric where σi is the covariance between the prediction 
and ground truth and σx is the sum of the prediction and 
ground truth covariance separately.
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