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DWI‑based radiomic signature: potential 
role for individualized adjuvant chemotherapy 
in intrahepatic cholangiocarcinoma after partial 
hepatectomy
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Abstract 

Objectives:  To develop a diffusion-weighted imaging (DWI) based radiomic signature for predicting early recur-
rence (ER) (i.e., recurrence within 1 year after surgery), and to explore the potential value for individualized adjuvant 
chemotherapy.

Methods:  A total of 124 patients with intrahepatic cholangiocarcinoma (ICC) were randomly divided into the train-
ing (n = 87) and the validation set (n = 37). Radiomic signature was built using radiomic features extracted from DWI 
with random forest. An integrated radiomic nomogram was constructed with multivariate logistic regression analysis 
to demonstrate the incremental value of the radiomic signature beyond clinicopathological-radiographic factors. A 
clinicopathological-radiographic (CPR) model was constructed as a reference.

Results:  The radiomic signature showed a comparable discrimination performance for predicting ER to CPR model 
in the validation set (AUC, 0.753 vs. 0.621, p = 0.274). Integrating the radiomic signature with clinicopathological-radi-
ographic factors further improved prediction performance compared with CPR model, with an AUC of 0.821 (95%CI 
0.684–0.959) in the validation set (p = 0.01). The radiomic signature succeeded to stratify patients into distinct survival 
outcomes according to their risk index of ER, and remained an independent prognostic factor in multivariable analysis 
(disease-free survival (DFS), p < 0.0001; overall survival (OS), p = 0.029). Furthermore, adjuvant chemotherapy improved 
prognosis in high-risk patients defined by the radiomic signature (DFS, p = 0.029; OS, p = 0.088) and defined by the 
nomogram (DFS, p = 0.031; OS, p = 0.023), whereas poor chemotherapy efficacy was detected in low-risk patients.

Conclusions:  The preoperative DWI-based radiomic signature could improve prognostic prediction and help to 
identify ICC patients who may benefit from postoperative adjuvant chemotherapy.
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Key points

•	 The DWI-based radiomic signature could predict 
early recurrence in patients with ICC.

•	 The radiomic signature could stratify ICC patients 
into distinct survival outcomes.
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•	 High-risk patients defined by radiomic signature 
could benefit from chemotherapy.

•	 The radiomic signature showed incremental value 
beyond routine prognostic factors.

Introduction
Intrahepatic cholangiocarcinoma (ICC) is the second 
most frequent form of primary hepatic malignant tumor 
and accounts for up to 5–10% of primary liver cancers 
[1]. In recent years, the incidence of ICC is increasing 
worldwide [2, 3]. Partial hepatectomy is the only poten-
tially curative therapy for ICC [4, 5]. However, the 5-year 
survival rate after surgery is only 21–35% [6, 7]. The main 
reason for the unfavorable outcome is the high incidence 
of recurrence [8]. Approximately 37.9–60% of patients 
occur local recurrence and/or distant metastases within 
1 year after resection, with a median overall survival (OS) 
as low as 16.3 months [9, 10].

To reduce the risk of recurrence and improve survival, 
postoperative adjuvant chemotherapy was recommended 
by clinical practice guidelines for patients with resected 
ICC [11, 12]. Adjuvant chemotherapy reduced the 
risk of relapse by 17% and gained a mean OS benefit of 
4 months in an unselected population [13, 14]. However, 
it should be pointed out that not all patients could benefit 
from additional adjuvant chemotherapy, and particularly, 
some may even be harmed by chemotherapy-related tox-
icity [15, 16]. Although a few studies suggest that patients 
with features such as positive resection margins are more 
likely to benefit from adjuvant chemotherapy, this feature 
is far from adequate for patient selection  [13, 17]. Thus, 
identifying novel and powerful biomarkers for selecting 
patients who may benefit from adjuvant chemotherapy is 
urgently needed.

Radiomics, which converts medical images into 
numerous quantitative features and provides important 
information on the entire underlying intra-tumor het-
erogeneity and cancer phenotype, is a non-invasive and 
easily accessible approach to develop cancer biomark-
ers [18]. Contrast-enhanced magnetic resonance imag-
ing (MRI) based radiomics has been successfully used 
to predict the status of microvascular invasion and the 
recurrence of ICC [19–21]. However, there were still few 
radiomics studies focused on the prediction of adjuvant 
chemotherapy benefits for patients with ICC.

Furthermore, diffusion-weighted imaging (DWI) which 
based upon measuring the random Brownian motion of 
water molecules, is a routine modality for cancer imag-
ing [22]. DWI and the corresponding apparent diffusion 
coefficient (ADC) maps could reflect cellular density and 
architectural change, and have been proved to be of great 

importance in evaluating the biological behavior and pre-
dicting the prognosis of ICC [23, 24]. The clinical utility 
of DWI-based radiomic signature for ICC patients has 
not been explored.

In this study, we developed a preoperative DWI-based 
radiomic signature for predicting early recurrence in ICC 
patients who underwent partial hepatectomy. Further, 
we explored the potential value of the radiomic signature 
and the radiomic nomogram for selecting patients who 
may benefit from adjuvant chemotherapy.

Materials and methods
This study was approved by the Institutional Review 
Board at our institution and the requirements for 
informed consent were waived owing to its retrospective 
nature.

Patients
From August 2012 to May 2019, consecutive patients 
who underwent liver MRI scans preoperatively and were 
diagnosed with ICC by pathology after partial hepa-
tectomy in our institution were included. The exclusion 
criteria for our study were as follows: (a) patients who 
underwent preoperative MRI scan more than 1  month 
before surgery (n = 5); (b) patients with a history of adju-
vant treatment before surgery (n = 14); (c) patients with 
a history of other malignancies(n = 7); (d) patients with-
out completion of at least 1 year of follow-up (n = 96); (e) 
patients with incomplete clinical and pathological data 
(n = 8); (f ) inadequate for analysis due to suboptimal 
image quality or illegible tumor boundaries (n = 37). The 
inclusion, exclusion criteria and recruitment pathway 
of patients was shown in Fig.  1. A total of 124 patients 
were randomly assigned to the training set (n = 87) and 
the validation set (n = 37) in a ratio of 7:3. Clinical char-
acteristics, laboratory examination results were reviewed 
retrospectively from electronic medical records. Labora-
tory data including alpha-fetoprotein (AFP), carcinoem-
bryonic antigen (CEA), and carbohydrate antigen 19-9 
(CA19-9) were acquired within 2  weeks before surgery. 
The histopathologic parameters included the presence 
of macrovascular and microvascular invasion, histologic 
differentiation, lymph node metastasis, tumor, node, and 
metastasis (TNM) staging, and surgical margin status. 
TNM staging was determined based on the eighth edi-
tion of the American Joint Committee on Cancer (AJCC) 
staging system [25].

Postoperative adjuvant chemotherapy regimen 
included capecitabine alone, gemcitabine combined with 
capecitabine, or gemcitabine combined with cisplatin for 
4–6 courses.
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MR imaging protocol
MR imaging was performed by using a 3.0-T or 1.5-T 
system. The scanning protocol included MR plain scan, 
DWI, and contrast-enhanced images. ADC maps were 
calculated automatically voxel by voxel using a monoex-
ponential function with b values of 0 and 1000  s/mm2. 
Detailed information on MRI protocol was listed in 
Additional file 1: Table S1.

MR radiographic feature analysis
Two abdominal radiologists (Y.Y. and H.X.M., with 7 and 
12 years of experience, respectively) evaluated the imag-
ing features independently. Interobserver agreement was 
evaluated. Any disagreement was resolved through con-
sultation with a third abdominal radiologist (H.D.Y. with 
38  years of experience). The largest lesion was used for 
evaluation of the imaging features when a tumor con-
tained multiple lesions. (a) The multifocal tumor was 
defined as tumors with more than one focus, including 

intrahepatic metastases and satellite nodules. (b) Tumor 
diameter was measured as the maximum dimension of 
the tumor on the axial plane for which the tumor had the 
largest cross-sectional diameter. In this study, the mean 
tumor diameter measured by two radiologists was used 
for follow-up analysis. (c) Irregular tumor margin was 
considered when a tumor with nonsmooth margins or 
had a budding portion at its periphery protruding into 
the liver parenchyma [26]. (d) Arterial enhancement 
patterns (diffuse hyperenhancement, hyperenhanced 
portion of the tumor in more than 70% of the tumor 
area; peripheral rim enhancement, irregular ring-like 
enhancement in 10–70% of the tumor area with relatively 
hypoenhancement central areas; diffuse hypoenhance-
ment [27]). (e) Enhancement pattern (wash-out pattern, 
arterial enhancement with washout on portal or delayed 
phase; persistent enhancement, hyperenhancement in 
arterial phase and persistent enhancement in portal and 

Fig. 1  Flow chart of inclusion and exclusion criteria
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delayed phase; gradual enhancement; and no or minimal 
enhancement) [27, 28]. (f ) Peritumoral enhancement in 
the arterial phase, as grossly hyperenhancement outside 
the tumor border, and became isointense in later dynamic 
phases compared with the background liver parenchyma 
[29]. (g) Peritumoral biliary dilatation. (h) Target sign on 
diffusion-weighted images, a peripheral ring-like hyper-
intense with central hypointense areas [30].

MR radiomic feature analysis
Region‑of‑interest segmentation and radiomic feature 
extraction
Region of interest (ROI) on DWI (b = 1000  s/mm2) 
including the whole volumes of the tumor was manu-
ally segmented by one abdominal radiologist (read1, Y.Y. 
with 7 years of experience) using an open-source imaging 
platform (3D Slicer, version 4.11; http://​www.​slicer.​org), 
then the ROI was copied to corresponding ADC maps. 
When the tumor lesions were not shown clearly on high 
b value DWI, DWI (b = 0 s/mm2) and contrast-enhanced 
images were used as references to improve the accuracy 
of segmentation after image registration. After 4 weeks, 
20 patients were randomly selected and their ROIs were 
segmented again by two abdominal radiologists (read1, 
Y.Y., and read2, Z.X.L with 7 and 4  years of experi-
ence, respectively) to evaluate intra- and inter-observer 
repeatability.

Image preprocessing and feature extraction were 
performed using PyRadiomics (version 3.0.1; Com-
putational Imaging and Bioinformatics Lab, Harvard 
Medical School), which were compatible with the Image 
Biomarker Standardization Initiative (IBSI) [31]. Vox-
els in each ADC map (b = 1000 s/mm2) were resampled 
to isotropic 1 × 1 × 1  mm3 [31–33]. MRI signal intensity 
normalization and gray value discretization (bin width of 
16) were performed before the feature extraction. Radi-
omic feature classes consisted of the first-order features 
(n = 18), shape features (n = 14), texture features (n = 78). 
Radiomic features were harmonized with the ComBat 
procedure to compensate for the variability caused by 
different MR protocols and scanners [34]. Feature nor-
malization was performed using z-score.

Construction of the radiomic score based radiomic signature
Intra- and inter-observer repeatability for each radiomic 
feature was evaluated by intraclass correlation coefficient 
to quantify features stability. The two-way mixed-effects 
model and the absolute agreement were used to evaluate 
intra-observer repeatability, and a single rater, absolute 
agreement, two-way random effect model was used for 
inter-observer repeatability [35, 36]. Features with intra-
class correlation coefficient > 0.75 in both tests were used 

for the following radiomics analysis. Max-Relevance and 
Min-Redundancy (mRMR) algorithm was used for fea-
ture selection among stable features [37]. The random 
forest (RF) method was used to construct a radiomic 
model to predict ER on the training set. Hyperparameter 
optimization was performed using grid search with ten-
fold cross-validation to increase model generalizability 
before building the final model. Radiomic score (Rad-
score) for each patient on the training and validation set 
was calculated using the final radiomic model.

Assessment of the incremental value of radiomic signature 
for predicting ER
A clinicopathological-radiographic (CPR) model based 
on clinicopathological-radiographic variables and a radi-
omic nomogram which combined the clinicopatholog-
ical-radiographic variables and the radiomic signature 
were constructed through multivariable logistic regres-
sion method. Univariate and multivariate backward 
stepwise LR with the Akaike information criterion (AIC) 
was used to identify independent clinicopathological-
radiographic characteristics. Variables with p < 0.1 at uni-
variate analysis were applied to multivariate analysis. The 
workflow of this study was shown in Fig. 2.

All predictive models were trained on the training set 
and tested on the independent validation set. Discrimi-
nation performances were quantified with the area under 
the receiver operating characteristic (ROC) curve (AUC) 
and compared using the DeLong algorithm. Accuracy, 
sensitivity, specificity of the predictive models was evalu-
ated with the cut-offs determined by maximized Youden 
index based on the training set. To assess the agreement 
between the estimated risk and the observed proportion 
of ER, calibration curves were plotted via bootstrapping 
with 1000 resamples accompanied by the Hosmer–Leme-
show test. The clinical utility of the predictive models 
was conducted by calculating the net benefit at different 
threshold probabilities in the training and validation sets 
with a decision curve analysis (DCA) [38].

Evaluation of the association with prognosis
The risk stratification capability of the radiomic signa-
ture and nomogram was studied. The model’s cut-off 
value (the model score at the maximum Youden index) 
obtained from the training set was used to stratify the 
low-risk and high-risk groups. Kaplan–Meier survival 
curves were plotted, and the log-rank test was used to 
compare the disease-free survival (DFS) and OS. To 
evaluate whether the radiomic signature could act as an 
independent predictor for prognosis, univariable and 
multivariable Cox regression analyses were performed by 
integrating clinicopathological-radiographic characteris-
tics into models.

http://www.slicer.org
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Evaluation of the association with chemotherapy benefit
The survival benefit of chemotherapy within high-risk 
or low-risk groups defined by different predicting mod-
els were analyzed respectively. Kaplan–Meier survival 
curves and log-rank test were used to compare DFS 

and OS among patients who either received or did not 
receive postoperative chemotherapy. In addition, mul-
tivariable Cox regression analysis was performed to 
evaluate the efficacy of adjuvant chemotherapy within 
different risk groups.

Fig. 2  Workflow of this study
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Clinical outcome and follow‑up
All patients regularly underwent computed tomography, 
MRI, or ultrasonic examination as well as the measure-
ment of serologic tumor markers within 3 months after 
surgery, thereafter at an interval of 3–6  months. The 
mean follow-up period was 25.6 months and the median 
was 23.8 months. ER was defined as local recurrence or 
distant metastasis that occurred within 1 year after sur-
gery. OS was calculated from the date of surgery to the 
date of death or the date of the last contact. DFS was cal-
culated from the date of surgery to the first date of local 
recurrence or distant metastasis, death, or the date of the 
last contact.

Statistical analysis
Interobserver agreement for MRI radiographic features 
was analyzed with the Cohen’s Kappa coefficient (Addi-
tional file 1: Table S2). To compare variables between dif-
ferent groups, the X2 test or Fisher exact test was used for 
categorical variables and the Mann–Whitney U test for 
continuous variables. Statistical analysis was done with 
R software (version 3.6.1, www.r-​proje​ct.​org). All p val-
ues were two-sided. p < 0.05 was considered statistically 
significant.

Results
Patient characteristics
In this study, 124 patients including 78 males and 46 
females with ICC underwent partial hepatectomy were 
enrolled. The median OS for the entire cohort was 
24.9 months. A total of 47 patients (37.3%) received post-
operative adjuvant chemotherapy, with a median DFS of 
9.1 months and OS of 32.6 months.

The clinicopathologic and preoperative MR radio-
graphic features in the training (n = 87) and validation 
(n = 37) sets were summarized in Table 1. ER rate, DFS, 
and OS showed no significant difference between the 
two groups (p = 0.847; p = 0.56; p = 0.44; respectively). 
But there were significant differences in irregular tumor 
margin on preoperative MR examinations and major 
resections (≥ 3 segments according to Couinaud classifi-
cation) between the training and validation sets (p = 0.04, 
p = 0.019; respectively).

Construction and validation of the radiomic signature
A total of 110 radiomic features were extracted from 
ADC maps for each patient. The top 20 best ranking fea-
tures associated with ER were selected from 76 stable 
features to build the radiomic signature (Additional file 1: 
Table S3). The AUC of the radiomic signature for predict-
ing ER was 0.823(95%CI 0.729–0.917) in the training set 
and 0.753(95%CI 0.597–0.909) in the validation set.

Incremental value of radiomic signature
A clinicopathological-radiographic (CPR) model was 
built with two clinicopathological-radiographic risk 
factors including poorly differentiation (OR = 3.213, 
95%CI 1.283–8.413, p = 0.014) and microvascular inva-
sion (OR = 3.180, 95%CI 1.138–10.012, p = 0.035), with 
an AIC score of 109.11(Additional file  1 1 Table  S4). A 
radiomic nomogram was built by incorporating the radi-
omic signature with the above independent risk factors, 
and the nomogram yielded a lower AIC score (82.452) 
(Fig. 3a–c). The calibration curve demonstrated an opti-
mal agreement between the prediction by the nomogram 
and actual observation both in the training and validation 
sets (Fig.  3d, e). The Hosmer–Lemeshow test suggested 
no significant deviation from the ideal fit in both sets 
(p = 0.072; p = 0.240; respectively).

The radiomic signature showed comparable discrimi-
nation performance for predicting ER compared with 
CPR model both in the training (AUC, 0.823 vs. 0.697, 
p = 0.06) and validation sets (AUC, 0.753 vs. 0.621, 
p = 0.274) (Table  2). With an AUC of 0.876 (95%CI 
0.796–0.955) in the training set and 0.821 (95%CI 0.684–
0.959) in the validation set, the combined radiomic 
nomogram showed significant improvement of discrimi-
nation accuracy than CPR model in both sets (p = 0.001; 
p = 0.01; respectively, Table 2).

In the training set, the radiomic signature and radiomic 
nomogram achieved better discrimination accuracy than 
the TNM stage, with significantly higher AUC values 
than the TNM stage (TNM, AUC = 0.565, 95%CI 0.448–
0.683, p < 0.001 for both). A similar result was also found 
in the validation set (TNM, AUC = 0.505, 95%CI 0.309–
0.700; signature vs TNM, p = 0.031; nomogram vs TNM, 
p = 0.005; respectively).

Decision curve analysis showed that the radiomic 
nomogram gained more net benefits than the “treat all 
patients” strategy, the “treat none” strategy, as well as 
radiomic signature and CPR model both in the training 
and validation sets (Fig. 4).

Association between radiomic signature and prognosis
Based on the training set, we identified the optimum 
cut-off score of radiomic signature as 0.722. Then, 43 
(49.4%) patients in the training set and 16 (43.2%) in the 
validation set with scores ≥ 0.722 were classified as a 
high-risk group of ER, and the others as a low-risk group 
(Additional file 1: Table S5). The two groups defined by 
the radiomic signature showed significant differences 
in DFS (p < 0.0001) and OS (p = 0.0055) (Fig. 5a, b). The 
radiomic signature remained a powerful and independ-
ent prognostic factor for both DFS (HR = 3.112, 95% 

http://www.r-project.org
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Table 1  Patient characteristics in the training and validation sets

Characteristics Training set (n = 87) Validation set (n = 37) P

Clinical characteristics

 Sex (Male) 58 (66.7) 20 (54.1) 0.26

 Age (years) 56.0 [49.5, 61.5] 56.0 [50.0, 62.0] 0.581

 History of HBV infection 68 (78.2) 34 (91.9) 0.115

 History of cholelithiasis 17 (19.5) 7 (18.9) 1

 Cirrhosis 27 (31.0) 16 (43.2) 0.271

 AFP (> 20 ng/ml) 15 (17.2) 5 (13.5) 0.803

 CA19-9 (> 1000 U/ml) 16 (18.4) 2 (5.4) 0.11

 CEA (> 2.5 ng/ml) 45 (51.7) 21 (56.8) 0.751

MR radiographic characteristics

 Arterial enhancement patterns 0.194

  Peripheral rim enhancement 37 (42.5) 11 (29.7)

  Diffuse hyperenhancement 18 (20.7) 13 (35.1)

  Diffuse hypoenhancement 32 (36.8) 13 (35.1)

 Enhancement pattern 0.844

  Wash-out pattern 13 (14.9) 6 (16.2)

  Persistent enhancement 12 (13.8) 7 (18.9)

  Gradual enhancement 54 (62.1) 20 (54.1)

  No or minimal enhancement 8 (9.2) 4 (10.8)

 Irregular tumor margin 40 (46.0) 9 (24.3) 0.04
 Peritumoral enhancement 22 (25.3) 9 (24.3) 1

 Peritumoral biliary dilatation 37 (42.5) 13 (35.1) 0.57

 Target sign on DWI 49 (56.3) 16 (43.2) 0.255

 Multifocal tumor 20 (23.0) 7 (18.9) 0.791

 Tumor diameter (cm) 50.0 [36.0, 65.5] 47.0 [33.0, 63.0] 0.533

Pathologic findings

 Surgical margin status (R1) 5 (5.7) 0 (0) 0.322

 Macrovascular invasion 28 (32.2) 8 (21.6) 0.332

 Microvascular invasion 29 (33.3) 14 (37.8) 0.783

Histologic differentiation 0.808

 Well or moderate 39 (44.8) 15 (40.5)

 Poor 48 (55.2) 22 (59.5)

 Lymph node metastasis 37 (42.5) 10 (27.0) 0.154

T stage 0.43

 T1a 29 (33.3) 15 (40.5)

 T1b 15 (17.2) 9 (24.3)

 T2 41 (47.1) 13 (35.1)

 T3 2 (2.3) 0 (0.0)

TNM stage 0.207

 IA 26 (29.9) 11 (29.7)

 IB 8 (9.2) 7 (18.9)

 II 15 (17.2) 9 (24.3)

 III 38 (43.7) 10 (27.0)

Type of surgery

 Extension of hepatectomy 0.019
  Minor resection 47 (54.0) 29 (78.4)

  Major resection 40 (46.0) 8 (21.6)

  lymphadenectomy 43 (49.4) 15 (40.5) 0.477

 Adjuvant therapy 0.331
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CI = 1.790–5.410, p < 0.0001) and OS (HR = 1.894, 95% 
CI 1.069–3.356, p = 0.029) after adjustment for clinico-
pathologic-radiographic variables (Table  3 and Addi-
tional file 1: Table S6).

Similarly, the radiomic nomogram stratified 52 (59.8%) 
patients in the training set and 21(56.8%) in the valida-
tion set into a high-risk group with cut-off scores ≥ 0.351, 
and the others as a low-risk group. Patients with high and 
low radiomic nomogram scores showed significant differ-
ences in DFS (p < 0.0001) and OS (p < 0.001) (Fig. 5c, d).

Benefit of adjuvant chemotherapy
In the whole cohort, the survival outcomes showed no 
significant difference between patients who received 
postoperative adjuvant chemotherapy and patients 
who did not (Median DFS, 9.1 vs. 8.0  months, p = 0.72; 
Median OS, 32.6 vs. 20.9  months, p = 0.14) (Additional 
file 1: Table S7, Fig. 6a, d). Among patients who received 
adjuvant chemotherapy, patients treated with capecit-
abine, gemcitabine combined with capecitabine, or gem-
citabine combined with cisplatin show no significant 
difference of OS (p = 0.29) and DFS (p = 0.18).

Adjuvant chemotherapy improved prognosis in high-
risk patients defined by the radiomic signature (DFS, 
p = 0.029, Fig. 6b; OS, p = 0.088, Fig. 6e) and defined by 
the nomogram (DFS, p = 0.031, Fig.  6c; OS, p = 0.023, 
Fig.  6f ), whereas poor chemotherapy efficacy was 
detected in low-risk patients (Additional file  1: Tables 
S8–S15, Table  4). The CPR model failed for predicting 
the benefit of adjuvant chemotherapy (Table 4).

Discussion
In this study, we developed and validated a preoperative 
DWI-based radiomic signature for individualized pre-
diction of ER in patients with ICC who underwent par-
tial hepatectomy. This radiomic signature succeeded to 
stratify patients into distinct survival outcomes accord-
ing to their risk index of ER, and could serve as an effec-
tive tool for screening patients who might benefit from 
postoperative adjuvant chemotherapy. By combining 

clinicopathologic-radiographic predictors and radi-
omic signature, the integrated radiomic nomogram had 
a much-improved performance for predicting ER and 
adjuvant chemotherapy benefits compared with the CPR 
model. These results demonstrated that the radiomic sig-
nature provided useful and complementary information 
about the prognosis of tumors beyond currently known 
clinicopathologic-radiographic predictors.

ICC is characterized by varying degrees of stromal des-
moplasia [39]. A previous study proved that ICCs with 
tumors that exhibited an abundant fibrous stroma had 
increased rates of perineural invasion, lymphatic inva-
sion, and worsened prognosis than those characterized 
by scanty fibrous stroma [40]. Lee et  al. found that the 
area within the tumor without diffusion restriction on 
DWI is correlated with the areas of scattered neoplas-
tic cells in dense fibrous stroma, and volume ratios of 

p values < 0.05 were considered statistically significant and are shown in bolded font

HBV hepatitis B virus, DWI diffusion weighted imaging, AFP alpha fetoprotein, CEA carcinoembryonic antigen, CA19-9 carbohydrate antigen 19–9, TNM tumor, node, 
metastasis

Table 1  (continued)

Characteristics Training set (n = 87) Validation set (n = 37) P

  None 57 (65.5) 20 (54.1)

  Capecitabine 7 (8.0) 7 (18.9)

  Gemcitabine + Capecitabine 13 (14.9) 5 (13.5)

  Gemcitabine + Cisplatin 10 (11.5) 5 (13.5)

Early recurrence 55 (63.2) 22 (59.5) 0.847

Table 2  Predictive performance of radiomic signature, CPR 
model and radiomic nomogram

p values < 0.05 were considered statistically significant and are shown in bolded 
font

AUC​ the area under the receiver operating characteristic curve, 95%CI 95% 
confidence intervals, ACC​ accuracy, SEN sensitivity, SPE specificity, CPR model 
clinicopathological and MR radiographic model
a DeLong test was used to compare the difference of AUC between radiomic 
signature and CPR model
b DeLong test was used to compare the difference of AUC between radiomic 
nomogram and CPR model

Models AUC (95%CI) ACC​ SEN SPE P

Training set

CPR model 0.697 (0.592–0.802) 0.644 0.655 0.625 –

Radiomic signature 0.823 (0.729–0.917) 0.747 0.691 0.844 0.06a

Radiomic nomo-
gram

0.876 (0.796–0.955) 0.851 0.855 0.844 0.001b

Validation set

CPR model 0.621 (0.434–0.808) 0.649 0.773 0.467 –
Radiomic signature 0.753 (0.597–0.909) 0.676 0.591 0.800 0.274a

Radiomic nomo-
gram

0.821 (0.684–0.959) 0.757 0.773 0.733 0.01b
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diffusion restriction within the tumor is an independ-
ent prognostic factor for OS of ICC [23]. Hence DWI 
is considered as an effective prognostic tool for ICC by 

characterizing the spatial distribution of tumor cellular-
ity and fibrous stroma. However, simply calculating ADC 
values of the entire tumor or volume ratios of diffusion 

Fig. 3  The discrimination performance for predicting early recurrence of different models. Use of the constructed radiomic nomogram to estimate 
the risk of early recurrence for ICC patients, along with performance assessed by the receiver operating characteristic curves (ROC) and calibration 
curves. a A radiomic nomogram was established based on the training set, with rad-score, poorly differentiation and microvascular invasion (MVI) 
incorporated. Comparison of ROC curves between clinicopathological and MR radiographic (CPR) model, radiomic signature, and combined 
radiomic nomogram in the training (b) and validation (c) sets. Calibration curves of radiomic nomogram in the training (d) and validation (e) sets
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restriction is difficult to provide detailed information 
about the characteristics of fibrous stroma within the 
tumor, since the tumor is heterogeneous and fibrous 
stroma is not uniformly mixed throughout the whole 
volume [39]. In fact, intratumoral heterogeneity is often 
not macroscopic on imaging [41]. Based on quantitative 
analyses of high-dimension image features, the radiomics 

signature could provide more powerful and accurate 
interpreting of intratumoral heterogeneity and it has 
become a useful imaging marker to predict the prognosis 
of malignant tumors [18].

Based on the results of a multicenter III trial con-
ducted in the UK, the American Society of Clinical 
Oncology (ASCO) recommends postoperative adjuvant 

Fig. 4  Decision curve analysis. Decision curve analysis for clinicopathological and MR radiographic (CPR) model, radiomic signature, and combined 
radiomic nomogram in the training (a) and validation (b) sets

Fig. 5  Kaplan–Meier survival analyses for patients with different risk labels. Kaplan–Meier estimates of overall survival (OS) and disease-free survival 
(DFS) for patients stratified by the radiomic signature (a, b) and the radiomic nomogram (c, d) in the entire cohort (n = 124)
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chemotherapy as the standard of care [11, 42]. How-
ever, the survival benefits of chemotherapy vary among 
patients. The biological heterogeneity of ICC perhaps 
explains the different efficacy of adjuvant chemotherapy 
in unselected patients. A meta-analysis involving 6,712 

patients suggested the potential benefit for adjuvant ther-
apy in patients with margin-positive disease (OR = 0.36, 
p = 0.002) [43]. On the other hand, according to the sub-
set analysis limited to node-positive patients in a ran-
domized clinical trial, the chemotherapy group had a 

Table 3  Univariable and multivariable Cox regression analysis of risk factors of overall survival

Variables with a p value < 0.05 identified on univariable analysis were selected for the multivariable analysis. p values < 0.05 were considered statistically significant 
and are shown in bolded font

HR hazard ratio, 95%CI 95% confidence intervals, HBV hepatitis B virus, DWI diffusion weighted imaging, CA19-9 carbohydrate antigen 19–9, TACE, transhepatic arterial 
chemotherapy and embolization

Characteristics Univariate analysis Multivariate analysis

HR 95%CI p HR 95%CI p

Clinical characteristics

 Sex (female) 1.119 0.677–1.849 0.662

 Age (year) 0.993 0.968–1.018 0.577

 History of HBV infection 1.083 0.55–2.131 0.817

 History of cholelithiasis 0.682 0.31–1.501 0.342

 Cirrhosis 1.05 0.617–1.787 0.856

 CA19-9 > 1000 U/mL 1.525 0.793–2.93 0.206

MR radiographic characteristics

 Arterial enhancement patterns

  Peripheral rim enhancement ref ref

  Diffuse hyperenhancement 0.94 0.481–1.839 0.857

  Diffuse hypoenhancement 1.572 0.895–2.762 0.116

 Enhancement pattern

  Wash-out pattern ref ref

  Persistent enhancement 1.525 0.542–4.286 0.424

  Gradual enhancement 2.074 0.881–4.882 0.095

  No or minimal enhancement 2.104 0.678–6.527 0.198

 Irregular tumor margin 1.931 1.166–3.198 0.011 1.282 0.743–2.212 0.372

 Peritumoral enhancement 1.265 0.724–2.209 0.409

 Peritumoral biliary dilatation 2.688 1.625–4.448  < 0.001 2.237 1.280–3.911 0.005
 Target sign on DWI 0.698 0.425–1.146 0.156

 Multifocal tumor 2.052 1.192–3.534 0.01 1.132 0.426–3.009 0.803

 Tumor diameter(cm) 1.008 0.998–1.018 0.12

Pathologic findings

 Surgical margin status (R1) 3.157 1.127–8.848 0.029 2.871 0.928–8.876 0.067

 Macrovascular invasion 2.006 1.193–3.371 0.009 1.205 0.449–3.234 0.711

 Microvascular invasion 1.594 0.96–2.645 0.071

 Poor differentiation 1.67 0.998–2.795 0.051

 Lymph node metastasis 2.348 1.430–3.857 0.001 1.446 0.821–2.550 0.202

T stage

 T1a Ref

 T1b 1.539 0.720–3.293 0.266 0.914 0.404–2.069 0.83

 T2 2.806 1.523–5.171 0.001 1.492 0.431–5.163 0.528

 T3 2.588 0.338–19.839 0.36 0.758 0.091–6.339 0.798

Adjuvant therapy 0.671 0.391–1.149 0.146

TACE 0.563 0.176–1.8 0.333

Ablation therapy 0.489 0.177–1.352 0.168

Radiomic signature (high risk) 2.009 1.215–3.321 0.007 1.894 1.069–3.356 0.029



Page 12 of 14Yang et al. Insights into Imaging           (2022) 13:37 

worse OS than the observation group (median OS, 28.3 
vs. 28.8 month) [15].

Predicting biomarkers or models to personalize risk–
benefit evaluation of chemotherapy will improve patient 
outcomes and avoid unnecessary toxicities and economic 
burdens for patients with non-chemotherapy benefits. 
In this study, we established DWI-based radiomic sig-
nature as a strong indicator for postoperative adjuvant 
chemotherapy, i.e., high-risk patients could benefit from 
chemotherapy while low-risk could not. By combining 
clinicopathologic-radiologic features and radiomic signa-
ture, we showed that an integrated radiomic nomogram 
had a better ability to identify patients who may benefit 

from chemotherapy than did either alone. Though the 
process of radiomics tends to be particularly tedious and 
time-consuming so far, the development of fast segmen-
tation tool and easy-to-use software interface will facili-
tate the application of radiomic signature in prognostic 
assessment and clinical decisions in the future [44].

There were several limitations in this study. First, this 
is a single-center retrospective study, and the validation 
set is of small size, external validation is needed to assess 
the generalizability of the reported findings. Second, a 
large number of patients who did not complete at least 
1  year of follow-up were excluded from this study. The 
reasons for the incomplete follow-up may include that 

Fig. 6  Kaplan–Meier survival analyses for patients with different treatment strategies. Kaplan–Meier curves of DFS for patients in entire cohort (a), 
high-risk group defined by the radiomic signature (b), and the high-risk group defined by the radiomic nomogram (c). Kaplan–Meier curves of OS 
for patients in entire cohort (d), high-risk group defined by the radiomic signature (e), and defined by the radiomic nomogram (f)

Table 4  The survival benefits of postoperative adjuvant chemotherapy for patients in different risk groups

Median DFS and OS were calculated using Kaplan Meier method and the benefits of different treatment strategies were compared by two-sided log-rank tests. p 
values < 0.05 were considered statistically significant and are shown in bolded font

CPR model clinicopathological and MR radiographic model, DFS disease-free survival, OS overall survival

Models Endpoints 
(months)

High-risk group Low-risk group

Only surgery Surgery + adjuvant 
chemotherapy

p Only surgery Surgery + adjuvant 
chemotherapy

p

Radiomic signature DFS 5.9 7.5 0.029 19.0 11.2 0.32

OS 16.8 32.6 0.088 34.2 35.3 0.82

CPR model DFS 6.4 6.4 0.64 20.9 19.2 0.43

OS 19.3 24.3 0.61 29.3 NA 0.091

Radiomic nomogram DFS 5.6 7.0 0.031 20.9 19.2 0.43

OS 16.8 32.6 0.023 39.0 35.2 0.62
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some patients chose to undergo postoperative surveil-
lance and treatment in other medical institutions, and/
or their contact information had changed. Although the 
exclusion of these patients may cause potential bias, it 
may have no big influence on the outcomes of our study 
since the prognosis of patients included in our final 
cohort was comparable with that of other similar cohorts 
which were from different regions of the same country 
(ER rate, 62.1% vs. 63.6% [19]; OS, 24.9 vs. 21.0 months 
[6]). Third, MR imaging data in our study were acquired 
on different scanners with similar protocols, which may 
affect radiomic feature values. To compensate for the 
technical variability of radiomic features, we performed 
MRI signal intensity normalization and voxel size resam-
pling prior to radiomic feature extraction, and realigned 
radiomic feature distributions and removes the scanner 
effect by using ComBat harmonization before designing 
the model [34]. Hence, our radiomic model may have a 
good generalization when applied to data from different 
centers related to different MR scanners. Fourth, the use 
of adjuvant chemotherapy was not randomly assigned to 
patients as a result of its retrospective nature. We used 
multivariable Cox regression analysis to evaluate the effi-
cacy of adjuvant chemotherapy after adjusted for com-
mon clinicopathologic factors and treatments.

In conclusion, the DWI-based radiomic signature 
could predict early recurrence risk for patients with ICC 
after partial hepatectomy, stratify survival outcomes, 
and identify patients who are most likely to benefit from 
postoperative adjuvant chemotherapy. The DWI-based 
radiomic signature could help to guide individualized 
therapeutic selection for ICC patients.
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