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Abstract 

Background and purpose:  In the retrospective-prospective multi-center "Blue Sky Radiomics” study (NCT04364776), 
we plan to test a pre-defined radiomic signature in a series of stage III unresectable NSCLC patients undergoing 
chemoradiotherapy and maintenance immunotherapy. As a necessary preliminary step, we explore the influence of 
different image-acquisition parameters on radiomic features’ reproducibility and apply methods for harmonization.

Material and methods:  We identified the primary lung tumor on two computed tomography (CT) series for each 
patient, acquired before and after chemoradiation with i.v. contrast medium and with different scanners. Tumor 
segmentation was performed by two oncological imaging specialists (thoracic radiologist and radio-oncologist) 
using the Oncentra Masterplan® software. We extracted 42 radiomic features from the specific ROIs (LIFEx). To assess 
the impact of different acquisition parameters on features extraction, we used the Combat tool with nonparametric 
adjustment and the longitudinal version (LongComBat).

Results:  We defined 14 CT acquisition protocols for the harmonization process. Before harmonization, 76% of the 
features were significantly influenced by these protocols. After, all extracted features resulted in being independent 
of the acquisition parameters. In contrast, 5% of the LongComBat harmonized features still depended on acquisition 
protocols.

Conclusions:  We reduced the impact of different CT acquisition protocols on radiomic features extraction in a group 
of patients enrolled in a radiomic study on stage III NSCLC. The harmonization process appears essential for the quality 
of radiomic data and for their reproducibility.

ClinicalTrials.gov Identifier: NCT04364776, First Posted:April 28, 2020, Actual Study Start Date: April 15, 2020, https://​clini​
caltr​ials.​gov/​ct2/​show/​NCT04​364776.
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Key points

•	 Radiomics may allow the translation of CT scan 
images into quantitative data to provide crucial 
information on intrinsic tumor heterogeneity, can-
cer behavior, and eventually response to therapy.

•	 One of the main limitations of the radiomics work-
flow, especially for its wide reproducibility in multi-
center studies, is the variability of CT scanner 
models, acquisition protocols, and reconstruction 
algorithms.

•	 The harmonization of CT scan images through the 
ComBat and longComBat algorithms may reduce 
the impact of different acquisition protocols on 
radiomic features extraction.

Introduction
Non-Small Cell Lung Cancer (NSCLC) accounts for 
about 75–80% of all diagnoses of lung cancer, and 
approximately one-third of these cases correspond to 
locally advanced stages (IIIA-C) [1]. The current thera-
peutic standard is curative intent concurrent or sequen-
tial chemoradiotherapy (CRT), with a platinum-based 
doublet and once-daily radiation dose up to 60 Gy, fol-
lowed by the anti-PDL-1 monoclonal antibody Dur-
valumab in responding patients. This approach leads 
to a median overall survival (OS) of 47.5  months and 
progression-free survival (PFS) of 16.9  months, with 
47.5% of patients alive at five years [2, 3]. However, 
despite these clinical improvements, 2/3 of patients still 
progress, most of them in the thorax, within irradiated 
volumes. The mechanisms underlying this resistance 
are not fully known.

Furthermore, there are no reliable biomarkers cur-
rently available to predict which patients best respond 
to immunotherapy [4, 5], even if preliminary data on 
circulating cell-free DNA are encouraging [6]. There-
fore, finding and validating a more accurate way to 
better select patients who can benefit from immu-
notherapy would be of utmost importance. In this 
scenario, the opportunity to generate image-based 
biomarkers using radiomics has aroused great interest 
[7–9]. Such an approach is based on extracting several 
quantitative variables, known as radiomics features, 
and using them for building predictive models based 
on machine-learning classifiers [9]. However, one of 
the main limitations of the radiomics workflow is the 
variability of scanner models, acquisition protocols, 
and reconstruction algorithms. Such variations can sig-
nificantly impact radiomic features’ stability, especially 
for heterogeneous imaging data sets from radiomics 

multi-center studies, impairing the robustness of pre-
dictive models [10, 11].

Over the last few years, different research groups pro-
posed methods to overcome these obstacles through a 
harmonization process. Da-Ano et al. [12] studied the use 
of different modified ComBat algorithms [13, 14], com-
paring the methods in a multi-center study involving two 
datasets of locally advanced cervical cancer patients from 
3 centers, with magnetic resonance imaging and positron 
emission tomography imaging. They demonstrated that 
the quality of radiomic models increased with the use of 
the improved ComBat method. Masson et al. [15] evalu-
ated the use of ComBat as a radiomic feature harmoniza-
tion method in patients with laryngeal cancer from five 
different centers, showing an increased predictive value. 
Mahon et al. [16] also used the ComBat method, demon-
strating that it can be used in multi-institutional studies 
to harmonize radiomic features extracted from images 
acquired using different CT protocols in patients with 
lung tumors.

In this preliminary report, we explore the influence 
of image acquisition parameters on radiomic features 
extraction reproducibility, considering both differences 
between scanners and acquisition protocols, and we pro-
pose harmonization methods to minimize the data 
analysis variability. The main element of novelty is the 
application of a modification of the ComBat algorithm, 
called LongCombat [17], to radiomic features. Moreover, 
we compare the original and the modified longitudinal 
ComBat algorithms. Finally, by applying the proposed 
harmonization process, we aim to strengthen the predic-
tion model that will hopefully be obtained by the final 
analysis of the Blue Sky dataset. The study included 23 
patients, who underwent specific treatment (chemoradi-
otherapy and maintenance immunotherapy); for this rea-
son, no public datasets were included, as they would not 
have been comparable to the specific cohort of patients 
enrolled in the Blue Sky Radiomics study. Moreover, the 
use of the Blue Sky dataset, which is part of an observa-
tional clinical trial [18], reduces further variability due 
to the different operators contouring the ROIs, and less 
control over a series of processes (related to image acqui-
sition, contouring and clinical selection).

Materials and methods
Data
The study included 23 patients. The primary tumor was 
identified and delineated on two CT series with i.v. con-
trast medium, performed before and after CRT. The 
contouring process was centralized and performed by 
oncological imaging experts using Masterplan Oncen-
tra® software (https://​medic​aldev​ices.​icij.​org/​devic​es/​
che-​oncen​tra-​exter​nal-​beam). The images come from 10 

https://medicaldevices.icij.org/devices/che-oncentra-external-beam
https://medicaldevices.icij.org/devices/che-oncentra-external-beam
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different medical centers and are characterized by differ-
ent acquisition and reconstruction protocols. The details 
are shown in Table 1.

Features extraction
Radiomic features extraction was performed using the 
LIFEx software v6.30 (Local Image Feature Extraction, 
IBSI standard-compliant [19]). A total of forty-two fea-
tures were obtained with 3D extraction from each region 
of interest (ROI), corresponding to the tumor volume 
and secondary lesions. The ROI should include at least 64 
voxels. The selected features include six categories: four 
shape features, six first-order statistics features, seven 
gray-level co-occurrence matrix (GLCM) features, eleven 
gray-level run-length matrix (GLRLM) features, three 
neighboring gray-level difference matrix (NGLDM) fea-
tures, and eleven gray-level zone length matrix (GLZLM) 
features, as defined in [20]. In addition, we applied the 
following pre-processing steps before feature extraction 
to reduce variability between images: gray-levels abso-
lute discretization and voxel resampling. The gray-level 
discretization was performed in the range [− 1000; 3000] 
Hounsfield Units (HU), with a bin number of 400 (bin-
width 10 HU), while we resampled voxels to the fixed size 
of 1 mm × 1 mm × 1 mm.

Harmonization
In order to reduce the influence of different CT acquisi-
tion protocols on the set of radiomic features, we used 
the ComBat harmonization tool [13, 14] and its version 
for longitudinal studies [17].

The ComBat harmonization technique belongs to 
the location and scale (L/S) adjustment methods which 
aim to eliminate the effects of batches by standardizing 
the means (location) and variances (scale) of each fea-
ture across batches. We chose the nonparametric set-
ting of the model to avoid assumptions on the underlying 

probability distributions of the features and the param-
eters. Moreover, we did not include biological covariates, 
excluding the Bayesian setting, as the cohort of patients 
enrolled for the Blue Sky study is homogeneous. Thus, we 
do not have a significant biological feature that we would 
like to preserve from harmonization. By selecting these 
options, the algorithm computes a location- and-scale 
correction transformation for each feature separately, i.e., 
it adjusts the means and the variances of the distributions 
to reduce heterogeneity. We used the ComBat tool pro-
posed in [21] and then adapted to multi-site imaging data 
in [13] (publicly available at https://​github.​com/​Jfort​in1/​
ComBa​tHarm​oniza​tion), using the R software.

Moreover, we used a development of the ComBat tool, 
named longComBat, as defined in [17]. In longComBat, 
the original ComBat algorithm was adapted to longitu-
dinal data when the independence requirement between 
statistical units was not satisfied. As far as we know, the 
application of this technique to radiomic features has not 
been studied yet. Unlike the cross-sectional ComBat tool, 
the longitudinal version is not yet provided with the non-
parametric adjustment nor the possibility to exclude the 
Bayesian setting. We use the longCombat algorithm pub-
licly available at https://​github.​com/​jcbeer/​longC​ombat, 
using the R software.

Further details about the algorithms are provided in 
Additional file 1: Appendix A.

Statistical analyses
We ran all statistical analyses with RStudio (R Core Team, 
2020; R Foundation for Statistical Computing, Vienna, 
Austria; https://​www.R-​proje​ct.​org/); figures were pro-
duced using the package ggplot2 (H. Wickham; Springer-
Verlag New York, 2016).

To assess the influence of the different acquisition 
parameters on the feature values, we performed the 
Kruskal–Wallis test before the ComBat harmoniza-
tion. The level of statistical significance was set at a 
p value < 0.05 for all analyses. If the p value after the 
Kruskal–Wallis test is smaller than the significant thresh-
old, this indicates that this feature’s distribution had a 
statistical difference among groups; hence, the selected 
feature was affected by the considered acquisition param-
eter. The features were tested independently.

Once the most influential acquisition parameters 
were identified, we combined the significant parame-
ters to harmonize the feature values across the batches. 
After the ComBat (both in cross-sectional and longitu-
dinal case) compensation, the Kruskal–Wallis test was 
repeated to verify if the normalization was successful. 
If the p value of the test was greater than the threshold 
value, the feature distributions across the batches were 
correctly realigned.

Table 1  Summary of imaging acquisition parameters and values

a Philips; bSiemens; cToshiba; dG.E; eNon-ionic CA, market under the trade 
name Xenetix (Guerbert); fmonomeric and water-soluble non-ionic, injectable 
iodinated contrast medium solution (Bracco)

Acquisition parameters Value

Scanner manufacturer Philips, Siemens, Toshiba, GE

kVp 100, 120, 130, 140

Convolution kernel Ba,B10fb,B20fb,B30fb,B31fb, 
B31sb,B40fb, FC08c, FC17c, 
STANDARDd

Exposure time (ms) 350, 500, 600, 698, 1000

Tube current (mA) From 56 to 581

Contrast agents Iobitridol, Iomeprol

Slice thickness (mm) 0.5, 1, 1.25, 1.5, 2, 2.5, 3

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
https://github.com/jcbeer/longCombat
https://www.R-project.org/
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Results
We aim to tackle the variability in acquisition param-
eters using the ComBat tool and compare it with the 
longComBat, which explicitly considers the within-sub-
ject correlation inherent to longitudinal studies. Differ-
ent acquisition parameters were explored: Scanner, kVp, 
Convolution Kernel, Contrast Agent, Exposure time. The 
X-ray tube flow (mA) was excluded from the harmoniza-
tion, as modern CT scans work in dose modulation (or 
analog mA × s) by optimizing the dose in the patient’s 
different regions, guaranteeing a high image "renormal-
ized" quality. The flow is increased when the beam must 
cross regions with a high total attenuation coefficient. By 
reducing the flow, there is an increase in noise in the CT 
image, increasing the range of Hounsfield values. It has 
been observed that these variations have a more evident 
influence on inhomogeneous materials than in heteroge-
neous ones. Thus, the features extracted from heteroge-
neous subjects, like a patient’s chest, are not dependent 
on the X-ray tube current [22].

We performed the statistical analysis and the cross-
sectional harmonization considering both pre-CRT and 
post-CRT features. Through statistical testing, we identi-
fied kVp and Convolution Kernel as the most influential 
parameters. The scanner model resulted in 19 significant 
features of the 42 tested, the kVp in 21, the Convolution 
Kernel in 19, the Contrast Agent in 12, and the exposure 
time in 0. The scanner was excluded as strongly corre-
lated with the Convolution Kernel, and Contrast Agent 
was excluded for having 50% of missing values. The expo-
sure time does not have any influence on the features.

Basing on the combination of the parameters that 
show a significant association with the radiomic features 
(kVp, Convolution Kernel), we defined 15 CT acquisi-
tion protocols selected for the harmonization process, 
as described in Table  2. One image was excluded from 
the analysis (corresponding to protocol number 6) as for 
the application of the ComBat algorithm, a frequency of 
at least two for each protocol is necessary. Therefore, 14 
protocols for statistical analysis and harmonization were 

Table 2  Summary of different imaging acquisition protocols 
necessary for the ComBat harmonization

Frequency refers to the number of malignant lesions for each batch

Protocol Convolution Kernel kVp Frequency

1 B 120 5

2 B10f 120 17

3 B20f 120 12

4 B30f 100 25

5 B30f 120 2

6 B30f 140 1

7 B31f 100 19

8 B31s 130 9

9 B31f 120 9

10 B40f 100 4

11 B40f 120 7

12 FC08 100 11

13 FC08 120 2

14 FC17 100 2

15 STANDARD 120 2

Fig. 1  An example of feature harmonization for the GLRLM SRE feature. On the left is the box-plot for the feature distribution across batches 
(defined as protocols) before ComBat harmonization, and on the right is the Box-plot after the harmonization
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Fig. 2  Statistical box-plots of GLRLM SRE feature distribution (pre-harmonization and post-harmonization with ComBat) across different 
image-acquisition parameters: Scanner, kVp, Convolutional Kernel, Exposure Time 
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considered. An integer numerical value, called batch, was 
associated with each possible combination of the convo-
lutional kernel-kVp parameters.

The distribution of features’ values across protocols 
was tested before the harmonization, and 76% resulted 
significantly influenced (p < 0.05). However, after har-
monization, all extracted features were independent of 
the technical parameters of image acquisition (p > 0.05), 
showing that the ComBat method successfully eliminated 
the protocols’ influence.

An example of the harmonization effect is shown in 
Fig.  1, where we depict the dependence of the feature 
GLRLM Short Run Emphasis (GLRLM SRE) from the 
acquisition protocols before and after harmonization. 
Other examples are shown in the Supporting Informa-
tion, where we represented the distributions of one exem-
plifying feature for each of the six categories described in 
“Features extraction” section.

We assessed the dependence of the feature values 
on the single acquisition parameters after the ComBat 
harmonization. Repeating the Kruskal–Wallis test, we 
obtained that 0 features of the 42 tested were influenced 
by the scanner manufacturer, 0 features were dependent 
on the kVp, 0 features were affected by the Convolution 
Kernel. These results confirm that the ComBat algorithm 
effectively removes the dependence of the radiomic fea-
tures from the acquisition parameters. For illustrative 
purposes, the same feature GLRLM SRE is represented in 
Fig. 2, where the dependence from the single parameters 
is investigated.

The same 14 CT acquisition protocols were used for 
the harmonization process through the longComBat tool. 
In addition, to properly account for the dependence of 
repeated within-subject observations, the information 
about the time point of image acquisition (baseline or 
follow-up) was added.

As the longitudinal algorithm requires at least one 
image per protocol and at least two-time points per 
patient, five subjects were removed from the analysis. 
The filtered dataset included images of 11 protocols: pro-
tocols 5, 6, 10, and 15 defined in Table 2 were eliminated. 
The tests performed before the harmonization show 
that these protocols significantly influenced 25 of the 42 
radiomic features (59%). After the harmonization pro-
cedure, only two features (5%) significantly depended on 
the protocols. An example of the long-ComBat harmoni-
zation effect is shown in Fig. 3 (see Additional file 1 for 
other examples), where we depict the dependence of the 
GLRLM Short Run Emphasis (GLRLM SRE) feature from 
the acquisition protocols before and after harmonization.

Unlike the cross-sectional ComBat, the dependence 
of the feature values on single acquisition parameters 
after the longComBat harmonization was not entirely 
removed. For example, 4/42 features were dependent on 
the scanner manufacturer, five from the kVp, and two 
from the Convolution Kernel. For illustrative purposes, 
in Fig. 4, we represented the dependence of the GLRLM 
SRE feature from single parameters.

The harmonization process using cross-sectional Com-
Bat was more robust, as the dependencies were entirely 
removed; the median values among protocols and 

Fig. 3  An example of feature harmonization for a sample feature, GLRLM SRE. On the left is the box-plot for the feature distribution across batches 
(defined as protocols) before longComBat harmonization, and on the right is the Box-plot after the harmonization
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Fig. 4  Statistical box-plots of GLRLM SRE feature distribution (pre- and post-harmonization with longComBat) across different image-acquisition 
parameters: Scanner, kVp, Convolutional Kernel, Exposure Time 
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parameters seem to be more homogeneous than those 
obtained with longCombat. The obvious advantage is a 
more substantial harmonization of the feature, while a 
possible drawback is the loss of information.

Discussion
Images’ intrinsic variability may largely influence Radi-
omic features. Images’ inhomogeneity depends on differ-
ent elements, such as scanners with different acquisition 
protocols and technical parameters. In order to address 
this issue, Lambin et  al. [9] introduced the concept of 
radiomics quality score (RQS).

The use of this score allows assessing the quality of 
radiomic studies, analyzing each phase: data selection, 
medical imaging, feature extraction, exploratory analy-
sis, and modeling. Regarding data selection, one of the 
main problems is the use of non-standardized acquisition 
protocols; according to RQS, this issue can be addressed 
by disclosing acquisition protocols in the radiological 
reports to reach a wide diffusion for reporting guidelines. 
The variability between different scanners could be man-
aged using phantom studies. However, it is not easy to 
implement these solutions as many radiomic studies are 
retrospective, involving patients examined by different 
scanners, geographic regions, and times. The expected 
decay of the CT scanner tube may also lead to heteroge-
neity in image acquisition.

In the present study, we applied the ComBat algorithm 
for the statistical harmonization of radiomic features, 
and we compared it to its longitudinal version.

We tested the ComBat tool in different conditions from 
those already reported for two main aspects: (i) the com-
parison between the cross-sectional ComBat tool and the 
longitudinal version (longComBat) and (ii) the a-posteriori 
definition of harmonization batches from the combinations 
of kVp and Convolutional Kernel. We demonstrated that 
both harmonization algorithms adequately compensated 
the feature values by reducing the influence of the acquisi-
tion protocol. However, further works could include in the 
longComBat tool also the nonparametric setting and the 
non-Bayesian formulation. Concerning the second aspect, 
because of the small-sized dataset, we preferred to limit the 
number of acquisition parameters defining the harmoni-
zation protocols, including a pre-processing image phase 
which consisted of pixel normalization and gray-scale 
quantization. We were able to standardize images before 
feature extraction through this pre-processing step, and we 
avoided including the slice thickness and the pixel width 
among the harmonization parameters. However, this strat-
egy can only be applied if the original CT images are availa-
ble and not only the set of the radiomic features. We aimed 
to tackle the variability in acquisition parameters applying 
the ComBat tool and comparing it with the longComBat, 

which explicitly considers the within-subject correlation 
inherent to longitudinal studies. Both ComBat algorithms 
provide satisfactory results even for small datasets; indeed, 
both procedures decrease the features dependencies from 
the acquisition protocols below 5%.

As for the dependence from the single acquisition 
parameter, ComBat guarantees 100% harmonization, 
while longComBat reduces the number of dependen-
cies to 12% at most. Our study wants to underline the 
usefulness of ComBat and, also, LongComBat. The ideal 
harmonization process to reduce the variation in radi-
omic features would be to harmonize the images before 
the acquisition, but it is clearly not always achievable, 
and this is the reason why harmonization methods like 
ComBat were developed. As already described in the 
literature cited above, the ComBat tool harmonizes 
radiomic features extracted from different imaging 
protocols. But thanks to picture archiving and com-
munication systems (PACS), the original CT images are 
often available, so we have introduced a pre-processing 
step to standardize images before feature extraction 
with LIFEx, obtaining good results and getting closer 
to the ideal method of standardization of the features. 
The hope is that this study will stimulate research and 
development of different ComBat algorithms.

The main limitation of our study is the small num-
ber of patients, the object of this preliminary analysis, 
enrolled so far. At the same time, larger datasets would 
help make more robust conclusions about the harmoni-
zation process in the future.

In conclusion, our results showed the ComBat tool’s 
ability to harmonize CT images for radiomic features 
extraction in lung cancer CT scans. These results will 
be beneficial for increasing the quality of the radiomic 
features extraction procedure and the analysis in the 
retrospective-prospective multi-center Blue Sky Radi-
omics study on stage III NSCLC.
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