
Chandrashekar et al. Insights into Imaging           (2022) 13:45  
https://doi.org/10.1186/s13244-022-01161-3

ORIGINAL ARTICLE

A deep learning pipeline to simulate 
fluorodeoxyglucose (FDG) uptake in head 
and neck cancers using non‑contrast CT images 
without the administration of radioactive tracer
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Abstract 

Objectives:  Positron emission tomography (PET) imaging is a costly tracer-based imaging modality used to visualise 
abnormal metabolic activity for the management of malignancies. The objective of this study is to demonstrate that 
non-contrast CTs alone can be used to differentiate regions with different Fluorodeoxyglucose (FDG) uptake and simu-
late PET images to guide clinical management.

Methods:  Paired FDG-PET and CT images (n = 298 patients) with diagnosed head and neck squamous cell car-
cinoma (HNSCC) were obtained from The cancer imaging archive. Random forest (RF) classification of CT-derived 
radiomic features was used to differentiate metabolically active (tumour) and inactive tissues (ex. thyroid tissue). 
Subsequently, a deep learning generative adversarial network (GAN) was trained for this CT to PET transformation task 
without tracer injection. The simulated PET images were evaluated for technical accuracy (PERCIST v.1 criteria) and 
their ability to predict clinical outcome [(1) locoregional recurrence, (2) distant metastasis and (3) patient survival].

Results:  From 298 patients, 683 hot spots of elevated FDG uptake (elevated SUV, 6.03 ± 1.71) were identified. RF 
models of intensity-based CT-derived radiomic features were able to differentiate regions of negligible, low and 
elevated FDG uptake within and surrounding the tumour. Using the GAN-simulated PET image alone, we were able to 
predict clinical outcome to the same accuracy as that achieved using FDG-PET images.

Conclusion:  This pipeline demonstrates a deep learning methodology to simulate PET images from CT images in 
HNSCC without the use of radioactive tracer. The same pipeline can be applied to other pathologies that require PET 
imaging.
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Key points

1.	 CT-derived radiomic features vary significantly in 
regions of differing metabolic activity.

2.	 A deep learning generative adversarial network can 
be used to simulate FDG uptake.

3.	 Generated PET images from CT were able to accu-
rately predict clinical outcomes.
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4.	 This method allows for the detection of malignant 
lesions without PET imaging.

Introduction
Positron emission tomography (PET) is an imaging 
modality that can be used to visualise abnormal meta-
bolic activity. This is especially important in biological 
tissues that do not appear pathological based on their 
morphology [1]. It is a widely adopted clinical tool for the 
diagnosis, staging and follow-up for a variety of malig-
nancies (pulmonary nodule [2], melanoma [3], head and 
neck squamous cell carcinoma [4, 5], etc.). It provides 
clinicians with a semi-quantitative representation of 
the treatment’s impact and can be used to guide further 
treatment [1, 6, 7].

The hallmarks of such malignant tissues are rapid 
proliferation/angiogenesis, increase in size, local inva-
sion, and distant metastasis [8]. At the molecular level, 
malignant cells have increased glucose utilisation due to 
an upregulation of enzymatic activity. As a result, injec-
tion of a glucose-based radionuclide, Fluorodeoxyglucose 
(FDG), can be used to identify these abnormal metaboli-
cally active tissues. The rate of uptake of FDG into malig-
nant tissues has been shown to be proportional to its 
metabolic activity [1]. However, unlike glucose, FDG is 
not fully metabolised and becomes trapped within active 
cells. This accumulation of FDG is what is observed in 
a PET image as a ‘hot spot’ and allows for appropriate 
lesion identification.

Commonly, PET images are obtained alongside a non-
contrast computerised tomography (CT) image to enable 
the localisation of areas of increased metabolic activity 
with their underlying anatomic structures. Side-by-side 
comparison or rigid alignment/registration algorithms 
of independently obtained PET onto CT images were the 
first methods implemented [7, 9]. However, PET images 
display few anatomic landmarks that prevent direct cor-
relation with structural images. Furthermore, variability 
associated with device, protocol and time-point differ-
ences in data acquisition (ex. patient repositioning, in-/
voluntary movement) limited comparison. The current 
gold standard involves using hybrid PET/CT units. These 
units allow for simultaneous acquisition and intrinsic-
fusion of PET and CT images with minimal user inter-
action. Co-registering functional (PET) and anatomic 
(CT) information has improved specificity/sensitivity of 
tumour assessment and been shown to improve clinical 
confidence in decision-making. This advancement has 
encourage the acceptance and widespread implementa-
tion of functional imaging [4, 9, 10].

Although there are numerous advantages for PET/CT 
imaging, this technique has limitations. Motion artefact 

between imaging studies may prevent proper co-regis-
tration and decreases the clinical value of the obtained 
images [1, 7, 11, 12]. Additional limitations include (1) 
increased radiation exposure, and (2) intrinsic patient 
variability (ex. basal metabolic rate, radionuclide dose, 
duration between injection and imaging, etc.) [13].

Malignant tissues at the molecular level are signifi-
cantly different from healthy tissues, in terms of ultras-
tructure, tissue organisation and metabolic activity [8]. 
Here, we hypothesise that the raw data acquired from a 
non-contrast CT contain sufficient information to dif-
ferentiate regions with different FDG uptake as that can 
be detected by the PET scan. We further hypothesise that 
it is feasible to simulate FDG uptake (i.e. a ‘pseudo-PET 
scan’) from a non-contract CT scan without the need to 
inject the radioactive tracer, using generative models. We 
recently reported a deep learning pipeline, using genera-
tive models, for a similar medical image transformation 
task (simulation of contrast-enhanced computerised 
tomography (CT) without intravenous contrast injection) 
[14].

Materials and methods
Patient population
In this study, we utilised a collection of paired FDG-PET 
and CT images of 298 patients with diagnosed head and 
neck squamous cell carcinoma (HNSCC) prospectively 
recruited from four different institutions in Quebec, 
Canada. Vallières et al. [5] utilised this clinical cohort to 
investigate the impact of radiomic methods for the risk 
assessment of tumour progression. The complete data-
set was made publicly available via The Cancer Imaging 
Archive (TCIA) at http://​www.​cance​rimag​ingar​chive.​net. 
Details of this study, including patient characteristics and 
clinical outcomes for each of the patients, are elaborated 
within the Additional file  1: Methods (Additional file  1: 
Table S1) and are as published [5]. Standard Uptake Value 
calculation, image alignment/registration (CT to PET) 
and tumour segmentation methods used in this study are 
highlighted in the supplement.

Radiomic feature extraction from tissue segmentations
Anisotropic image and segmentation masks were resa-
mpled into isotropic-sized voxels (Image settings/voxel 
size: 1  mm, 2  mm, 3  mm, 4  mm and 5  mm) in MAT-
LAB. Parameter settings for radiomic feature extraction 
included five pre-defined histogram bin widths in Houns-
field Units (5, 10, 15, 20 and 25 HU). All radiomic fea-
tures were extracted using Pyradiomics, an open-source 
python package [15]. For each set of image and parameter 
settings, 18 first-order, 68  s-order and 1118 filter-based 
features were calculated. This results in a total of 30,100 
features for each region-of-interest (ROI) ((86 first-/

http://www.cancerimagingarchive.net
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second-order features + [86 * 13 filtered images]) × 5 Iso-
tropic Settings × 5 Bin-width setting). Detailed informa-
tion regarding radiomic features extraction can be found 
within the supplement. The full pipeline for Experiments 
1A and 1B is illustrated in Fig. 1a.

In Experiment 1A, radiomic features were extracted 
from tumours with increased FDG uptake and regions 
with negligible/low FDG uptake [(1) adjacent to tumour 
and (2) thyroid tissue]. Similarly, in Experiment 1B, radi-
omic features from regions of high and low FDG uptake 
within each metabolically active tumour were extracted. 
Following feature extraction, patients were divided into 
training (n = 194) and testing (n = 104) cohorts. This 
split was identical to that performed by Vallieres et  al. 
[5]. Given that each patient may have multiple tumour 
hot spots, train and test cohorts were divided based on 
patient to prevent data leakage. This was important to 
prevent different tumour hot spots from a single patient 
appearing in both the training and testing cohorts. Fea-
ture selection, model training and optimisation were per-
formed on the training cohort. The testing cohort was 
introduced to evaluate model performance.

Radiomic feature reduction
For Experiments 1A and 1B, four different models were 
trained using a different combination of radiomic fea-
tures (× Image Settings(5) × Parameter Settings(5)). 
These models include:

	 I.	 First-order features from the CT image
	II.	 First-order features from the CT + filtered CT 

images
	III.	 First-/second-order features from the CT image
	IV.	 First-/second-order features from the CT + filtered 

CT images

For each model, features were ranked using the mini-
mum redundancy, maximum relevance (MRMR) algo-
rithm in MATLAB. The top 25 features for each model 
were selected for model training and optimisation. A 
detailed explanation regarding radiomics feature extrac-
tion for Experiments 1A and 1B is in the supplement.

Random forest classification of FDG uptake based 
on radiomic signatures
For each experiment, models I–IV were trained on the 
training cohort of 194 patients with the appropriate fea-
ture set using a tenfold cross-validation approach. Pre-
diction performance was estimated on the testing cohort 
using receiver operating characteristic (ROC) curves 
analysis. Area under the ROC (AuROC) was calculated to 
compare model performance.

Generative models: non‑contrast CT to SUV image 
transformation
Deep learning architecture and model training
A generative adversarial network was used for this non-
contrast to SUV image transformation task. These net-
works are a class of deep learning (DL) architectures 
whereby two neural networks train simultaneously, with 
one network focused on data generation (generator) and 
the other focused on data discrimination (discriminator). 
These networks compete against each other to better 
learn the underlying statistical distribution of the train-
ing data. Here, we implement a Cycle-GAN, which learns 
transformations between two distributions without the 
need for direct pairings between samples. We had previ-
ously applied the Cycle-GAN architecture for the simula-
tion of contrast enhancement for CT images [14].

Specifics regarding model architecture and associated 
training details are described in the Additional file  1: 
methods. A threefold cross-validation paradigm with a 
training/test data split of 200:98 patients (~ 8400: ~ 3900 
2D axial slices) was employed. Model performance dur-
ing training and validation was evaluated using root-
mean-square-error (RMSE) difference between the 
generated and the ground truth SUV map. This metric is 
widely used in image transformation tasks as it evaluates 
the pixel-to-pixel differences between image pairs.

Model evaluation: technical assessment 
of cycle‑GAN‑generated SUV map accuracy
Tumours within the Cycle-GAN-Generated SUV maps 
were segmented using the same threshold-based seg-
mentation criterion as used for the ground truth SUV 
maps. Technical accuracy of the generated SUV maps 
was assessed by extracting criteria supported by the 
PET Response Criteria in Solid Tumours (PERCIST, ver-
sion 1), which is used to monitor tumour progression 
and response to treatment [16]. For each patient, four 
clinically important metrics were extracted and com-
pared against that of the ground truth: (1) Minimum 
SUV(SUV0), (2) SUV at the 50th percentile (SUV50), (3) 
Maximum SUV (SUVMax) and (4) Tumour burden/vol-
ume (in mm3). Bland–Altman plot and correlation coef-
ficient analysis were performed for each testing fold to 
compare the values obtained from the generated SUV 
map and that from the ground truth SUV map.

Model evaluation: clinical outcome prediction using 
simulated SUV maps
Using the simulated SUV maps, random forest models 
were constructed to predict three clinical outcomes [(1) 
locoregional tumour recurrence, (2) distant metastasis, 
(3) survival]. The primary objective of this experiment 
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Fig. 1  a Workflow for the classification of volumes extracted from non-contrast CT images based on FDG uptake using radiomic signature 
(Experiments 1A and 1B). Tumour and adjacent soft tissue were segmented from the SUV map using threshold-based methods and the thyroid 
tissue was manually segmented on the paired/registered non-contrast CT image. Volumes were classified based on FDG uptake into three 
categories (High SUV, Low SUV, and negligible SUV). High/Low SUV were localised within the tumour volume (0.50 × Max SUV). Regions of 
negligible SUV included the soft tissue surrounding the tumour and thyroid tissue. Four sets of radiomic features were extracted within the 
segmented volumes from either the CT image or All Images (NCCT + Filtered Images). Filtered images included the CT image with applied 
Laplacian of Gaussian and Wavelet filters. Full details regarding image filtering can be found within the supplement. Feature reduction was 
performed in MATLAB using the minimum redundancy, maximum relevance (MRMR) algorithm. Tenfold cross-validation was performed (n = 100) 
and each of the validated models was applied on the testing cohort. b Pipeline for the Clinical Evaluation of Simulated SUV Maps. This pipeline is 
based on the work performed by Vallières et al. which focused on the application of SUV maps for the prediction of three clinical outcomes: (1) 
Locoregional tumour recurrence, (2) Distant Metastasis and (3) Death. The pipeline consists of radiomic feature extraction from the tumour regions 
within the SUV Map. Feature reduction, selection and model training were performed on the training cohort using an imbalance-adjustment 
strategy that was identical to Vallieres et al. Optimised models were evaluated on the testing cohort
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was to compare predictive accuracy between the Cycle-
GAN-simulated and ground-truth (GT) SUV maps. This 
analysis mirrors that performed by Vallières et al. [5] and 
is visualised in Fig. 1b.

For each patient, a total of 2150 radiomic features were 
extracted. It is important to note that for this experi-
ment, tumour hot spots were grouped by patient and 
not individually analysed, as was done in Experiments 
1A and 1B. Identical training (n = 194) and testing splits 
(n = 104) were implemented for model training and 
evaluation. The process of integrating the radiomic fea-
tures into a multivariable model was achieved using the 
logistic regression utilities of the software DREES [5, 17]. 
Stepwise feature set reduction and selection methods 
were implemented. Additional information regarding the 
feature set reduction and selection can be found in the 
additional files. For each set of features, predictive per-
formance was estimated and the top three parsimonious 
models were chosen for each outcome. The selected par-
simonious models for each feature set [(1) GT-SUV map, 
and (2) Cycle-GAN-Simulated SUV Map] and each of the 
three outcomes were directly tested on the pre-defined 
testing set. Model performances between the generated 
SUV maps and that of the GT were compared to assess 
the predictive capacity of the generated images.

Results
Patient population and SUV map characteristics
Imaging (PET, CT) data from 298 patients with diag-
nosed HNSCC were available on TCIA. Standard Uptake 
Value maps were generated from the provided PET 
images to standardise measurements between patients. 
From 298 patients, 683 hot spots of elevated FDG uptake 
(elevated SUV, 6.03 ± 1.71) were segmented, which repre-
sent metabolically active tumours (primary and/or meta-
static lymph nodes). These derived segmentations serve 
as the ground truth for subsequent experiments. Addi-
tional information regarding the patient cohort charac-
teristics and SUV map conversion can be found within 
the supplement and the previously published data docu-
mentation [5].

Experiment 1A: radiomic features in CT images can 
differentiate regions of elevated versus negligible FDG 
uptake
SUVs were significantly higher within the tumour when 
compared against non-tumour tissue (6.03 ± 1.7 vs. 
3.21 ± 1.00, p < 0.001, Additional file  1: Fig. S3a). In the 
CT images, the average Hounsfield unit (HU) intensity 
within the tumour was less than that of the adjacent non-
tumour tissue, as seen in Additional file  1: Fig. S4b–c 
(p < 0.01). This suggests that there may be a difference, 

albeit subtle, in the HU distribution between the two 
regions.

Four Random Forest models (Experiment 1A: Models 
I–IV) were trained on a combination of first- and second-
order radiomic features extracted from the CT to classify 
regions with increased or negligible SUV (Fig. 2a). Model 
I (First Order—CT) had an AuROC of 0.87 ± 0.1 which 
improved with the introduction of first-order features 
from filtered images (Model II, First Order—CT + Filter-
Based, AuROC—0.93 ± 0.1, p < 0.001). The incorporation 
of matrix-based radiomic features further improved clas-
sification performance. Similar differences and model 
performances were observed when investigating the dif-
ference in radiomic signature between tumour and thy-
roid tissues (Additional file 1: Fig. S5).

Experiment 1B: radiomics features in CT can differentiate 
high versus low FDG uptake within an individual tumour
A patient-specific SUV50 threshold (SUV50: 6.62 ± 1.71) 
was used to further subdivide the tumour into two 
regions: (1) Regions of high FDG uptake (n = 528, SUV: 
7.2 ± 2.0) and (2) Regions of low FDG uptake (n = 683, 
SUV: 5.1 ± 1.6, Additional file  1: Fig. S4d). Given that 
a patient-specific SUV50-threshold was used to dif-
ferentiate regions, tumour hot spots may either have 
high FDG uptake, low FDG uptake or a combination of 
the two. Average tumour volume with SUVs above the 
50th percentile (8.29 × 103 ± 9.3 × 103  mm3) was sig-
nificantly greater than that below the 50th percentile 
(6.39 × 103 ± 7.8 × 103 mm3, p = 0.009). In the CT images, 
significantly lower HU intensity was observed within the 
tumour region with higher FDG uptake compared to the 
tumour regions with lower FDG uptake (p < 0.01, Addi-
tional file 1: Fig. S4e, f ).

Similarly, four random forest models (Experiment 1B: 
Models I–IV) were trained on a combination of first- and 
second-order radiomic features extracted from the CT 
to classify regions with high or low FDG uptake within 
the tumour (Fig.  2b). Model I (First Order—Image-
Based) had an AuROC of 0.79 ± 0.13, which improved 
with the introduction of first-order features from filtered 
images (Model II, First Order—Image + Filter-Based, 
AuROC—0.83 ± 0.14, p < 0.01). Like that seen for Experi-
ment 1A, the incorporation of matrix-based radiomic 
features (Models III, IV) further improved classification 
performance.

Experiment 2: simulation of SUV Map from non‑contrast CT
A threefold cross-validation platform was implemented 
for this CT to SUV map image transformation task. Dur-
ing model training, for each fold, the RMSE between 
the simulated and ground-truth SUV map images for 
the training and testing cohort decreased to plateau at 
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0.30 ± 0.12 and 0.40 ± 0.15, respectively (Additional file 1: 
Table  S2). Figure  3 illustrates the generated SUV map 
alongside their respective gold standards. The visualised 
error is the difference between the two sets of images and 
highlights differences in pixel value. The RMSE for each 
image pair is indicated at the bottom.

Technical assessment of simulated SUV map accuracy 
(PRECIST criteria)
Mean SUV0 (2.20 ± 0.78), SUV50 (5.95 ± 2.15) and 
SUVMax (9.89 ± 0.38) within the tumour regions of 
the generated maps were significantly less than that of 
ground truth (SUV0: 2.40 ± 0.64, SUV50: 6.62 ± 1.71, 
SUVMax: 9.98 ± 0.15). Subsequently, the bias, as meas-
ured by Bland–Altman plot analysis, was 11.7% [95% CI 
− 41.7 to 65.2%], 14.3% [95% CI − 40.5 to 69.2%] and 
1.8% [95% CI − 9.7 to 12.1%], respectively (Fig.  4a–c). 
These values suggest that the simulated SUV map under-
estimates FDG uptake within the tumour regions. On the 
other hand, predicted tumour volume/burden per patient 

(3.16 × 104 ± 2.73 × 104  mm3) was similar to that of the 
gold standard (3.01 × 104 ± 2.60 × 104 mm3, p = 0.51). BA 
plots comparing the percentage differences in tumour 
burden between the GAN-generated and gold standard 
SUV MAPs are shown in Fig. 4d.

Clinical outcome prediction using simulated SUV maps
Regions of High FDG uptake/SUV were isolated in the 
Cycle-GAN-simulated SUV (Cycle-GAN-SUV) map 
using the threshold-based segmentation method. Eighty-
six radiomic features (first- + second-order features) were 
extracted from both the Cycle-GAN-SUV and ground 
truth-SUV maps (GT-SUV) maps for each combination 
of image parameters (25). Data were separated into train-
ing (n = 194) and testing cohorts (n = 104) prior to fea-
ture reduction and selection for each outcome (Fig. 1b). 
In all three clinical parameters, there was no difference in 
the outcome prediction using models generated by GT-
SUV maps or Cycle-GAN-SUV maps (Additional file  1: 
Fig. S6). For the classification of locoregional recurrence, 

Fig. 2  Area under receiver operation curves for four random forest models trained with a combination of radiomic features to classify CT regions 
based on FDG uptake.  Experiment 1A compared regions of elevated versus negligible FDG uptake. Experiment 1B compared tumour regions of 
High versus Low FDG uptake. Each model was trained using a tenfold cross-validation method for 100 iterations on a selected group of 25 radiomic 
features. Following training, each of the 100 models is applied to the testing cohort to assess model performance. The statistical differences 
between each model are assessed using a one-way ANOVA. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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AuROC was 0.60 ± 0.01 (GT-SUV map) and 0.59 ± 0.02 
(Cycle-GAN-SUV map) (p = 0.35). For classification of 
distant metastasis, AuROC was 0.82 ± 0.02 (GT-SUV 
map) and 0.79 ± 0.01 (Cycle-GAN-SUV map) (p = 0.20). 
For the classification of patient death, AuROC was 
0.63 ± 0.01 (GT-SUV map) and 0.62 ± 0.02 (Cycle-GAN-
SUV map) (p = 0.13). A full description of the trained 
models can be found within the supplement (Additional 
file  1: Tables S3-S5). The model performances incorpo-
rating the GT-SUV maps had similar performance to that 
observed in the original study by Vallières et al. [5] (AUC, 
Sensitivity, and Specificity—Additional file 1: Table S6).

Discussion
We recently demonstrated the feasibility of simulating 
contrast-enhanced CT images without the injection of 
IV contrast, using generative DL models. Similar to the 
workflow described here, we first demonstrated differ-
ence in HU intensity and radiomic signature between 
blood and other soft tissue components [14]. Similarly, 
abnormal tissues at the molecular level are significantly 
different from healthy tissues, in terms of ultrastructure, 

tissue organisation and metabolic activity. These altered 
characteristics have been shown to be present prior to 
the alteration in morphological structure at the macro-
scale and may reflect changes in the tissue’s attenuation 
coefficient. We therefore hypothesised that the raw data 
acquired from a non-contrast CT can be used to identify 
regions of abnormal metabolic activity.

In general, radiomics employs advanced data charac-
terisation algorithms to extract pixel-based relationships 
within a pre-defined region-of-interest. In addition to 
average HU intensity, the differences between these visu-
ally in-distinct regions can be captured using a combina-
tion of first- and second-order radiomic features. As the 
first objective, we showed that there are significant radi-
omic differences between regions of negligible, low, and 
high FDG activity in the CT image (Experiments 1A-B). 
These differences support the validity of this image 
transformation task. The trained DL generative network 
likely learns this higher-order information during model 
training.

The second objective was to investigate if a DL genera-
tive network could robustly extract the subtle differences 

Fig. 3  Simulated SUV Map (Output of Cycle-GAN) displayed alongside its ground truth (Real SUV Map) and Non-Contrast CT axial slice for six 
patients. The error between the SUV maps is visualised and is represented by the RMSE. It is important to note that these SUV maps are inverted as 
this is the view commonly used by clinicians
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between soft tissue components in patients diagnosed 
with HNSCC and generate a visualisation of FDG uptake. 
For this task, standard uptake value (SUV) maps were 
used for the visualisation of FDG uptake. These maps 
are derived from PET images by standardising for the 
patient’s weight, radiopharmaceutical dosage (FDG), and 
the time duration between injection and imaging. These 
variables account for potential sources of variation within 
PET imaging.

A threefold cross-validation approach was employed 
during training/optimisation of the cycle-GAN. There 
was no data leakage between the training/validation and 
testing cohorts, ensuring that patients and their respec-
tive tumours were either found in the training or testing 
cohorts. The 2D input data for this DL algorithm were 
derived from the 3D CT and SUV maps by extracting 
2D 144  mm × 144  mm region-of-interests within the 
larger patient volume. These boundary conditions were 
defined by the patient contour obtained to evaluate the 
registration accuracy between the CT and PET images. 
Additionally, this segmentation was used to remove the 
underlying table from the patient, especially within the 

CT image. Given that these scans were obtained from 
multiple centres, which use PET/CT machines from dif-
ferent manufacturers, the tables that the patients lay on 
are quite different. Furthermore, as the axial slice moves 
from the head towards the chest, the 2D axial view of the 
table significantly changes. Isolating input slices from 
within the patient volume prevents the generative net-
work from encountering (1) empty slices, (2) slices with 
a small proportion of the patient and (3) slices with a 
highly variable table layout. This maximises the informa-
tion learned by the GAN networks.

We showed that a trained cycle-GAN enables the vis-
ualisation of a PET-like output from a routine non-con-
trast CT without the need to obtain a paired PET image. 
A subset of the PERCIST criteria was used to evaluate 
the clinical quality of the generated SUV maps in iden-
tifying these tumour hot spots. Volume of the tumour 
hot spot was similar between the generated and GT-SUV 
images. This suggests that the generative method is able 
to differentiate healthy tissues from those with altered 
FDG uptake. This study shows for the first time the abil-
ity to isolate and characterise tumour tissue with altered 

Fig. 4  Technical Assessment of Simulated SUV Map Accuracy. Bland–Altman plots for the SUV0 (a), SUV50 (b), SUVMax (c) and tumour volume 
(d) were constructed to assess the percentage difference between the gold standard and generated SUV maps. The bias along with the 95% 
confidence intervals is indicated in each plot. These assessment criteria were adapted from the PERCIST v.1 criteria to characterise and monitor 
tumour progression using PET/SUV images.
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metabolic activity from the non-contrast CT without 
the need to inject a radioactive tracer. CT-derived PET 
visualisation of tumour ‘hot spots’ may serve as a poten-
tial inexpensive screening method to select if a patient 
requires further and more comprehensive PET imaging.

Of note, tumour and non-tumour regions are as 
defined by the avidity of FDG uptake (SUV) on the PET 
scan (of the PET-CT). The avidity of FDG uptake (i.e. 
SUV map on a PET) by a given tissue is proportional to 
its glucose metabolism. Metabolic activity represents a 
‘functional’ status of a tissue and hence the reference as 
such in this manuscript.

Although the simulated SUV maps tended to underes-
timate the FDG uptake within the tumour region relative 
to the GT-SUV maps, they were able to predict clinical 
outcomes with the same accuracy as the actual PET scan. 
The methods and analysis for predicting clinical outcome 
with the GT-SUV maps were adapted from Vallières et al. 
[5, 17]. Their results identified a combination of radiomic 
features to predict each clinical scenario. Utilising iden-
tical statistical methods for feature reduction and selec-
tion, we identify a set of radiomic features that are able to 
produce similar clinical outcomes within the pre-defined 
testing cohort. It is important to note that our model per-
formances for locoregional recurrence are slightly higher 
(AuROC: 0.60) than those presented in Vallières et  al. 
(AuROC: 0.58). The reason for this slight boost in perfor-
mance falls possibly to the difference in radiomic feature 
extraction. Our study extracts a total of 2,150 features 
for each patient (Primary Tumour + Lymph Nodes) − 18 
first-order + 68 s-order/texture features for 25 parameter 
combinations. On the other hand, their study extracted a 
total of 1615 features from each patient (10 first-order + 5 
shape-based + 40 s-order/texture for 40 parameter com-
binations). Regardless, these results support the ability 
to use this CT to SUV image transformation method to 
obtain clinically relevant representations of metabolic 
activity within patients diagnosed with HNSCCs.

One major limitation of this generative approach that 
may impact model performance is the variability in the 
location/pathology of tumours (ex. HPV status) within 
the head/neck region. This innate pathological variabil-
ity of the tumours may adversely impact the ability of 
the generative algorithm in differentiating signal from 
noise. Other instances of generative networks in medi-
cal image transformation tasks are constrained to a 
more regularly occurring phenotype or pathology [14]. 
Another limitation is the inherently low resolution of 
the input non-contrast CT images (CT component of 
the hybrid PET-CT) as well as differences in imaging 
protocols between institutions. Improving the accuracy 
of the generated PET images with regards to its FDG 
uptake and a 3D implementation is an area of active 

investigation. That we can derive these results using 
low resolution CT scans gives further optimism to the 
full potential of our deep learning approach.

Conclusion
We present a deep learning pipeline that is able to pro-
duce PET-like outputs from non-contrast CT images 
without the use of radioactive tracer. This genera-
tive algorithm captures the quantifiable differences in 
radiomic signature between regions of different FDG 
uptake (e.g. Tumours/metastatic lymph nodes vs. thy-
roid tissue). That such results can be derived using low-
resolution CT scans (obtained from historic PET-CT 
scans) gives further optimism to the full potential of 
our deep learning approach. The work presented here 
serves as a primer for further research to reduce/elimi-
nate the need of radioactive tracer injection for cancer 
imaging.
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