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Adhesion‑related small bowel obstruction: 
deep learning for automatic transition‑zone 
detection by CT
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Abstract 

Background:  To train a machine-learning model to locate the transition zone (TZ) of adhesion-related small bowel 
obstruction (SBO) on CT scans.

Materials and methods:  We used 562 CTs performed in 2005–2018 in 404 patients with adhesion-related SBO. 
Annotation of the TZs was performed by experienced radiologists and trained residents using bounding boxes. 
Preprocessing involved using a pretrained model to extract the abdominopelvic region. We modeled TZ localization 
as a binary classification problem by splitting the abdominopelvic region into 125 patches. We then trained a neural 
network model to classify each patch as containing or not containing a TZ. We coupled this with a trained probabil‑
istic estimation of presence of a TZ in each patch. The models were first evaluated by computing the area under the 
receiver operating characteristics curve (AUROC). Then, to assess the clinical benefit, we measured the proportion of 
total abdominopelvic volume classified as containing a TZ for several different false-negative rates.

Results:  The probability of containing a TZ was highest for the hypogastric region (56.9%). The coupled classification 
network and probability mapping produced an AUROC of 0.93. For a 15% proportion of volume classified as contain‑
ing TZs, the probability of highlighted patches containing a TZ was 92%.

Conclusion:  Modeling TZ localization by coupling convolutional neural network classification and probabilistic 
localization estimation shows the way to a possible automatic TZ detection, a complex radiological task with a major 
clinical impact.
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Key points

•	 We combined CNN classification and probabilistic 
mapping to detect the transition zone of adhesion 
related SBO.

•	 Transition zones were most commonly located in the 
hypogastric region (56.9%).

•	 The coupled classification-network and probability-
mapping model produced an area under the ROC 
curve of 0.93.

Introduction
Small bowel obstruction (SBO) is a common nontrau-
matic surgical emergency, with approximately 400,000 
admissions annually in the United States [1]. Among 
causes of SBO, the most common are adhesions [2].

All guidelines recommend computed tomography (CT) 
as the first-line imaging study for patients with suspected 
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mechanical SBO [3, 4]. The goal is four-fold: (i) to con-
firm or refute the diagnosis of SBO and, when SBO is 
present, (ii) to locate the site of the obstruction, that is, 
the transition zone (TZ) (iii) to identify the cause, and (iv) 
to look for complications such as strangulation or perfo-
ration. Identifying the TZ or TZs (and determining their 
number) and establishing their locations is the first step 
in diagnosing the cause of SBO and differentiating the 
open-loop and closed-loop mechanisms [5]. A diagnosis 
of closed-loop SBO independently predicts ischemia [6] 
and help to decide whether surgery is needed in patients 
with adhesion-related SBO.

However, identifying the TZ or TZs is time-consuming 
and subject to inter-observer and intra-observer variabil-
ity [7]. Automated TZ localization would therefore prove 
valuable for expediting the diagnosis in emergency cases 
and improving radiologists’ performance in diagnosing 
the closed-loop mechanism.

The potential of machine learning to contribute to 
radiological diagnoses has expanded at a brisk pace in 
recent decades, initially thanks to increases in data-stor-
age capabilities and subsequently due to the advent of 
parallel-processing hardware based on graphical process-
ing units [8]. As a result, the number of studies of deep 
neural networks in medical imaging is escalating sharply. 
However, few teams are focusing on SBO. The only pub-
lished classifications models were produced for standard 
abdominal radiographs [9–11]. No studies have used CT 
or 3D models, despite the recognized benefits of CT for 
diagnosing SBO and the probable contribution of 3D 
models, which may be comparable to that of multiplanar 
reformation [12].

The objective of this study was to build a 3D deep-
learning model to help radiologists locate the TZ or TZs 
on CT scans from patients with adhesion-related SBO.

Material and methods
Dataset
All abdominopelvic CT scans performed at our institu-
tion between January 2005 and July 2018 were identi-
fied retrospectively. Of the 42,000 consecutive CT scan 
reports for the study period, 4098 contained the word 
or words “obstruction” and/or “intestine”. Of these 4098 
CTs, 2472 had a health information system code for SBO. 
An abdominal expert radiologist determined that 1287 of 
the 2472 reports were for patients with mechanical SBO. 
Finally, 562 CTs from 404 patients with adhesion-related 
SBO were identified and annotated. Median patient age 
was 70  years (range 16–90  years) and there were 312 
women and 250 men. Additional file 1: Table S1 describes 
the distribution of the study CTs and Additional file  1: 
Text T1 the CT acquisition technique.

Of the 562 CTs, 247 were annotated by 7 radiologists 
with 2 to over 30  years of experience in abdominal CT. 
The remaining 315 CT scans were annotated by 9 resi-
dents who were previously trained in the process. All 
annotations were reviewed by study coordinator (Q.V.) 
and consensus has been reached with an expert with over 
30 years of experience in abdominal radiology (M.Z.) for 
contentious cases between the study coordinator and 
radiologist annotator. These annotations were done using 
a platform built by Incepto-Medical (Paris, France). The 
annotators were asked to place one bounding box around 
a single TZ in case of open-loop obstruction and two 
bounding boxes for closed-loop obstruction [5]. Figure 1 
summarizes the patient selection and reporting process.

Patients were randomly selected for training, valida-
tion, and testing, in proportions of 70%, 20%, and 10%, 
respectively. The split was performed at the patient level, 
with no overlap, i.e., volumes for a given patient appeared 
in only one of the three sets. Population parameters 
(age, sex) and annotator experience followed the same 
statistical distribution in all three sets (Additional file 1: 
Table S2).

Preprocessing
CT scans provide high-resolution images. Volumes in 
the database were 3D arrays of size (nslices; 512; 512), 
where nslices was between 300 and 500. We applied the 
following preprocessing steps. First, a pretrained algo-
rithm extracted the abdominopelvic region. Second, 
the random walk algorithm was used to segment the 
abdominopelvic region into a volume with a mean size of 
300 × 400 × 300, with minimal void around the body.

This preprocessing method provided each of the 
abdominopelvic volumes with an anatomical bound-
ing box. For a given volume selected as the reference, we 
used affine transformation to register all other abdomi-
nopelvic bounding box volumes. We summed the con-
tributions of each box to generate a heatmap associated 
with the reference volume. This heatmap indicated the 
spatial distribution of TZs.

To locate each TZ, we used a patch-based approach to 
train a binary classification model. We performed three 
different experiments, splitting the abdominopelvic 
region into 27 (3 × 3 × 3), 64 (4 × 4 × 4), or 125 (5 × 5 × 5) 
patches. Each patch was classified in a binary manner, i.e., 
with or without a TZ, using the center of the annotated 
bounding box as the standard reference for TZ location. 
To train deep-learning classification models, each patch 
was resized to 64 × 64 × 64.

Model and training parameters
We modeled a convolutional neural network (CNN) 
with four convolution blocks followed by two dense 
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layers (Fig. 2). Each convolution block was composed of 
two 3D convolution layers (kernel size 3) followed by 
Rectified Linear Unit (ReLU) activation and batch nor-
malization then by a 3D MaxPooling layer (pool size 2). 
Each dense layer was followed by ReLU activation with 
a 0.5 dropout rate to prevent overfitting.

We used balanced cross entropy loss to increase the 
weights of positive sample classifications, thereby miti-
gating database imbalance. We also performed data 
augmentation on positive patches with random transla-
tion between 0 and 3 cm in each direction and random 
zoom between 0.8 and 1.2.

Reduction of the search space for the transition zone (TZ)
The output of our model was a map overlaid on the 
abdominopelvic region. On the map, areas most likely 
to contain a TZ were highlighted. We used two meth-
ods to generate this map. The first highlighted patches 
if the CNN classification score was above the thresh-
old maximizing the Youden index (sensitivity + speci-
ficity – 1, computed on the validation database) [13]. 
The second method highlighted patches based on the 
CNN classification score multiplied by the patch spatial 
probability of containing a TZ (or TZs), calculated on 
our training set.

Fig. 1  Flow chart of the data selection process.  HIS: health information system
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Classification performance
To compare classification models, we computed the area 
under the receiver operating curve (AUROC) and preci-
sion 

(

True positive
True postive+False positive

)

.

Search‑space reduction versus risk of missing 
the transition zone (TZ)
To evaluate the practical benefits of our method, we com-
pared the proportion of abdominopelvic volume that was 
highlighted (using both above-described methods) to 
the probability of missing a TZ. This last probability was 
computed on the test database.

Results
Transition zone (TZ) location
We first analyzed our dataset of 562 annotated CT scans. 
As outlined above, each bounding box was registered in a 
selected body, and a heatmap was built by summing the 
contributions of each box (Fig. 3). Analysis of the abdom-
inal quadrant demonstrated that TZs predominated in 
the hypogastric quadrant (56.9%) and more than 85% of 
TZs are located in three regions (hypogastric, right lum-
bar and umbilical regions) (Table 1).

Classification performance
We used the training set to train the CNN, the valida-
tion set to tune the optimization parameters (learning 
rate and stopping criteria of the training stage), and 
the test set for the final evaluation. We evaluated dif-
ferent abdomen partitions in 27 (3 × 3 × 3 partitions), 
64 (4 × 4 × 4) and 125 (5 × 5 × 5) patches. And we 
achieve an AUROC of 0.95 (CI: 0.92–0.97), 0.95 (CI: 
0.93, 0.96), 0.93 (CI: 0.89–0.97) (Fig.  4) and a mean 

precision of 0.43 (CI: 0.30–0.57), 0.31 (CI: 0.19–0.45) 
and 0.13 (CI: 0.08–0.22), respectively. The differences 
in these results are attributable to the dataset imbal-
ance: because the prevalence of TZs across all patches 
of each patient was very low, both good sensitivity and 
good specificity were achieved but mean precision was 
very low (Additional file 1: Table S3).

Moreover, the AUROC values for patches positioned 
on specific anatomical regions varied widely (Fig. 5). For 
instance, the value was very high for the right lumbar 
region but was only 0.80 in the umbilical and hypogastric 
regions.

Search‑space reduction versus risk of missing 
the transition zone (TZ)
To integrate this spatial heterogeneity, each patch clas-
sification score was weighted by its spatial probability of 
containing a TZ (Table 1).

The AUROC for our best weighted patch classification 
model (125 patches) was 0.93. While this value may be 
considered acceptable, it was insufficient for TZ locali-
zation. To locate the TZ, 125 predictions were required, 
and an acceptable patch classifier would find a single pos-
itive patch. In our case, the false-positive rate (maximiz-
ing the Youden index) was 0.14.

Under the hypothesis of a single patch containing the 
TZ, the number of highlighted patches that were errone-
ously classified followed the binomial law of parameters 
(124, 0.14). The mean number of erroneously classified 
patches was 17/124. We thus chose to exploit our classi-
fier as a highlighting map identifying the abdominopelvic 
regions most likely to contain the TZ.

Fig. 2  Model architecture. The 3D convolutional neural network has four convolution blocks followed by two dense layers. After the last layer, the 
classification score is multiplied by the spatial probability that the patch contains a transition zone, as computed on our training set
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With spatial weighting, the proportion of highlighted 
abdominopelvic volume decreased while keeping an 
acceptable probability of missing the TZ (Fig. 6).

Figures 4 and 6 shows the impact of this spatial adjust-
ment on the percentage of abdominopelvic volume high-
lighted by the model. The AUROC value improved only 
by 0.01 or 0.02, depending on patch division (Fig. 5), with 

Fig. 3  Heatmap of adhesion-related small bowel obstruction transition zone (TZ) localization. The images are shown with grey scale, with a 
maximum of 56.9% in white, to show the probability of presence of a TZ in any given reference volume

Table 1  Percentage of transition zones found in each of the six abdominal regions

Right hypochondriac Epigastric Left hypochondriac Right lumbar Umbilical Left lumbar Right iliac Hypogastric Left iliac

0 0.3 0.2 14.7 13.1 2.8 8.5 56.9 3.4
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no change in the false-negative rate, but the searched 
abdominopelvic volume decreased by 4% (Fig. 6).

Our best map (125 patches with spatial coupling) high-
lighted the TZ with a probability of 93% while covering 

Fig. 4  AUROC curves obtained with the different divisions of the abdomino-pelvic region. Divisions into 3 × 3 × 3 patches (3-patch division, left), 
4 × 4 × 4 patches (4-patch division, center), and 5 × 5 × 5 patches (5-patch division, right)

Fig. 5  AUROC curves in three specific abdominal regions: hypogastric (left), right lumbar (center), and umbilical (right). These curves were 
computed by summed the patch classification scores in hypogastric, lumbar and umbilical regions

Fig. 6  Model abdominopelvic-volume output according to the false-negative ratio, with or without spatial adjustment
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only 15% of the abdominopelvic volume. Additional 
file 1: Figure S1 shows an example of an output result.

Discussion
We developed a machine-learning model to reduce the 
TZ search space on abdominopelvic CT scans of patients 
with suspected SBO. To that end, we built a large anno-
tated SBO database.

Several factors may explain why only two earlier stud-
ies have evaluated an artificial-intelligence approach to 
SBO diagnosis, despite the high frequency of mechanical 
SBO among nontraumatic surgical emergencies [9, 10]. 
It should be noted that these studies focused on stand-
ard radiographs, which are no longer recommended for 
diagnosing SBO [4]. First, developing an artificial-intelli-
gence model for TZ detection requires the establishment 
of a large database by highly experienced radiologists. 
Second, the abdominopelvic volume in which the TZ 
may reside is large compared to other medical volumes 
such as the intracranial space. Third, the abdominopel-
vic volume varies considerably across individuals due to 
differences in the amount of intra-abdominal fat and in 
intestinal motion. Finally, TZ detection is facilitated by 
a 3D assessment [12], which requires a more complex 
model than those used in radiography.

To precisely locate a transition zone, high resolution 
imaging is needed. Training a model using the whole CT 
volume at such resolution requires high performance 
GPUs. These GPUs are incompatible with routine clinical 
use because of their computational costs. To be able to 
train at high resolution we chose a balance between per-
formance objective and technical limits and performed a 
patch extraction before classification as other detection 
networks do [14].

Locating the TZ is not only of diagnostic value but may 
also help to plan surgical procedures, for instance trocar 
placement for laparoscopy. In a recent metanalysis, CT 
was 92% sensitive and 87% specific for detecting the TZ 
[15]. However, this good performance comes at the cost 
of spending considerable radiologist time. TZ location is 
the first step toward establishing the cause of SBO and 
evaluating the risk of ischemia. Unfortunately, radiolo-
gist precision for detecting a closed-loop mechanism is 
poor. In a study of 88 patients who had surgery for SBO, 
including 24 with a closed-loop mechanism, sensitivity of 
CT interpreted by radiologists for detecting this mecha-
nism was only 53% (95% confidence interval, 44%–63%) 
and specificity was 83% (79%–87%) [7]. Furthermore, 
inter-observer agreement for closed loop detection was 
poor to moderate (k = 0.39–0.63).

To facilitate TZ detection on CTs, we built a model 
designed to decrease the search volume in the abdomi-
nopelvic region, accelerate the emergency-CT workflow 

[16, 17], and increase the appropriateness of treatment 
decisions. We expected TZs to predominate in the right 
iliac region, since a leading cause of adhesion-related 
SBO is prior abdominal surgery and appendectomy is a 
common procedure [18]. Unexpectedly, TZs predomi-
nated significantly in the hypogastric region. We are 
aware of a single study of TZ location, which was deter-
mined only in the sagittal plane [19]. The results showed 
that the closed-loop mechanism was most common when 
there was more than one TZ and the TZs were located 
posteriorly, within 7 cm anterior to the anterior edge of 
the spine. The predominance of TZ in hypogastric region 
may be related to the high frequency of gynecological 
surgical procedures. Furthermore, the appendix is some-
times located in the pelvis.

Coupling a deep-learning classification model with a 
priori spatial knowledge improved model performance 
in our study. Although this is a simple logical concept in 
medicine, few deep-learning models applied to the medi-
cal domain leverage it. Only a few recent models in the 
field of natural images have started to use spatial prob-
ability estimation [20].

A limitation of our study relates to external validity, 
since the data came from a single center and all the mod-
els of CT machines used were from the same manufac-
turer. This limitation applies chiefly to our testing set. 
Since the accuracy for identifying a patch containing a 
single TZ is limited, our model is not optimal for clini-
cal practice use. Much work remains to be done to build 
machine-learning models that approach the performance 
of an abdominal imaging radiologist. We only studied 
adhesion-related SBO as they represent more than 60% 
of SBO etiologies [21]. A further study should include all 
etiologies. The data ground truth may be open to criti-
cism: we relied on annotations made by specialists on 
CT scans as opposed to a biological reference standard 
such as those often available in other fields (e.g., oncol-
ogy). Radiologists have demonstrated good sensitivity 
and specificity for TZ localization [15], despite the signif-
icant heterogeneity in this parameter. The best reference 
standard for TZ location by CT remains unclear. In par-
ticular we can assume that a surgical reference, could be 
optimal. However, an important proportion of adhesive-
related SBO are managed non operatively, and to obtain a 
representative population of bowel obstructions we can-
not restrict our inclusions to operated SBO. Moreover, 
the possibility of precisely locating the junctional zone in 
space during surgery is subject to discussion.

Finally, to build a prediction model for the manage-
ment of adhesion related SBO, the first step is to locate 
the TZ. This information helps to determine whether the 
mechanism is open or closed loop the latter being part of 
the risk factors for intestinal ischemia [19]. We now plan 
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to develop models that predict ischemia, with annotation 
on CT scans of decreased bowel-wall enhancement and 
diffuse mesenteric haziness.

To conclude, our study makes two important contribu-
tions. First, the results show that the hypogastric region 
is the most common location of TZs in patients with 
adhesion related SBO. Second, our model combining 
CNN with a probabilistic mapping reduced the abdomin-
opelvic TZ-search volume. This is a first step towards the 
development of an effective machine learning system that 
will save valuable time when performing complex and 
often urgent TZ identification and localization.

Abbreviations
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