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Measuring the bias of incorrect application 
of feature selection when using cross‑validation 
in radiomics
Aydin Demircioğlu*   

Abstract 

Background:  Many studies in radiomics are using feature selection methods to identify the most predictive features. 
At the same time, they employ cross-validation to estimate the performance of the developed models. However, if 
the feature selection is performed before the cross-validation, data leakage can occur, and the results can be biased. 
To measure the extent of this bias, we collected ten publicly available radiomics datasets and conducted two experi-
ments. First, the models were developed by incorrectly applying the feature selection prior to cross-validation. Then, 
the same experiment was conducted by applying feature selection correctly within cross-validation to each fold. The 
resulting models were then evaluated against each other in terms of AUC-ROC, AUC-F1, and Accuracy.

Results:  Applying the feature selection incorrectly prior to the cross-validation showed a bias of up to 0.15 in AUC-
ROC, 0.29 in AUC-F1, and 0.17 in Accuracy.

Conclusions:  Incorrect application of feature selection and cross-validation can lead to highly biased results for 
radiomic datasets.
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Key points

•	 Incorrectly applying feature selection on the whole 
dataset before cross-validation can cause a large posi-
tive bias.

•	 Datasets with higher dimensionality, i.e., more fea-
tures per sample, are more prone to positive bias.

Background
Radiomics is a method to extract and analyze high-
dimensional quantitative features from radiological, 
non-invasive imaging data to enable predictive decision 
support [1]. The basic assumption of radiomics is that 

these features correspond to imaging biomarkers that 
contain characteristic information about diseases. Radi-
omics potentially allows for patient-centric diagnosis [2] 
and has been employed for many types of tumors [3–6].

Since it is not known beforehand which feature will be 
important for the particular outcome considered, radi-
omics extracts far more features than necessary. Many 
of these are therefore potentially irrelevant and redun-
dant [7–9]. Thus, various feature selection methods are 
employed to reduce the features to the most predictive 
and robust ones, although it is well known that these 
methods are challenging and can be misleading [10].

Another problem with radiomics is the rather small 
sample sizes. There are several reasons for this, for 
example, if the pathology under consideration is rare 
or suitable data is not readily available. In addition, 
radiomics often needs segmentations of the pathol-
ogy, which cannot be performed manually if the sam-
ple sizes go into the thousands. Also, access to external 
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data is often restricted because of privacy issues. 
Therefore, radiomic datasets often comprise only a few 
hundred samples, which is critical from a statistical 
viewpoint [11].

Together with the multitude of extracted features, 
this leads to high-dimensional datasets, i.e. they have 
fewer samples than features. Since the analysis of such 
datasets is  complex, guidelines and standards were 
introduced to ensure the validity of radiomics studies 
[12–15].

A key problem when modeling is overfitting, which 
occurs when a model learns the noise and peculiari-
ties of a given training dataset rather than the underly-
ing patterns, and therefore does not generalize to new 
data. Overfitting problems can be identified by using 
validation data that is not used during training. Since 
explicit validation data is rarely available, validation 
schemes are used, where part of the training data is set 
apart and only used to obtain an unbiased estimate of 
the performance of the model. Often, cross-validation 
(CV) is employed, where the data is split into several 
folds and then used in turn to train and to validate the 
model.

When cross-validation is employed, clearly all mod-
eling must be applied only to the training folds, else 
data leakage would occur, which describes the fact that 
the validation data was already used and estimations 
could potentially be biased. This is especially true 
for the feature selection, which is a fundamental part 
of the radiomics pipeline. Since applying the feature 
selection before the cross-validation on all data would 
lead to data leakage, feature selection must be part of 
the cross-validation for the resulting model to be unbi-
ased and to generalize to new data.

Unfortunately, sometimes illustrations of the radi-
omics pipeline are simplified and make the impression 
that feature selection is a preprocessing step before 
modeling applied to the whole data and that cross-val-
idation is only part of the model selection [3, 12, 16]. 
Similarly, it is not always clear whether studies that use 
cross-validation but not an explicit validation set have 
applied feature selection incorrectly or whether it is 
just misleadingly described [17–29]. In fact, only a few 
studies describe their methodology in full [6].

To understand how far incorrect application of fea-
ture selection before cross-validation introduces a bias 
to the analysis, it is important to measure the extent of 
the difference. Therefore, in this study we utilized 10 
radiomics datasets, 7 feature selection methods as well 
as 7 classifiers and study via a tenfold cross-valida-
tion in how far an incorrect order of feature selection 
and cross-validation has an impact on the estimated 
performance.

Methods
All data used in this study were previously published; 
therefore ethical approval was waived by the local 
Ethics Committee (Ethik-Kommission, Medizinische 
Fakultät der Universität Duisburg-Essen, Germany). 
Methods and procedures were performed in accord-
ance with the relevant guidelines and regulations.

Data collectives
For the reproducibility of our study, publicly avail-
able datasets are paramount. We therefore scanned the 
open-access journal “PLOS One” using the search key 
“radiomics” for papers that share their data publicly. 
Ten such studies have been identified and the data has 
been included into this study (Table  1). For reproduc-
ibility, all datasets were placed in a public repository 
(https://​github.​com/​aydin​demir​cioglu/​radCV). All 
datasets were high-dimensional with two exceptions: 
Carvalho2018, which is the only low-dimensional data-
set, and Song2020, which is almost low-dimensional. 
Here, we call a dataset high-dimensional if it has fewer 
samples than features, and low-dimensional otherwise.

For each dataset, all available data, even if it was 
previously split into training and validation sets, was 
merged. This was performed to minimize any effect 
of non-identically distributed data on the prediction, 
which would potentially introduce a different bias. In 
the same spirit, all clinical features were removed, as 
the focus was only on the highly redundant and corre-
lated radiomics features. More details can be found in 
Additional file 1.

Cross‑validation
Since some imbalance in the outcome was seen in a 
few datasets, stratified tenfold cross-validation was 
employed, i.e. while splitting of each dataset into 10 
evenly sized folds it was made sure that the outcome 
balance in each fold was similar to the balance of the 
whole dataset. Cross-validation scores were computed 
by micro-averaging, i.e. first predictions from the 10 
folds were pooled and then relevant metrics like AUC-
ROC were computed on the pooled data.

Preprocessing
An important step is the preprocessing of data whose 
main task is to harmonize the data. To avoid positive 
bias, especially in the presence of outliers, preprocess-
ing must also take place inside the cross-validation. 
Despite this, in this study preprocessing was applied 
before the cross-validation to the whole dataset. This 
was done because application of preprocessing steps 
inside the cross-validation might interfere and occlude 

https://github.com/aydindemircioglu/radCV
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the bias arising from the incorrect application of fea-
ture-selection before the cross-validation. Since this 
effect was the main focus, preprocessing was per-
formed upfront on the whole dataset.

Two preprocessing steps were applied: Imputation 
and normalization. The imputation was necessary as a 
few datasets had missing values. Such missing values 
can occur when computing large numbers of radiomics 
features because of numerical problems. The number of 
missing values was well below 1% for each feature and 
dataset. Imputation was performed by using column-
wise means. Normalization using z-scores was applied 
afterwards.

Feature selection
The goal of a feature selection is to remove redundant 
and irrelevant features. Redundant features are those 
which can equally well be expressed by other features, 
while irrelevant features are those which do not contrib-
ute to the performance of the model. While redundancy 
only depends on the data itself and not on the outcome, 
relevancy is only defined in relation to the outcome. 
Since the outcome is used in a very central way, remov-
ing irrelevant features can lead to a high positive bias if 
applied incorrectly.

The following 7 feature selection methods were used 
during modeling: LASSO, t-Score, f-Score, MRMRe 

(Minimum Redundancy, Maximum Relevance ensem-
ble), ReliefF, MIM (Mutual Information Maximization) 
and SVM-RFE (Support Vector Machines-Recursive 
Feature Elimination). All these methods are filtering 
methods, i.e., they were applied before classification. 
Each method yielded a scoring on the features, based 
on which the best features were then selected. The 
number of selected features was chosen among 1, 2, 4, 
8, 16 and 32. More information on the feature selection 
methods can be found in Additional file 1.

Classifiers
Since the classifier is the ‘heart’ of radiomics, its choice 
is very important. Six classifiers which can be consid-
ered state-of-the-art were used: Logistic regression, 
random forests (RF), support vector machines with 
radial basis function kernel (RBF-SVM), neural net-
works (NN), XGBoost and Naive Bayes with Gaussian 
likelihood function. Each of these classifiers, with the 
exception of Naive Bayes, has its own hyperparam-
eters, which were chosen from a predefined grid. In 
addition, a simple, constant classifier was employed 
that always predicted the majority class. This acts as a 
baseline which does not depend on the feature selec-
tion method. More information on the classifiers can be 
found in Additional file 1.

Table 1  Overview of the datasets

Overview of all radiomics datasets used. Only publicly available datasets were included to allow for easy reproducibility. N denotes the sample size, while d denotes 
the number of features (corresponding to the dimension of the data). The outcome balance measures the number of events in the outcome. DOI denotes the 
identifier of the publication corresponding to the dataset

Dataset N d Dimensionality 
(#Samples/#Features)

Outcome 
balance 
(%)

Modality Tumor type DOI

Carvalho2018 [30] 262 117 2.22 59 FDG-PET NSCLC https://​doi.​org/​10.​1371/​journ​al.​pone.​
01928​59

Hosny2018A (HarvardRT) [31] 293 1004 0.29 54 CT NSCLC https://​doi.​org/​10.​1371/​journ​al.​pmed.​
10027​11

Hosny2018B (Maastro) [31] 211 1004 0.21 28 CT NSCLC https://​doi.​org/​10.​1371/​journ​al.​pmed.​
10027​11

Hosny2018C (Moffitt) [31] 183 1004 0.18 73 CT NSCLC https://​doi.​org/​10.​1371/​journ​al.​pmed.​
10027​11

Ramella2018 [32] 91 242 0.37 55 CT NSCLC https://​doi.​org/​10.​1371/​journ​al.​pone.​
02074​55

Toivonen2019 [33] 100 7105 0.01 60 MRI Prostate Cancer https://​doi.​org/​10.​1371/​journ​al.​pone.​
02177​02

Keek2020 [34] 273 1322 0.21 40 CT HNSCC https://​doi.​org/​10.​1371/​journ​al.​pone.​
02326​39

Li2020 [35] 51 396 0.13 63 MRI Glioma https://​doi.​org/​10.​1371/​journ​al.​pone.​
02277​03

Park2020 [36] 768 940 0.82 24 US Thyroid Cancer https://​doi.​org/​10.​1371/​journ​al.​pone.​
02273​15

Song2020 [37] 260 264 0.98 49 MR Prostate Cancer https://​doi.​org/​10.​1371/​journ​al.​pone.​
02375​87

https://doi.org/10.1371/journal.pone.0192859
https://doi.org/10.1371/journal.pone.0192859
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pone.0207455
https://doi.org/10.1371/journal.pone.0207455
https://doi.org/10.1371/journal.pone.0217702
https://doi.org/10.1371/journal.pone.0217702
https://doi.org/10.1371/journal.pone.0232639
https://doi.org/10.1371/journal.pone.0232639
https://doi.org/10.1371/journal.pone.0227703
https://doi.org/10.1371/journal.pone.0227703
https://doi.org/10.1371/journal.pone.0227315
https://doi.org/10.1371/journal.pone.0227315
https://doi.org/10.1371/journal.pone.0237587
https://doi.org/10.1371/journal.pone.0237587
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Training schemes
Two different training schemes were employed: First, the 
feature selection was applied to the whole dataset before 
the cross-validation (Fig.  1, Scheme A). This is incor-
rect, since the validation fold of the cross-validation was 
already used for feature selection. Second, the feature 
selection was correctly applied during the cross-valida-
tion separately in each fold (Fig.  1, Scheme B). Because 
of this, none of the validation folds in the cross-validation 
were used for feature selection and estimation is there-
fore not biased by data leakage.

Evaluation
The performance of each model was measured primarily 
by AUC-ROC, since in many radiomics analyses AUC-
ROC is chosen as the primary metric. More concretely, 
the model with the highest AUC-ROC using scheme A 
was selected and compared to the model with the high-
est AUC-ROC using scheme B. The difference in per-
formance between these two models can be regarded as 
the bias of incorrectly applying feature selection before 
cross-validation.

Since higher dimensionality of a dataset, given by the 
ratio of the number of features to the number of samples, 
could influence the observed bias, the difference in AUC-
ROC between the two schemes was plotted against the 
dimensionality. Linear regression was then applied to test 
if a significant relationship exists between both.

Finally, to understand how far different feature selec-
tion methods and classifiers are more prone to bias, we 
computed the difference in AUC-ROC between the 
best models for a given feature selection and classifier 

combination using scheme A and scheme B. This mim-
ics studies that consider only a single feature selection 
method and classifier without an extensive search.

In addition to AUC-ROC, the AUC-F1, the area under 
the precision-recall-curve and the accuracy were also 
evaluated, but were only considered to be secondary. 
Other derived metrics, namely sensitivity, specificity, 
precision and recall and accuracy, were also computed 
and can be found in Additional file 2.

Statistics
All descriptive statistics were reported as mean ± stand-
ard deviation. To compare the AUC-ROC, AUC-F1 and 
accuracy values of two models, bootstrap tests with 2000 
repeats were employed. Statistical significance was cho-
sen to be below a p-value of 0.05. Correlation coefficients 
were computed using Pearson’s method. All analyses 
were conducted with Python 3.6.9 and the scikit learn 
0.24.2 package.

Results
Altogether, over 50,000 models have been fitted to the 10 
datasets. Considering the best model in terms of AUC-
ROC for each dataset, applying the feature selection 
incorrectly before the cross-validation led always to a 
positive bias when compared to the correct application of 
feature selection inside the cross-validation (Table 2). For 
AUC-ROC, the largest difference was seen for the Hos-
ny2018C dataset (ΔAUC-ROC = 0.149) and the smallest 
one for Song2020 (ΔAUC-ROC = 0.02) (Fig.  2). Based 
on a bootstrap test for comparing AUC-ROCs of two 
ROC curves, the difference was highly significant for all 

Fig. 1  Illustration of the two training schemes used. In scheme A the feature selection is performed on the whole dataset before the 
cross-validation, while in scheme B the feature selection is part of the cross-validation, i.e. is applied only to each training fold. Note that 
preprocessing actually must be part of the cross-validation, but as it would interfere with the bias coming from applying the feature selection 
incorrectly, it was applied to all data
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datasets (p < 0.005) except for Li2020 (p = 0.018), and not 
significant for Carvalho2018 (p = 0.33) and Ramella2018 
(p = 0.147).

Similarly, in the AUC-F1 as well as the accuracy a posi-
tive bias up to 0.293 and 0.17 respectively, could be seen 
with the only exception of Carvalho2018, which is the 
only low-dimensional dataset, where a very minor bias in 
AUC-F1 was seen (ΔAUC-F1 = 0.011) and even a slight 
loss in accuracy (ΔAccuracy =  − 0.004).

Plotting the samples per feature number against the 
observed bias showed a significant negative tendency for 
AUC-ROC (Pearson correlation R =  − 0.72; p = 0.02), 
indicating that with fewer samples per feature the likeli-
hood of bias increases (Fig. 3). Similar tendencies could 
be seen for the F1-score (R =  − 0.64, p = 0.045) and accu-
racy (R =  − 0.77, p = 0.008).

To understand how far the bias can be traced back to 
the feature selection method and the classifier, for each 
dataset the best AUC-ROC of each combination was 
considered. Then, the difference to the AUC-ROC of the 
best model with the same combination, but with incor-
rectly applied feature selection was measured. The mean 
of these differences over all dataset was then computed 
(Fig.  4). The results show that especially LASSO, espe-
cially with Logistic regression, RBF-SVM and Neural 
Networks as classifiers, as well as MIM tend to show high 

bias, if feature selection is incorrectly applied. On the 
other hand, it would seem that SVM-RFE is less biased. 
But even here, e.g. when the SVM-RFE is combined with 
random forests, on Toivonen2019 a bias of 0.07 in AUC-
ROC can be observed.

The average bias in F1-score was also very high for the 
LASSO and MIM, and equally lower for the SVM-RFE. 
Accuracy showed less overall bias, again LASSO shows 
larger bias than other feature selection methods.

Discussion
Obtaining reliable models and predictions in radiomics 
is notoriously difficult because of the high dimensionality 
of the datasets involved. Accordingly, several guidelines 
were presented [12, 13] and a radiomics score was intro-
duced to safeguard against spurious results and to define 
best practices [14]. Despite this, it is not evident if all 
radiomics studies follow best practices.

We have studied how far an incorrectly applied feature 
selection on the whole dataset before cross-validation 
leads to a bias because of data leakage. Our results clearly 
showed that a large positive bias can result from this that 
can be as high as 0.15 in AUC-ROC, which is the primary 
metric in many radiomics studies. This underlines the 
fact that feature selection applied to the whole dataset 

Table 2  Results of the experiment

AUC-ROC, AUC-F1 and accuracy of the correct and incorrect models for each dataset as well as their differences and significance. The p-values were computed using a 
bootstrap test with the null hypothesis that the difference is zero. Significant p-values are marked in bold

AUC-ROC ΔAUC-ROC P AUC-F1 ΔAUC-F1 P Accuracy ΔAccuracy P

Carvalho2018 (Scheme A) 0.687 0.041 0.33 0.733 0.011 0.791 0.634 − 0.004 0.913

Carvalho2018 (Scheme B) 0.646 0.722 0.637

Hosny2018A (Scheme A) 0.765 0.13 < 0.001 0.781 0.135 0.001 0.689 0.075 0.035
Hosny2018A (Scheme B) 0.636 0.647 0.614

Hosny2018B (Scheme A) 0.855 0.13 < 0.001 0.716 0.293 < 0.001 0.791 0.09 0.001
Hosny2018B (Scheme B) 0.725 0.422 0.701

Hosny2018C (Scheme A) 0.77 0.149 0.005 0.87 0.043 0.212 0.792 0.093 0.019
Hosny2018C (Scheme B) 0.621 0.827 0.699

Ramella2018 (Scheme A) 0.872 0.061 0.147 0.893 0.051 0.21 0.846 0.11 0.024
Ramella2018 (Scheme B) 0.811 0.842 0.736

Toivonen2019 (Scheme A) 1 0.146 0.002 1 0.038 0.015 0.98 0.17 < 0.001
Toivonen2019 (Scheme B) 0.854 0.962 0.81

Keek2020 (Scheme A) 0.765 0.086 0.005 0.714 0.14 0.001 0.725 0.07 0.018
Keek2020 (Scheme B) 0.678 0.575 0.656

Li2020 (Scheme A) 0.972 0.107 0.018 0.984 0.067 0.057 0.922 0.157 0.006
Li2020 (Scheme B) 0.865 0.917 0.765

Park2020 (Scheme A) 0.698 0.067 0.006 0.394 0.061 0.036 0.763 0.005 0.602

Park2020 (Scheme B) 0.631 0.333 0.758

Song2020 (Scheme A) 0.985 0.02 0.002 0.984 0.022 0.007 0.942 0.012 0.334

Song2020 (Scheme B) 0.965 0.962 0.931
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induces a large bias that must be avoided at any cost, if 
results should be trusted.

While all models showed a positive bias in AUC-
ROC when feature selection was applied incorrectly, 
the datasets Toivonen2019 and Hosny2018 stand out. 
On Toivonen2019, the incorrect model yielded an 
AUC-ROC of 1.0, in stark difference to the analysis by 
Toivonen et  al. which yielded an AUC-ROC of 0.88, 
comparable to the AUC-ROC of 0.86 we obtained [33]. 
Similarly, on Hosny2018A and Hosny2018C, predic-
tions were not much different from a random guess 
(AUC-ROC of 0.62 and 0.64), but became apparently 
quite usable when using the incorrectly applied feature 
selection (AUC-ROC of 0.77), in contrast to the study 
by Hosny et  al., since they reported an AUC-ROC of 
0.66 [31]. Similar trends could be seen for AUC-F1, 
although the high bias of 0.293 stemmed from a par-
ticularly low AUC-F1 for Scheme B (0.422), which was 
worse than a random guess. Such performance can hap-
pen as we did not select the best model for AUC-F1, but 

for AUC-ROC. Accuracy also showed a positive bias up 
to 0.17, but was non-significant on three datasets.

From the experiment, it seemed that indeed  datasets 
with higher dimensionality, i.e. more features per sam-
ple, were more prone to overfitting when feature selec-
tion was applied incorrectly. This was to be expected 
as feature selection is hard and even small data leakage 
can help to select better features, resulting in a positive 
bias.

Considering whether certain feature selection meth-
ods were more prone to bias than others, it seemed 
that on average LASSO and MIM showed more posi-
tive bias, while SVM-RFE behaved better in this regard. 
Still, even SVM-RFE showed a positive bias of 0.07 on 
Toivonen2019. This bias corresponds to an additional 
20 patients (of 100) being incorrectly classified as hav-
ing a prostate cancer with Gleason score > 3 + 3, instead 
of  3 + 3 (Biased: TN = 10, FN = 6, FP = 10, TP = 74 vs. 
unbiased: TN = 13, FN = 26, FP = 7, TP = 54). Thus, 
the seemingly small average bias cannot be used as a 

Fig. 2  ROC curves for all datasets. The red and blue curves correspond to application of the feature selection before (Scheme A) and within 
(Scheme B) the cross-validation
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pretext to circumvent correct application of features 
selection.

From the plot, it appeared that the feature selection 
has a much larger impact than the choice of the classi-
fier, which at first sight contradicts the results by Parmar 
etc. [38]. This arises from the fact that we considered 
biases, not overall performances. Because the only dif-
ference between scheme A and scheme B was whether 
the feature selection method was able to select better 
features because of data leakage, this result appears to be 
reasonable.

Feature selection has been considered for long [39–41] 
and the effect of applying it outside of the cross-valida-
tion has been studied previously for more general data-
sets, but not for radiomics datasets. Refaeilzadeh et  al. 
consider pair-wise comparison of feature selection algo-
rithms in the setup of cross-validation, and argue that 
especially for small datasets correct application of cross-
validation is wasteful as not all data is used for feature 
selection, thus inducing another bias. They conducted 
an experiment on low-dimensional synthetic datasets 
and showed both methods have different biases, up to 
7%, and in the end, they do not differ significantly. Our 
results do not contradict these findings, since our data-
sets are high-dimensional, where it is known that the bias 
can be larger. In the same spirit, Aldehim and Wang con-
sidered 10 real-world and 14 synthetic datasets using 4 
different feature selection methods and 3 classifiers [42]. 
They concluded that for datasets with large samples there 

is “no noticeable difference”, but for smaller datasets a 
bias has occurred”. Our experiments confirm this finding, 
we demonstrated that for radiomics datasets the bias is 
actually even larger than they have observed, possibly not 
only because of smaller sample sizes, but also because of 
highly correlated features.

Analysis of highly correlated features is difficult and can 
lead to spurious results: Using a cohort of patients with 
head and neck cancer, Ger et al. demonstrated that tumor 
volume alone obtained a higher AUC-ROC than a model 
based on radiomics features, and that the combination 
of both surprisingly decreased the performance [43]. In 
the same spirit, Welch et al. showed that three out of four 
features of the seminal radiomics model presented by 
Aerts et al. [1] highly correlated with tumor volume and 
that tumor volume alone yields the same performance, 
basically questioning whether radiomics beyond tumor 
volume has any benefit at all in this case [44].

Our focus was to show that an incorrect feature selec-
tion indeed leads to a large positive bias when compared 
to the correct application of feature selection. However, 
some limitations apply to our study. Foremost, without 
explicit independent validation sets, the true extent of the 
bias cannot be determined. A reasonable solution would 
have been to either split these off from the datasets or to 
use validation sets where given. Since such validation sets 
were not always available, and because of the low sample 
sizes of the datasets, we were unable to do this.

Regarding the experiments, several choices had to be 
made. We tried to use more common feature selection 
and classifiers but only tuned a few of the multitude of 
hyper-parameters because of computational restrictions. 
It can be expected that better tuning will lead to even 
higher bias.

Technically, the normalization and also the imputa-
tion of missing values must also be part of the cross-
validation. In this study, we forfeit this and applied the 
normalization and imputation as preprocessing steps 
to avoid another source of bias, since both do not use 
the outcome, and thus the influence of them should be 
rather small when compared to the feature selection. For 
the same reason, other techniques which are often used 
in radiomics studies, like outlier removal, or syntheti-
cally generating additional training samples to overcome 
imbalanced problems were not applied. Therefore, our 
results can be understood as a lower estimate to the bias.

There are still open questions, for example, we used 
tenfold cross-validation, and it is not clear how a differ-
ent validation scheme like a fivefold CV or leave-one-
out CV will impact the observed bias. However, such 
studies would not change the fact that incorrect appli-
cation of feature selection and cross-validation is self-
evidently wrong, regardless of the bias that could or 

Fig. 3  Scatter plot relating the number of samples per feature 
against the observed bias in AUC-ROC, when feature selection is 
applied incorrectly, for each dataset
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could not occur. They can only increase the awareness 
of this problem since this kind of misapplication seems 
still to be present in recent studies.

Conclusion
We have shown that incorrectly applying feature selec-
tion before cross-validation to high-dimensional radi-
omics data can lead to positive bias because of data 
leakage.
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