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Abstract 

Background:  Current intra-tumoral heterogeneous feature extraction in radiology is limited to the use of a single 
slice or the region of interest within a few context-associated slices, and the decoding of intra-tumoral spatial hetero-
geneity using whole tumor samples is rare. We aim to propose a mathematical model of space-filling curve-based 
spatial correspondence mapping to interpret intra-tumoral spatial locality and heterogeneity.

Methods:  A Hilbert curve-based approach was employed to decode and visualize intra-tumoral spatial heterogene-
ity by expanding the tumor volume to a two-dimensional (2D) matrix in voxels while preserving the spatial locality of 
the neighboring voxels. The proposed method was validated using three-dimensional (3D) volumes constructed from 
lung nodules from the LIDC-IDRI dataset, regular axial plane images, and 3D blocks.

Results:  Dimensionality reduction of the Hilbert volume with a single regular axial plane image showed a sparse 
and scattered pixel distribution on the corresponding 2D matrix. However, for 3D blocks and lung tumor inside the 
volume, the dimensionality reduction to the 2D matrix indicated regular and concentrated squares and rectangles. 
For classification into benign and malignant masses using lung nodules from the LIDC-IDRI dataset, the Inception-V4 
indicated that the Hilbert matrix images improved accuracy (85.54% vs. 73.22%, p < 0.001) compared to the original 
CT images of the test dataset.

Conclusions:  Our study indicates that Hilbert curve-based spatial correspondence mapping is promising for 
decoding intra-tumoral spatial heterogeneity of partial or whole tumor samples on radiological images. This spatial-
locality-preserving approach for voxel expansion enables existing radiomics and convolution neural networks to filter 
structured and spatially correlated high-dimensional intra-tumoral heterogeneity.
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Key points

•	 The Hilbert curve may overcome the bottleneck of 
intra-tumor heterogeneity analyses.

•	 Time-consuming three-dimensional filtering of 
multi-scale receptive fields on images could be 
avoided.

•	 The spatial-locality–preserving approach for voxel 
expansion enables the filtering of high-dimensional 
intra-tumoral heterogeneity.

Background
Texture plays an important role in imaging-assisted 
tumor detection, efficacy evaluation, and survival prog-
nosis [1–3]. Primitive qualitative or quantitative textural 
descriptors for measuring tumor characteristics have 
been proposed using tumoral patterns that radiologists 
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can intuitively perceive with the unaided eye [4]. With 
the development of data analysis and image scanning, 
the traditional texture descriptors may not meet the 
current needs of exploring latent semantics underlying 
high-resolution radiological images [5, 6]. Intra-tumoral 
heterogeneity, which reveals the co-existence of multiple 
subclones with distinct molecular profiles within a sin-
gle tumor [7, 8], was first proven in the field of molecular 
image analysis by decoding deeper spatial and tempo-
ral heterogeneity. Intra-tumoral heterogeneity provides 
an opportunity for exploring latent semantic decoding 
on radiographic images [9]. Instead of capturing shal-
low textures through visual perception, a more nuanced 
method could be used, mining tumor phenotype diver-
sity through the statistics of a distribution map of specific 
gray-level intensity within the partial or whole tumor 
region to reveal imperceptible evidence of tumor pro-
gression, recurrence, and prognosis [10–12]. Represented 
by the emerging field of radiomics in medical image anal-
ysis, decoding intra-tumoral heterogeneity has greatly 
expanded the knowledge of image phenotypic character-
istics [13, 14].

However, both traditional textural descriptors and 
emerging latent intra-tumoral heterogeneous measure-
ments are limited by the ability to analyze heterogeneity 
on only a single slice or patch of the region of inter-
est within context-associated slices [15, 16]. Currently, 
decoding intra-tumoral spatial heterogeneity using the 
whole three-dimensional (3D) tumor sample is rare. 
The widely used mainstream radiomics solutions, such 
as Pyradiomics [14], extract thousands of delicate phe-
notypic features from the run-length or co-occurrence 
matrix from single images using advanced wavelet or 
Fourier transformation. Although prolific intra-tumoral 
heterogeneity descriptors have been reported, explor-
ing high-dimensional intra-tumoral spatial heterogene-
ity is hindered by the lack of an appropriate method to 
describe the spatial correspondence of intra-tumoral 
voxels. However, decoding radiological intra-tumoral 
spatial heterogeneity is essential because radiological 
images have the distinct advantage of whole-tumor sam-
pling, ensuring that no intra-tumor region of genetic or 
pathological variation is omitted [17, 18].

In current phenotypic analyses, the bottleneck in 
decoding intra-tumoral spatial heterogeneity on radi-
ological images is flattening all tumor voxels into 
a two-dimensional (2D) matrix while maintaining 
between-voxel spatial structure. In such a transforma-
tion, extracting 2D intra-tumoral heterogeneity descrip-
tors from different receptive fields on the 2D matrix is 
equivalent to extracting spatial intra-tumoral heteroge-
neity on the corresponding 3D tumor mass. Studies sug-
gest that decoding spatial intra-tumoral heterogeneity 

will provide higher-dimensional image data sources, 
further facilitating future radiomics and artificial intelli-
gence-based medical image analysis [19–21]. Therefore, 
an intuitive, feasible approach to mapping 3D (voxel) to 
2D (pixel) space will overcome the current barriers to 
intra-tumoral spatial heterogeneity decoding.

We used a Hilbert curve-based approach to expand the 
tumor voxels to the 2D plane while preserving voxel spa-
tial locality in this study. With the proposed spatial trans-
formation, quantitative analysis of intra-tumoral spatial 
heterogeneity in whole tumor samples could be possible 
with the existing technology.

Methods
Hilbert curve
The Hilbert curve, H(t), or Hilbert space-filling curve, is 
a continuous fractal space-filling curve [22], a surjective 
mapping from the interval of the real number [0, 1] to the 
plane of the real number [0, 1] × [0, 1]. That is, given a 
point (x0, y0) on the plane unit square, the parameter t0 
can be found using H(t) as follows:

An illustration of the Hilbert curve with levels 1 to 8 is 
presented in Fig. 1.

The original Hilbert curve provided a mapping between 
one-dimensional (1D) and 2D space, preserving the local-
ity fairly well [23]; when traversing 2D pixels by the Hil-
bert curve, pixels adjacent to a certain pixel in 2D space 
were in close proximity to that pixel in the corresponding 
1D space (Fig. 2).

Because of the locality property, the Hilbert curve 
effectively reduces dimensionality [24], which is the 
description of the information in the N-dimensional 
space using the (N-1)-dimensional space.

The 2D-Hilbert curve provides a mapping in which all 
the 2D pixels are expanded into a 1D space (which can be 
stretched into a straight line); each pixel’s locality with its 
2D neighbors is preserved after expansion [25]. As shown 
in Fig. 3a, an image with four pixels from P0 to P1 could 
be traversed by a level 1 Hilbert curve by expanding the 
image with a width of two and a height of two to a 1D 
space with four points. The level 2 Hilbert curve enables 
filling a 16-pixel image, transforming a 2D image with a 
width of four and a height of four to a 1D space with 16 
points (Fig. 3b). As the Hilbert curve iteration increases, 
the size of the image that can be filled increases corre-
spondingly. As the iteration approaches infinity (that is, a 
2D plane with an infinite number of pixels), the space will 
be filled by the Hilbert curve.

Further, an object in 3D space, expressed by a 3D Hil-
bert curve, could be expanded to 2D space, and the 

H(t0) =
(

x0, y0
)
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neighboring properties of spatially adjacent voxels would 
be maintained on the 2D image (Fig. 3c).

Therefore, in image analysis, with the help of a 3D Hil-
bert curve, current intra-tumoral heterogeneity analysis 
techniques could be employed on 2D images to interpret 
information inherent in the 3D volume by characterizing 
the spatial correlation into 2D images. When using a 3D 
Hilbert curve for dimensionality reduction, local voxel 
adjacency in 3D space is well preserved on the corre-
sponding 2D image after Hilbert expansion, as shown in 
Fig. 3c.

Dimensionality reduction for voxel expansion
CT scans of patients from the open-access Lung Image 
Database Consortium image collection (LIDC-IDRI) 
database [26] were used in this study for dimensionality 
reduction. Manual segmentation of the lung tumor was 
performed by one to four radiologists, and the intersec-
tion of the radiologists was used. One of the CT scans 
including a lung tumor spreading across 43,068 voxels 
in 31 slices in total, was used to illustrate the procedure. 
Informed consent was not required for the data, and the 
lung tumor is presented in Fig. 4a.

In this study, a level 6 3D Hilbert curve was defined to 
store the lung tumor voxels, which we called the Hilbert 
volume, to reduce the 3D tumor volume dimensional-
ity to a 2D matrix. The size of the Hilbert volume was 
(

26, 26, 26
)

 . We rescaled the tumor’s maximum diam-
eter to < 26 on the axial, sagittal, and coronal planes, 

respectively. The real gray intensity of the tumor voxels 
on CT was used in the Hilbert volume defined, and the 
others were marked as zero.

Next, a 2D Hilbert curve with the same number of 
points as the 3D Hilbert volume (Fig. 4b) was defined to 
store all the pixels transformed from the 3D Hilbert vol-
ume voxels, which we called the Hilbert matrix. The size 
of the Hilbert matrix was 29 × 29 as shown in Fig. 4c.

Then, we simulated reducing the 3D space to 2D space. 
During dimensionality reduction, each image layer on the 
cross-sectional axis was sequentially input into the Hil-
bert transformation. Slice layers pulled from the 3D Hil-
bert volume were pushed to the corresponding positions 
on the 2D Hilbert matrix where the previous slice was 
located to demonstrate the dimensionality reduction viv-
idly; the points of the previous slice were moved outward 
step-wise along the continuous fractal space-filling curve. 
This process was iterated until all image layers were 
pushed to the Hilbert matrix. Finally, the Hilbert matrix 
was filled in, and all voxels fell on the corresponding pixel 
position, as defined by the Hilbert curve.

To demonstrate the spatial locality after the Hilbert 
curve-based voxel expansion, the following experiments 
were performed:

1.	 Three Hilbert volumes with level 6 were constructed, 
consisting of only a single image on the axial, coronal, 
and sagittal planes; other voxels were marked as zero, 
as shown in Fig. 5a. The Hilbert volumes, containing 

Fig. 1  The Hilbert curve H(t) from level 1 to level 8. The size of the surjective plane unit square ranges correspondingly from 21 × 21 to 28 × 28
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only one image on the traditional planes, were used 
to illustrate the expansion results of the proposed 
Hilbert curve-based spatial correspondence mapping 
approach for the single slice on the traditional planes. 
All three Hilbert volumes were then expanded to the 
corresponding Hilbert matrices.

2.	 A Hilbert volume with level 6 consisting of four 3D 
blocks with sizes of 

(

24, 24, 24
)

 was constructed; 
other voxels were marked as zero, as shown in Fig. 6a. 
The Hilbert volume constructed here was used to 
clarify the difference of the expansion results by the 
proposed approach between the 3D blocks and the 

slices. The location of the blocks varied inside the 
volume.

3.	 A Hilbert volume with level 6 with a lung tumor 
inside was expanded into the Hilbert matrix, as 
shown in Fig.  6c. The Hilbert volume constructed 
with the lung tumor was used to indicate the intra-
tumor spatial heterogeneity decoded by the proposed 
Hilbert curve-based spatial correspondence mapping 
approach.

4.	 According to the latest LIDC-IDRI nodule list 
released [27], all the 2635 lung nodules, including 
14,266 CT images, were used to evaluate the per-

Fig. 2  The mapping of the two-dimensional space to one-dimensional space by a Hilbert curve with level 5. The local adjacency is well preserved 
by mapping the points in the two-dimensional space to the one-dimensional space. The platform is obtained from http://​bit-​player.​org

http://bit-player.org
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formance of the Hilbert matrix image on the task of 
classification into benign or malignant masses. The 
LIDC-IDRI dataset was used because all the nod-
ules were diagnosed by at least one radiologist, and 
scoring as malignant or benign was provided by the 

radiologists. In addition, all the lung nodules were 
manually delineated by at least one radiologist. The 
averaged malignancy rating for each nodule and 
the intersection of the segmentation of each nod-
ule from the radiologists were used in this study. As 

Fig. 3  Two-dimensional Hilbert curves with level 1 (a) and level 2 (b) were, respectively, stretched into a straight line from P0 to P1 . c Example of 
the dimensionality reduction of a three-dimensional mass with 16 voxels to a two-dimensional matrix with 4 × 4 pixels using a three-dimensional 
Hilbert curve

Fig. 4  a The lung tumor used to illustrate the three-dimensional (3D) Hilbert curve expansion. b The Hilbert volume with level 6 defined in this 
study, and the lung tumor (in blue) encapsulated in the Hilbert volume according to the 3D coordinates. c The empty Hilbert matrix to store the 
result of dimensionality reduction from (b)
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described by a previous study [28], nodules with an 
average score < 3 were classified as benign; those with 
an average score > 3 as malignant. A state-of-the-
art network for classification, named Inception-V4 
[29], was used to test both the Hilbert matrix images 
of lung nodules and the original lung nodule CT 
images. Lung nodules with a minimum diameter of 
5 mm were used and divided into training, validation, 
and test datasets (80%:10%:10%); the difference of 

classification accuracy was evaluated by the McNe-
mar’s test. Furthermore, to validate the robustness of 
the proposed approach, we used the manual nodule 
segmentation in the test dataset only performed by 
Radiologist 1 of the LIDC-IDRI dataset. The Hilbert 
curve-based spatial correspondence mapping was 
implemented to the segmented nodules, and the 
Hilbert matrix images were obtained. All the images 
were then input into the well-trained Inception-V4 

Fig. 5  The Hilbert volumes containing only a single image (the first row). The corresponding expansion to a Hilbert matrix demonstrated by the 
proposed Hilbert curve-based mapping approach (the second row)

Fig. 6  a A Hilbert volume consisting of four blocks of VA1, VA2, VA3, and VA4 was expanded into a Hilbert matrix (b). The corresponding expansions 
of the four blocks were MB1, MB2, MB3, and MB4 on the matrix, respectively. c The Hilbert volume with the lung tumor inside was expanded to a 
two-dimensional Hilbert matrix (d). Accordingly, the voxels of the lung tumor (c) in blue were expanded into the pixels of the matrix (d) in blue
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model to verify the potential bias caused by segmen-
tation.

The source code for Hilbert curve-based spatial corre-
spondence mapping in this study is publicly available at 
https://​github.​com/​JD910/​HilbC​urv_​Spati​al_​Heter​ogene​
ity. Hilbert volume data for this study, consisting of axial 
plane images, 3D blocks, and the illustrated lung tumor, 
are also available at the above repository to facilitate the 
reproduction of our results. Appropriate institutional 
review board approval was obtained for this study.

Results
The voxels on the Hilbert volume and the corresponding 
pixels in the Hilbert matrix after applying the proposed 
spatial correspondence mapping are presented in Addi-
tional file 1: Appendix Video 1. The colors of the points 
on the curves indicate the spatial correspondence. The 
3D Hilbert volume with level 4 and the corresponding 
2D Hilbert matrix with level 6 were used to illustrate the 
details of pixel adjacency clearly.

For a better presentation of dimensionality reduction, 
the procedure is presented as an animation in Additional 
file 2: Appendix Video 2 to demonstrate the transforma-
tion of the 3D Hilbert volume of the lung tumor to the 
2D Hilbert matrix. The image slices were flattened into 
the matrix one by one, and the pixels moved outward 
step by step to the corresponding position as defined by 
the Hilbert fractal curve. The Hilbert matrix was finally 
filled, and the dimensionality reduction was completed. 
The tumor within the Hilbert volume was preserved after 
dimensionality reduction in the animation to visualize 
better the contrast between the mass in the 3D space and 
the corresponding pixels in the 2D matrix.

Results of the 2D transformation of the Hilbert vol-
umes consisting of a single image on the axial, coronal, 
and sagittal planes are presented in Fig.  5. The corre-
sponding results of the Hilbert volumes consisting of 3D 
blocks and the lung tumor sample are presented in Fig. 6.

The results of the above experiments indicated that 
when transforming images that are commonly visual-
ized in 2D space, such as the slices arranged on axial, 
coronal, and sagittal planes, the pixel distribution on the 
corresponding Hilbert matrix is scattered and irregular, 
difficult to analyze by radiomics or convolutional neu-
ral networks. Therefore, further analysis of the Hilbert 
matrix derived from such 2D slices tends to be mean-
ingless, as shown in the second row in Fig. 5. However, 
for the 3D blocks inside the Hilbert volume, the result of 
dimensionality reduction to the 2D matrix indicated reg-
ular and concentrated squares. This finding was further 
demonstrated by the Hilbert matrix, which was expanded 

from the volume containing the lung tumor. As shown in 
Fig. 6d, although there were outliers in the image because 
of the spatial irregularity of lung tumors, almost all the 
voxels were expanded systematically, corresponding to 
the rectangular and strip-shaped areas. Applying filter-
ing of different receptive fields to these uniform areas on 
the 2D matrix to detect textures and latent semantics is 
equivalent to filtering the corresponding 3D blocks of the 
same size in 3D space. Therefore, the proposed Hilbert 
curve-based spatial mapping to expand the tumor sample 
to a 2D matrix in voxels will enable radiomics and neural 
networks to filter more structured and spatially corre-
lated high-dimensional intra-nodular heterogeneity using 
the existing techniques. A detailed explanation of how to 
apply the proposed method to radiomics and convolution 
neural networks is presented in additional file.

Lung nodules from the LIDC-IDRI dataset were used 
to further demonstrate the performance of the Hilbert 
curve-based spatial correspondence mapping approach. 
A total of 532 benign and 401 malignant nodules from 
the dataset were included, and data augment was used 
to balance training and test data. Detailed statistics of 
the samples, volume, and accuracy (with 95% confidence 
intervals) of the classification using the two types of 
images on the training, validation, and test datasets are 
presented in Table  1. The classification into benign and 
malignant nodules indicated that an accuracy of 93.45%, 
86.36%, and 85.54% was obtained in the training, valida-
tion, and test datasets, respectively, when using the Hil-
bert matrix images decoded from the nodule volumes 
by the proposed Hilbert curve-based mapping method. 
When using the original CT images, the Inception-V4 
network indicated that an accuracy of 95.69%, 75.05%, 
and 73.22% was obtained on the corresponding datasets. 
A significant difference in accuracy was found on the 
test dataset using McNemar’s test (p < 0.001). In addi-
tion, classification using the Hilbert matrix images trans-
formed from the manual segmentation by Radiologist 1 
in the LIDC-IDRI dataset showed an accuracy of 86.11% 
with 95% confidence interval of 79.05% to 93.17% on the 
test dataset.

Discussion
We explored and validated a new approach for mapping 
and visualizing high-dimensional tumors on radiological 
images into the two-dimensional space while preserv-
ing the between-voxel spatial locality. We demonstrated 
that the Hilbert curve is a reliable method for decoding 
intra-tumoral spatial heterogeneity to overcome the bot-
tleneck of current intra-tumor heterogeneity analyses, 
which can only be performed on single slices or regions 
of interest within context-associated radiological slices. 
Our experiments with traditional axial plane images, 

https://github.com/JD910/HilbCurv_Spatial_Heterogeneity
https://github.com/JD910/HilbCurv_Spatial_Heterogeneity
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three-dimensional blocks, and lung tumor samples dem-
onstrated the superiority of the proposed method for 
preserving spatial locality when expanding the entire 
three-dimensional tumor sample into a two-dimensional 
matrix. By designing a specific volume-oriented receptive 
field of filters on the matrix, this approach holds prom-
ise for intra-tumoral spatial heterogeneity extraction 
of whole or partial tumors of various sizes in the corre-
sponding two-dimensional space using current mature 
radiomics or deep learning techniques.

Extracting intra-tumoral spatial heterogeneity from 
3D tumor samples on radiological images is challeng-
ing because the current technique is limited to analyzing 
conventional 2D image slices [13, 30]. Radiomics-based 
heterogeneity analysis studies primarily use features 
extracted from the run-length matrix, co-occurrence 
matrix, and wavelet derived from a single slice [31]. This 
scheme has been accepted as the mainstream workflow 
for radiomics-based toolkit development, such as Pyra-
diomics [14]. Although studies have proposed using the 
average of several internal layers of the tumor to calculate 
the intra-tumoral heterogeneity descriptors, the essence 
of these methods is still 2D processing. In radiomics, 
designing spatial intra-tumoral heterogeneous descrip-
tors from the perspective of 3D tumor samples or masses 
is rare.

To filter the emerging convolution neural network, 
a 3D kernel is applied to identify voxels covered by the 
kernel for feature representation. Generally, three con-
text-associated slices are input into the kernel simulta-
neously; with step-by-step kernel movement, feature 
maps with latent spatial semantics are extracted by the 
convolutional neural network [32]. Although 3D convo-
lution achieves the analysis of spatial heterogeneity, to a 
certain extent, it is limited by the “black box” of the fil-
ter; it is challenging to extend the filter to include more 
slices because increasing the 3D filter volume means an 
exponential surge in computational consumption [33]. 
Therefore, simultaneous quantitative heterogeneity 

analysis of tumor blocks of various sizes is difficult using 
this method.

We proposed a Hilbert curve-based approach to over-
come these barriers, mapping the whole tumor sample 
to a 2D matrix while preserving the voxels’ spatial local-
ity. The Hilbert curves and other fractal-based methods 
to reduce dimensionality have been explored in other 
domains [34, 35], and our study demonstrated that the 
3D tumor blocks with sizes of 

(

24, 24, 24
)

 at different loca-
tions inside the Hilbert volume were expanded to the cor-
responding square on the 2D Hilbert matrix. Thus, the 
idea of radiomics-based intra-tumoral spatial heteroge-
neity extraction performed on tumor samples has been 
transformed to the conventional heterogeneity extrac-
tion workflow on the corresponding square on the 2D 
matrix/image. With the help of the Hilbert curve-based 
dimensionality reduction proposed here, intra-tumoral 
spatial heterogeneity extraction of tumor samples is feasi-
ble using the Hilbert matrix-based run-length, co-occur-
rence, and wavelet-based feature extraction. Therefore, 
our method is promising for future radiomics studies to 
develop automatic and productive intra-tumoral spatial 
heterogeneity feature extraction from radiological images.

Furthermore, three or five image slices are commonly 
included in 3D convolution kernels [36]. The 3D kernel’s 
size cannot be expanded arbitrarily because the capac-
ity and time required increase significantly as the size of 
the convolution kernels increases. For feature presenta-
tion of blocks inside the tumor, 2D convolution is more 
efficient than 3D convolution, but it sacrifices the spa-
tial correlation within the image context. Therefore, bal-
ancing the computational efficiency and spatial context 
for convolutional neural networks is challenging [33]. 
With the proposed spatial correspondence mapping, 
conventional convolution with multiple receptive fields 
performed on the 2D matrix is equivalent to 3D convo-
lution for the corresponding 3D blocks. Although the 
obtained 2D matrix is not as concrete as the common 
cross-sectional images are, it truly and vividly reflects 

Table 1  Statistics of samples, volume (presented by the LIDC-IDRI dataset), and accuracy (with 95% confidence intervals) of 
classification using the two types of images on the training, validation, and test datasets

CI confidence intervals

Training Validation Test

Dataset

 Benign 428 52 52

 Malignant 321 40 40

 Volume (avg) 1221.05 985.33 1069.61

Accuracy (95% CI)

 Original CT images 95.69% (94.29–97.09%) 75.05% (66.21–83.89%) 73.22% (64.18–82.26%)

 Hilbert matrix images 93.45% (91.86–95.04%) 86.36% (69.35–93.37%) 85.54% (78.35–92.73%)
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the intra-tumoral spatial heterogeneity distribution, as 
demonstrated by the experiment on the 933 lung nod-
ules from the LIDC-IDRI dataset. Therefore, 2D convo-
lution to the Hilbert matrix is promising to improve the 
efficiency of high-dimensional convolution and main-
tain between-voxel spatial attributes.

Our study has several limitations. First, we only vali-
dated Hilbert curve-based spatial mapping; however, 
there are other space-filling curves, such as the Peano 
curve, Gosper curve, and Koch snowflake [37–39]. In 
the future, we will explore these space-filling curves’ 
ability to preserve the spatial locality and explore the 
specific correspondence between 3 and 2D space to 
determine the mathematical mechanism of space-filling 
curves in spatial intra-tumoral heterogeneity analy-
sis. Additionally, this preliminary study only used lung 
tumors to illustrate and demonstrate the Hilbert curve-
based tumor sample expansion. Multiple tumor samples 
from radiology, histopathology, and genomics should 
be used to explore and validate the intra-tumoral spa-
tial heterogeneity decoding in the future. Finally, the 
result of unfolding the spatial heterogeneity between 
the intra-tumoral voxels proposed in this study is an 
abstract mapping of the spatial correspondence and 
not the conventional axial plane images. Therefore, the 
visual interpretation of the image needs to be explored 
to broaden our knowledge of the characteristics of the 
decoded intra-tumoral spatial heterogeneity.

In conclusion, we proposed and validated a Hilbert 
curve-based approach to map and visualize high-dimen-
sional tumors from radiological images into two-dimen-
sional images while preserving the between-voxel spatial 
locality. This method could overcome the bottleneck of 
current tumor sample-based intra-tumoral spatial hetero-
geneity extraction and holds promise for launching high-
dimensional intra-tumoral spatial heterogeneity analyses 
of radiological images in radiomics and promoting neural 
networks to identify more structured and spatially corre-
lated high-dimensional heterogeneous semantics.
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