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Abstract 

Background:  Despite that machine learning (ML)-based MRI has been evaluated for diagnosis of axillary lymph 
node metastasis (ALNM) in breast cancer patients, diagnostic values they showed have been variable. In this study, we 
aimed to assess the use of ML to classify ALNM on MRI and to identify potential covariates that might influence the 
diagnostic performance of ML.

Methods:  A systematic research of PubMed, Embase, Web of Science, and the Cochrane Library was conducted until 
27 December 2020 to collect the included articles. Subgroup analysis was also performed.

Findings:  Fourteen studies assessing a total of 2247 breast cancer patients were included in the analysis. The overall 
AUC for ML in the validation set was 0.80 (95% confidence interval [CI] 0.76–0.83) with a negative predictive value of 
0.83. The pooled sensitivity and specificity were 0.79 (95% CI 0.74–0.84) and 0.77 (95% CI 0.73–0.81), respectively. In 
the subgroup analysis of the validation set, T1-weighted contrast-enhanced (T1CE) imaging with ML yielded a higher 
sensitivity (0.80 vs. 0.67 vs. 0.76) than the T2-weighted fat-suppressed (T2-FS) imaging and diffusion-weighted imag-
ing (DWI). Support vector machines (SVMs) had a higher specificity than linear regression (LR) and linear discriminant 
analysis (LDA) (0.79 vs. 0.78 vs. 0.75), whereas LDA showed a higher sensitivity than LR and SVM (0.83 vs. 0.70 vs. 0.77).

Interpretation:  MRI sequences and algorithms were the main factors that affect the diagnostic performance of ML. 
Although its results were encouraging with the pooled sensitivity of around 0.80, it meant that 1 in 5 women that 
would go with undetected metastases, which may have a detrimental effect on the overall survival for 20% of patients 
with positive SLN status. Despite that a high NPV of 0.83 meant that ML could potentially benefit those with nega-
tive SLN, it might also translate to 1 in 5 tests being false negative. We would like to suggest that ML may not be yet 
usable in clinical routine especially when patient survival is used as a primary measurement of its outcome.
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Key points

•	 Sentinel lymph node biopsy (SLNB) with machine 
learning (ML) might be more helpful to breast can-
cer patients because ML might prevent over-treat-
ment due to its sensitivity of around 0.80 to classify 
ALNM.
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•	 T1CE with ML is more sensitive than T2-FS and 
DWI (0.80 vs. 0.67 vs. 0.76, respectively).

•	 Support vector machine (SVM) is more specific 
than linear regression (LR) and linear discriminant 
analysis (LDA) (0.79 vs. 0.78 vs. 0.75, respectively), 
whereas LDA is more sensitive than LR and SVM 
(0.83 vs. 0.70 vs.0.77, respectively).

Introduction
Breast cancer is one of the most common malignancies 
worldwide, accounting for 30% of all new cancer diag-
noses in 2018 among American women [1]. As axillary 
lymph node status in breast cancer patients is crucial for 
pathologic staging, it is also used as a prognostic indi-
cator and for clinical patient management, therapeutic 
guidance, and survival predictions [2, 3]. Although axil-
lary lymph node dissection (ALND) is the gold standard 
for evaluating axillary lymph node metastasis (ALNM), 
ALND might not confer a survival advantage [4]. Sen-
tinel lymph node biopsies (SLNBs) are used widely and 
can reduce ALND complications [5]. However, SLNBs 
are invasive procedures that could be associated with 
fewer disadvantages such as lymphoedema and sen-
sory loss (the risks of 5% and 11%, respectively) [6]. One 
way of SLNBs is to surgically remove of one or a few 
axillary lymph nodes, whereas over 70% of SLNBs are 
negative, thus questioning the generic use of this inva-
sive procedure [7]. In addition, another way of SLNBs 
is to inject a radiotracer or ultrasound with fine-needle 
aspiration, which, however, is difficult to perform in pri-
mary hospitals due to lack of practical experience and 
nuclear medicine or other relevant facilities. Therefore, 
it would be more than advantageous to research and 
develop some noninvasive approaches to predict ALNMs 
preoperatively.

Ultrasound, mammogram, PET/CT, and MRI have 
been used to diagnose ALNMs during breast cancer stag-
ing. Ultrasonography showed a sensitivity and a specific-
ity of 33–86.2% and 40.5–96.2%, respectively [8–13]. The 
sensitivity and specificity of mammogram procedures 
were 21% and 99.5%, respectively [11]. The overall sen-
sitivities and specificities of PET/CT were reported to 
be 20–80% and 88.6–97%, respectively [8–10, 13, 14]. 
In addition, ultrasonography is convenient but is also 
dependent on operator experience. Mammogram and 
PET-CT can result in unnecessary exposure to harm-
ful ionising radiation. Conversely, due to its low inter-
observer variability, hardly any radiation, and improved 
diagnostic contrast, MRI has become a routine noninva-
sive diagnostic tool.

Machine learning (ML) is a branch of artificial intel-
ligence that includes algorithms that could enhance 

diagnosis, treatments, and follow-up neuro-oncology vis-
its by analysing enormous complex datasets [15, 16]. In 
recent years, there have been some studies on the use of 
ML to predict ALNM in breast cancer patients. The use 
of ML in predicting ALNM is not dependent on opera-
tor experience levels and is more objective with good 
repeatability. In addition, the diagnostic performance of 
ML might be further improved. To avoid overfitting and 
to adequately assess ML performance, proper training 
should involve k-fold cross-validation or external testing. 
However, the results so far are far from being consistent 
even among themselves. What’s more, no meta-analysis 
has previously been done to assess the use of ML for 
predicting ALNM. To address this problem, the present 
meta-analysis pooled all the published studies concern-
ing the diagnostic performance of ML-based MRI in the 
prediction of ALNM in breast cancer patients.

Materials and methods
Literature search and study selection
A search in PubMed, Embase, Web of Science, and the 
Cochrane Library was performed until 27 December 
2020. It used almost all Medical Subject Heading (MeSH) 
terms available and free keywords for “Machine Learn-
ing”, “Transfer Learning”, “Breast Neoplasms”, “Breast 
Tumor”, “Breast Cancer”, “Lymphatic Metastasis”, and 
“Lymph Node Metastasis”. A search of the reference lists 
from included studies was also performed.

Two reviewers selected potentially relevant studies 
independently based on the title and abstract, and disa-
greements were resolved by a third reviewer to reach a 
consensus.

Studies were included if (1) the research subject was 
limited to human subjects in English; (2) the diagnostic 
performance pertaining to sensitivity and specificity was 
reported; (3) a histopathologically confirmed ALNM was 
present in breast cancer patients; and (4) ML was applied 
to predict ALNM without defined limit for age or sample 
size.

Studies were excluded if (1) the publication was on 
animal research, a conference abstract, or a review arti-
cle, and (2) the study reported on overlapping patient 
cohorts.

Data extraction
Data from the included studies were collected by two 
investigators independently, and discrepancies between 
were resolved with the help of a third investigator. Each 
study was initially identified by identifying the author’s 
name and the year of publication. A spreadsheet was 
used to extract total patient populations, numbers of 
abnormal and normal lymph nodes, and sensitivity 
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and specificity of ML detection. Other information 
included the study design, algorithms, data sources, MRI 
sequences, image segmentations, magnet field strengths, 
and manufacturers.

Quality assessment
The quality of studies and likelihood of bias were con-
ducted according to the Quality Assessment of Diag-
nostic Accuracy Studies-2 (QUADAS-2) [17], which has 
two main areas, viz. risk of bias and concerns regarding 

applicability. The tool consists of four domains, including 
patient selection, index test, reference standard, and flow 
and timing. The first three domains were also assessed in 
terms of applicability concerns using high, low, or unclear 
ratings. For individual studies, each domain was consid-
ered at a high, low, or unclear risk of bias. If the answers 
to all signalling questions for a domain were “yes”, the risk 
of bias would be judged as low. If answers to any signal-
ling questions were “no or unclear”, the risk of bias would 
be judged as high or unclear. Two reviewers performed 

Fig. 1  A flow diagram of the literature review and study selection
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quality assessments independently and discrepancies 
between them were resolved by a third reviewer to reach 
a consensus. Review Manager 5.3 (RevMan 5.3) software 
(Cochrane Collaboration, Oxford, UK) was used.

Statistical analysis
Numerical values for sensitivity and specificity were 
extracted and their true positive (TP), false positive 
(FP), false negative (FN), and true negative (TN) values 
were recalculated. Threshold analysis was performed, 
and a Spearman correlation coefficient and p value were 
obtained. Symmetry or asymmetry summary receiver 
operating characteristic (SROC) curves were used to 
evaluate threshold effects according to the p value of 
the b coefficient using measures of effectiveness (MOEs) 
modelling. Cochran-Q tests and the inconsistency indi-
ces (I2) of the sensitivity, specificity, positive likelihood 
ratio (PLR), negative likelihood ratio (NLR), negative 
predictive value(NPV), and diagnostic odds ratio (DOR) 
were used to explore heterogeneity. If I2 < 50% and 
p > 0.05, the fixed-effects model was used; otherwise, the 
random-effects model was used to pool these five effect 
sizes. The criteria of heterogeneity for the I2 values were 
0–25% (very low), 25–50% (low), 50–75% (medium), 
and > 75% (high), respectively. Subgroup analysis was fur-
ther performed to explore the sources of heterogeneity 
that were performed based on MRI sequences, magnet 
field strengths, image segmentation methods, and ML 
algorithms. Sensitivity analysis was used to assess the 
robustness of the meta-analysis by verifying if the size 
of a research study can affect the pooled results. Deeks 

funnel plot was used to assess publication bias. Data 
analysis was performed using Stata14.0 (StataCorp LP, 
College Station, TX) and MetaDisc1.4 (http://​www.​hrc.​
es/​inves​tigac​ion/​metad​isc_​en.​htm) software. For each of 
the parameters (1.5  T; 3.0  T; T2-FS; T1CE; DWI; SVM; 
LR; LDA; 2D and 3D), we constructed forest plots for 
pooled sensitivities, specificities, PLR, NLR, and DOR. 
Others such as field strength, sequence, algorithm, and 
segmentation were compared by using a Student t test, 
Mann–Whitney U test, or a one-way analysis of variance. 
For studies describing different results in a classifier due 
to multiple kernels in ML, performance of these studies 
was selected with the highest one.

Results
Literature search and data extraction
A detailed study selection process is presented in Fig. 1. 
There were 273 potentially eligible citations. After remov-
ing 39 duplicate records, 234 records were screened. With 
216 citations based on the title and abstract excluded, 18 
full-text articles were assessed for eligibility. After revi-
sion, a total of 14 original articles [18–31] that included 
2247 breast cancer patients (954 abnormal lymph nodes 
and 1508 normal lymph nodes) were eventually included 
in the study. The patient and study characteristics are 
described in Table 1, and the baseline characteristics are 
shown in Table 2.

Data quality assessment
Results of the QUADAS-2 assessments are shown in 
Fig. 2 and the Additional file 1: Supplementary Materials. 
Most included studies were regarded as having a low to 

Table 1  Study and patient characteristics

Retro, retrospective; Pros, prospective

Author (year of publication) Data source # Abnormal/normal 
nodes

# Patients Magnet field strength, 
manufacturer

Study design

Hongna Tan (2020) Single institution 119/210 329 3.0 T GE Retro

Thomas Ren (2020) Single institution 66/193 99 1.5 T GE Retro

Xiao Zhang (2019) Single institution 55/91 146 1.5 T Philips Retro

Jia Liu (2019) Single institution 35/27 62 3.0 T GE Retro

Karl D Spuhler (2019) Single institution 55/108 163 1.5 T GE Retro

Lu Han (2019) Single institution 148/263 411 1.5 T GE Retro

Jiaxiu Luo (2018) Single institution 74/98 172 1.5 T Philips Retro

Chunling Liu (2019) Single institution 55/108 163 1.5 T GE Retro

Yuhao Dong (2018) Single institution 55/91 146 1.5 T Philips Retro

Meijie Liu (2020) Single institution 78/86 164 3.0 T GE Pros

Xiaoyu Cui (2019) Single institution 52/63 102 3.0 T Siemens Retro

Demircioglu (2020) Single institution 34/50 84 1.5 T Siemens Retro

Arefan (2020) Single institution 80/74 154 3.0 T Siemens Retro

Fusco (2018) Single institution 48/46 52 1.5 T Aurora Retro

http://www.hrc.es/investigacion/metadisc_en.htm
http://www.hrc.es/investigacion/metadisc_en.htm
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Table 2  Baseline characteristics of the included studies

Author (year of publication) Algorithm Sequences Segmentation Dataset Sensitivity Specificity

Hongna Tan (2020) SVM T2-FS 3D Training set 84.38% 72.25%

Validation set 65.22% 81.08%

Thomas Ren (2020) CNN T1CE 2D Validation set 92.10 ± 2.90% 79.30 ± 5.10%

Xiao Zhang (2019) RF DWI 3D Validation set 83.30% 74.20%

T2-FS 77.80% 87.10%

Jia Liu (2019) SVM T1CE 3D Training set 75.00% 76.00%

Validation set 71.00% 100.00%

Xgboost Training set 89.00% 76.00%

Validation set 86.00% 83.00%

LR Training set 71.00% 71.00%

Validation set 71.00% 83.00%

Karl D Spuhler (2019) CNN T1CE 3D Testing set 72.20% 88.90%

Lu Han (2019) SVM T1CE 2D Training set 89.00% 57.00%

Validation set 78.00% 72.00%

Jiaxiu Luo (2018) SVM DWI 3D Testing set 86.70% 83.30%

Chunling Liu (2019) LR T1CE 3D Training set 76.10% 66.70%

Validation set 81.90% 77.80%

Yuhao Dong (2018) LR T2-FS 3D Training set 66.30 ± 0.30% 81.60 ± 0.20%

Validation set 60.00 ± 0.60% 74.70 ± 0.40%

DWI Training set 74.00 ± 0.20% 80.80 ± 0.20%

Validation set 69.50 ± 0.50% 75.70 ± 0.40%

T2-FS and DWI Training set 66.30 ± 0.30% 81.60 ± 0.20%

Validation set 70.00 ± 0.80% 74.70 ± 0.50%

Meijie Liu (2020) LR T1CE 2D Validation set 64.00% 79.00%

Xiaoyu Cui (2019) SVM T1CE 3D Validation set 94.90% 77.96%

KNN 89.39% 87.18%

LDA 80.31% 67.78%

Demircioglu (2020) LR T1CE and T2-FS 3D Validation set 71.00% 74.00%

Arefan (2020) LDA T1CE 2D Testing set 60.00% 87.00%

RF 60.00% 86.00%

NB 81.00% 67.00%

KNN 74.00% 54.00%

SVM 70.00% 71.00%

LDA 3D 63.00% 92.00%

RF 64.00% 90.00%

NB 85.00% 62.00%

KNN 67.00% 58.00%

SVM 81.00% 50.00%

LDA 2D Validation set 82.00% 76.00%

RF 89.00% 68.00%

NB 73.00% 82.00%

KNN 79.00% 75.00%

SVM 65.00% 88.00%

LDA 3D 82.00% 78.00%

RF 89.00% 70.00%

NB 69.00% 76.00%

KNN 75.00% 75.00%

SVM 73.00% 79.00%

Fusco (2018) LDA T1CE 3D Validation set 88.50% 77.80%

CNN, convolutional neural networks; SVM, support vector machine; LR, linear regression; KNN, k-nearest neighbor; LDA, linear discriminant analysis; NB, naive Bayes; 
RF, random forest; T2-FS, fat-suppressed T2; T1CE, contrast-enhanced T1. The algorithm pooled was chosen with the highest performance
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moderate risk of bias with low concerns over their appli-
cability. In particular, only one study scored a low risk of 
bias in all domains [19]. For the patient selection domain, 
two studies were considered to have a high risk of bias 
due to their non-consecutive or random patient enrol-
ment [24, 27]. Seven studies were considered to have a 
risk that is uncertain because they did not explain how 
patients were enrolled [20–23, 26, 28, 30]. For the index 
test domain, seven studies [18, 22, 25, 27, 29–31] were 
considered to have an unclear risk because they lacked 
pre-specified thresholds. Further, for the reference stand-
ard domain, all studies were classified as having a low 
risk, and all of the selected studies used biopsy and/or 
histopathology as the reference standard. Lastly, for the 
domain of flow and timing, one study [21] was consid-
ered to be at high risk because it did not explain whether 
all of its patients were included in the study.

Data analysis
There are different numbers for training, testing, and 
validation studies because there were eight studies 
which only showed the validation or test results [18, 20, 
21, 24, 25, 27, 29, 30], whereas six others only showed 
the results of training, testing/validation [19, 22, 23, 
26, 28, 31]. In the test set, the sensitivity and speci-
ficity of the pooled three studies were 76% and 82%, 
respectively. In the validation set, the sensitivity and 
specificity of the pooled twelve studies were 79% and 
77%, respectively. The Spearman correlation coefficient 
in the validation set was − 0.083 (p = 0.799), indicat-
ing no threshold effect discovered. Next, no “shoul-
der arm” plot  was observed in the SROC curve. Since 
I2 of sensitivity, specificity, PLR, NLR, DOR = 21.60%, 
0.00%, 0.00%, 24.20%, 0.00% < 50.00%, p values were 
0.174, 0.994, 0.969, 0.206, 0.604, respectively, a model 
of fixed-effects to pool effect sizes was chosen (Fig. 3). 
The pooled sensitivity, specificity, PLR, NLR, and DOR 
were 0.79 (95%Cl 0.74–0.84), 0.77 (95%Cl 0.73–0.81), 
3.47 (95%Cl 2.91–4.14), 0.27 (95%Cl 0.22–0.33), 12.92 
(95%Cl 9.34–17.87), respectively (Fig. 4). The AUC was 
0.80(95%Cl 0.76–0.81). More interestingly, for those 
patients predicted to have negative SLN, they achieved 
a high NPV of 0.83. Sensitivity analysis that removed 
studies with potential bias showed results consistent 
with the primary meta-analysis, which were conducted 
to assess robustness of the synthesised results. Sensi-
tivity analysis showed that twelve original articles had 
better stability and reliability and relatively high quality 
(Fig. 5).

Since the studies of the test set were too small to draw 
any reliable conclusions, subgroup analysis was per-
formed only in the validation set (Table  3). T1CE with 
ML yielded a higher sensitivity (0.80 vs. 0.67 vs. 0.768) 

than T2-FS and DWI (p < 0.05). The number of com-
bining T2-FS and DWI or T2-FS and T1CE was only 
one study, which, nonetheless, was too small to draw 
any reliable conclusions. In addition, MRI magnet field 
strength also affected the diagnostic performance of ML. 
In comparison with 1.5 T, studies using 3.0 T had a bet-
ter sensitivity (0.86 vs. 0.81) (p > 0.05). In algorithm, SVM 
demonstrated a higher specificity than LR and LDA (0.79 
vs. 0.78 vs. 0.75), whereas LDA showed a higher sensitiv-
ity than LR and SVM (0.83 vs. 0.70 vs.0.77) (p < 0.05). ML 
performed better for 3D than 2D, in which the pooled 
sensitivities were 0.80 versus 0.77 and specificities were 
0.78 versus 0.76 (p > 0.05). In addition, the Deeks funnel 
plot revealed that there was no obvious publication bias. 
(p = 0.870, Fig. 6).

Discussion
ALNM can determine the prognosis and treatment of 
breast cancer patients. Thus, it is imperative to find an 
accurate and reproducible way to detect ALNM. To 
address this issue, this meta-analysis was intended to 
assess the applicability of ML to the classification of 
ALNM on MRI and to the identification of potential 
covariates that influence the diagnostic performance of 
ML.

DWI is a commonly performed sequence with prom-
ising results for the evaluation of breast lesions because 
their images can be obtained in a short time without 
contrast agents [32]. However, most lesions show images 
with a relatively inferior quality and increase blurrings 
and distortions on DWI, which can make it difficult to 
accurately segment the lesions. In contrast, T2-weighted 
imaging (T2WI) can clearly depict edema, hemorrhage, 
mucus, and cystic fluid, which can be valuable for evalua-
tion of breast masses [33]. T2-FS can also show the lesion 
boundaries clearly. Dynamic contrast-enhanced (DCE)-
MRI with numerous scanning phases is sensitive to the 
change in tissue vessel perfusion and permeability [34]. 
However, compared with T2-FS, DCE-MRI had a better 
sensitivity. Demircioglu et  al. [21] reported that ALNM 
classifications that combined T2-FS with T1CE were 
moderate with an AUC of 0.710, but this meta-analysis 
discovered that the number of combined sequences was 
not big enough to draw any reliable conclusions from 
them. Ren et  al. [20], Han et  al. [26] and Liu et  al. [28] 
used the T1CE first axial phase images to predict ALNM 
and achieved AUCs of 0.91, 0.78, and 0.81 in the valida-
tion sets, respectively. Liu et al. [23], Liu et al. [18], Are-
fan et al. [22], Fusco et al. [29], and Cui et al. [27] use the 
peak enhanced phase images achieved AUCs of 0.85, 
0.74, 0.82, 0.81, and 0.77 in the validation sets, respec-
tively. Theoretically, 3  T imaging has been shown to be 
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Fig. 2  Methodologic quality of the included studies assessed according to the Quality Assessment of Diagnostic Accuracy Study 2 tool for risk of 
bias and applicability concerns. Green represents low, yellow unclear, and red high risk of bias
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able to improve image quality due to its better perfor-
mance resulting from higher spatial resolution [35]. 
This meta-analysis revealed that, in comparison with 
1.5 T, studies using 3.0 T had a better sensitivity (0.86 vs. 
0.81), albeit without significant differences. This should 

be further validated with a larger size of samples in the 
future.

Different as they are, algorithms have advantages of 
their own. Linear discriminant analysis (LDA) models 
can distinguish and identify a linear decision boundary 
between classes [36]. Support vector machine (SVM), 
as one of the most popular classifying techniques, is an 
excellent algorithm that can be utilised to model mis-
specifications and can effectively handle high-dimen-
sional data [37]. Linear regression (LR) is also suitable 
for the regression of high-dimensional data. In this meta-
analysis, SVM demonstrated a higher specificity than LR 
and LDA, whereas LDA showed a higher sensitivity than 
LR and SVM. Yu et  al. [38] used LR to identify ALNM 
in the development and validation set with AUCs of 0.88 
and 0.85, respectively. Takada et al. [39] used a decision 
tree to predict ALNM (AUCs of 0.770 and 0.772 in the 
training and validation sets, respectively). Schacht et  al. 
[40] and Ha et al. [41] used neural net classifiers to pre-
dict ALNM, achieving an AUC of 0.880 and an accuracy 
of 84.30%. As probabilistic classifiers, naive Bayes models 
are constructed using the Bayes theorem of conditional 
probabilities [42]. XGBoost is an optimised distributed 
gradient boosting library designed to be highly efficient, 
flexible, and portable. A random forest is a multitude of 
trees, but they are differentiated by a random selection 
of the variables to reduce correlations between the fit-
ted trees [43]. The k-nearest neighbor algorithm is a tool 
used to exploit the local information in classification and 
regression problems [44]. Convolutional neural networks 

Fig. 3  A forest plot of single studies for the pooled diagnostic odds ratio and 95% confidence interval (CI) in the validation group. Horizontal lines 
represent the 95% CI of the point estimates. Each red circle represents the area under the curve (AUC) of the individual studies, and the box size 
indicates the study size. The red diamond indicates the pooled AUC of all twelve studies

Fig. 4  Summary receiver operating characteristics (SROC) curve 
regarding the diagnostic performance of machine learning in 
predicting axillary lymph node metastasis in breast cancer patients. 
SROC curve (solid line) and summary point (red square). Every circle 
represents the sensitivity and specificity estimate from one study, and 
the size of the circle reflects the sample size. The pooled area under 
the curve was 0.80
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Fig. 5  Sensitivity analysis. a Goodness of fit; b bivariate normality; c influence analysis; and d outlier detection. All original articles had high stability 
and reliability and relatively high quality in the validation set

Table 3  The performance evaluation of the datasets and subgroups

PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; SVM, support vector machine; LR, linear regression; LDA, linear discriminant 
analysis; T2-FS, fat-suppressed T2; T1CE, contrast-enhanced T1; #, 0–25% of I2 values; ##, 25–50%; *, 50–75%; **, > 75%; # and ##, fixed-effects model; * and **, random-
effects model

Dataset No. of studies Sensitivity Specificity PLR NLR DOR

Testing set 3 0.76 (0.64–0.86)# 0.82 (0.72–0.89)## 3.90 (2.49–6.11)## 0.29 (0.19–0.46)# 12.88 (5.99–27.71)##

Validation set 12 0.79 (0.74–0.84)# 0.77 (0.73–0.81)# 3.47 (2.91–4.14)# 0.27 (0.22–0.33)# 12.92 (9.34–17.87)#

Overall validation group

Magnetic field strength (T)

1.5 T 7 0.81 (0.75–0.87)# 0.76 (0.71–0.81)# 3.38 (2.70–4.24)# 0.25 (0.18–0.34)# 13.15 (8.37–20.66)#

3.0 T 5 0.86 (0.78–0.89)** 0.76 (0.70–0.82)# 3.46 (2.69–4.46)# 0.23 (0.11–0.48)** 17.78 (10.54–30.00)##

Sequence

T2-FS 3 0.67 (0.54–0.79)# 0.80 (0.71–0.88)# 3.43 (2.22–5.29)## 0.41 (0.28–0.59)# 8.01 (4.01–16.00)##

T1CE 8 0.80 (0.75–0.84)## 0.80 (0.75–0.84)# 4.04 (3.25–5.02)# 0.25 (0.19–0.31)## 16.27 (11.08–23.89)#

DWI 2 0.76 (0.60–0.89)# 0.75 (0.63–0.85)# 3.10 (1.96–4.91)# 0.31 (0.17–0.56)# 10.00 (3.97–25.17)#

Algorithm

SVM 5 0.77 (0.71–0.82)** 0.79 (0.73–0.83)## 3.67 (2.87–4.70)# 0.30 (0.19–0.47)* 13.43 (8.62–20.93)##

LR 4 0.70 (0.58–0.81)# 0.78 (0.68–0.85)# 3.20 (2.17–4.71)# 0.37 (0.26–0.55)# 8.60 (4.44–16.66)#

LDA 3 0.83 (0.77–0.88)# 0.75 (0.68–0.81)# 3.35 (2.58–4.35)## 0.22 (0.16–0.31)# 14.78 (9.01–24.26)#

Segmentation

2D 4 0.77 (0.70–0.83)## 0.76 (0.70–0.82)# 3.30 (2.55–4.28)# 0.29 (0.21–0.39)# 11.46 (7.05–18.62)#

3D 9 0.80 (0.75–0.84)## 0.78 (0.73–0.82)# 3.56 (2.88–4.39)# 0.26 (0.21–0.34)## 13.52 (9.27–19.72)#
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(CNNs) can obtain global and local image information 
directly from the convolution kernels [45, 46]. However, 
the data of these algorithms were insufficient. Multiple 
ML models should be used in clinical routine in order 
that the ensemble of models has a better diagnostic per-
formance than individual one.

The 2D image segmentation method, using a sin-
gle tumour slice, can make 2D analysis susceptible to 
the choices of the single representative slice chosen by 
human experts, whereas 3D analysis is not susceptible 
to this variation because they cover all tumour volumes. 
Although it is exceedingly time-consuming to perform 
manual segmentation using 3D imaging, most tumour 
characteristics can be captured with 3D tumour volumes. 
Thus, this may indicate why 3D performs better than 2D, 
albeit we did not find any significant differences.

The results of this meta-analysis were encouraging 
owing to its pooled sensitivity of around 0.80, which, 
however, means that 1 in 5 women that would go 
with undetected metastases and this may have a det-
rimental effect on overall survival for 20% of patients 
with positive SLN status. Although a high NPV of 
0.83 means that ML may potentially benefit those 

with negative SLN, who account for over 70% of all 
breast cancer patients [7], by helping them eliminate 
the unnecessary invasive lymph node removal and 
avoid the overtreatment of axillary fossa accompanied 
by the associated serious complications, this would 
translate to 1 in 5 tests being false negative. In view 
of this, we would like to admit that ML may not be 
yet usable in routine clinical checkups especially when 
using patient survival as a primary measurement of 
outcome.

Several limitations to our meta-analysis are notice-
able. First, only fourteen original research articles met 
the selection criteria as there were not many studies 
about ALNM in breast cancer patients. We were also 
unable to retrieve sufficient data for some studies. Sec-
ond, the algorithm classification performances var-
ied from feature selection to alterations in the linear, 
quadratic, cubic, and Gaussian kernel functions; there-
fore, we chose the highest performers that might have 
affected the performance results. Finally, in all cases, 
the use of data was from only one single institution, 
which may not be sufficient to demonstrate the repli-
cability of our findings.

Fig. 6  The Deeks funnel plot asymmetry test to determine publication bias in the literature evaluation (p = 0.76) indicated there was no obvious 
publication bias. Each dot represents an individual study
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In conclusion, MRI sequences and algorithms con-
stitute the main factors that affect the diagnostic per-
formance of machine learning. Combining SLNB with 
ML, it would be more helpful to breast cancer patients. 
In future research, larger, well-designed, conducted, and 
reported trials are needed for better performances.
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