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Abstract

Objectives: To analyze all artificial intelligence abstracts presented at the European Congress of Radiology (ECR)
2019 with regard to their topics and their adherence to the Standards for Reporting Diagnostic accuracy studies
(STARD) checklist.

Methods: A total of 184 abstracts were analyzed with regard to adherence to the STARD criteria for abstracts as
well as the reported modality, body region, pathology, and use cases.

Results: Major topics of artificial intelligence abstracts were classification tasks in the abdomen, chest, and brain
with CT being the most commonly used modality. Out of the 10 STARD for abstract criteria analyzed in the present
study, on average, 5.32 (SD = 1.38) were reported by the 184 abstracts. Specifically, the highest adherence with
STARD for abstracts was found for general interpretation of results of abstracts (100.0%, 184 of 184), clear study
objectives (99.5%, 183 of 184), and estimates of diagnostic accuracy (96.2%, 177 of 184). The lowest STARD
adherence was found for eligibility criteria for participants (9.2%, 17 of 184), type of study series (13.6%, 25 of 184),
and implications for practice (20.7%, 44 of 184). There was no significant difference in the number of reported
STARD criteria between abstracts accepted for oral presentation (M = 5.35, SD = 1.31) and abstracts accepted for
the electronic poster session (M = 5.39, SD = 1.45) (p = .86).

Conclusions: The adherence with STARD for abstract was low, indicating that providing authors with the related
checklist may increase the quality of abstracts.
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Key points

� Classification tasks and CT imaging were the most
common topics of ECR artificial intelligence
abstracts.

� The adherence with the STARD for abstracts
checklist was in general low.

� Adherence for these essential STARD checklist
elements was not higher among abstracts accepted
for oral presentation compared to abstracts accepted
for the electronic poster session

Introduction
New machine learning techniques, especially deep neural
networks, hold the promise to revolutionize many as-
pects of radiology and have gained immense public and
professional attention over the last few years [1, 2]. This
has led to a sharp increase in publications [3–7], the
founding of new journals [8], and FDA approval for new
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diagnostic algorithms [9–11]. This rapid expansion of
the field is also reflected by the introduction of machine
learning and artificial intelligence as a new topic at the
2019 European Congress of Radiology. With this in-
creased scientific output, it may be helpful to take a step
back and try to get a bigger picture of the research land-
scape. Does this increased scientific output consist of
quality research with a strong methodology or are ma-
chine learning techniques applied without considering
potential pitfalls to quickly produce papers that follow
the latest trend?
Because conference abstracts can be a preview of

future publications, analyzing them can give insights
into where the field is headed: What are the problems
that machine learning models are mainly used to
solve? What are the pathologies with the most re-
search focus? And what body regions and modalities
get the most attention? All these questions can be an-
swered by taking a closer look at the abstracts from
the European Congress of Radiology (ECR) 2019.
Besides the thematic focus of the abstracts, we also
assessed the adherence of abstracts to established
reporting guidelines. As previous efforts have shown,
a large proportion of studies focusing on the evalu-
ation of AI algorithms are lacking important features,
such as external validation, that ensure robust per-
formance in a clinical setting [12]. Reporting guide-
lines, such as STARD [13], CONSORT [14], STROBE
[15], and PRISMA [16], can help when conceptualiz-
ing a study and during the publication process to en-
sure that all necessary information is included in the
final paper. For the purpose of this investigation, we
compared submitted abstracts to the STARD criteria
for abstracts [13]. The goal of the STARD initiative is
to improve the way studies of diagnostic accuracy are
reported by ensuring that all relevant information to
sufficiently judge and reproduce a given study is in-
cluded in the final paper. We chose the STARD cri-
teria for this study for two reasons: first, the STARD
criteria were specifically developed to assess studies of
diagnostic accuracy. Because one of the most com-
mon applications of machine learning techniques in
medicine is the development of new diagnostic algo-
rithms, the STARD criteria are a good fit to evaluate
this particular kind of study. Second, the STARD for
abstracts checklist was specifically developed for con-
ference abstracts and therefore well suited for the
task of analyzing the abstracts of the ECR 2019.
To sum up, the goal of the present study was to

analyze all artificial intelligence abstracts presented at
the European Congress of Radiology (ECR) 2019 with
regard to their topics and their adherence to the
Standards for Reporting Diagnostic accuracy studies
(STARD) checklist.

Materials and methods
Abstracts
ECR 2019’s respective websites (EPOS and ECR online)
and the book of abstracts were analyzed by one of the
authors to identify all abstracts that were submitted
under the topic “AI,” which resulted in a final sample of
184 abstracts that were used as the basis for all further
analyses.
In addition to the title and text, we also retrieved the

country of origin. Abstracts were divided into two main
categories: oral presentation (scientific presentation and
MyT3: My Thesis in 3 Minutes) and electronic poster
session.

STARD criteria
For the purpose of this study, we used the STARD cri-
teria for abstracts [13]. The criteria are organized ac-
cording to the general structure of a scientific paper
(Background, Methods, Results, and Discussion) and
focus on the information crucial to replicable and
criticizable research. See Table 1 for an overview of the
eleven STARD criteria for abstracts. The 11th criter-
ion—registration number—was not used in the present
study because registration number and name of registry
are usually not required for abstracts submitted to the
ECR.

Additional quality criteria
In addition to the STARD criteria, we also analyzed
whether the studies used a validation set to evaluate the
performance of the developed methods, which is import-
ant because especially deep neural networks pose the
danger of overfitting to the training data. Given enough
time and a sufficiently large network, all mappings be-
tween input and output can be memorized, which can
result in perfect performance on the training data. How-
ever, such an overfitted network will perform poorly on
new data not encountered during training. Therefore, to
gain a more realistic assessment of a network’s perform-
ance, it is important to test the network on data not en-
countered during training. Whether a validation set was
used in a given study is therefore an important quality
indicator to decide whether the performance of a net-
work will generalize. For the purpose of this study, we
did not differentiate between internal and external valid-
ation. Each abstract was analyzed with regard to whether
a validation set (internal or external) not used during
training was used to assess the performance of the
model.
Additionally, we also analyzed the sample size of each

study (i.e., unique participants—not slices or images)
and whether the studies reported confidence intervals.
Furthermore, we analyzed whether the studies used a
public data set and whether the studies evaluated an
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existing algorithm (commercial or otherwise) that was
not developed as part of the study.

Coding
All coding was done by an experienced radiologist (D.P.)
with 8 years of experience in imaging informatics. Each
individual abstract was compared to the STARD and
quality criteria, and it was decided whether the informa-
tion demanded by the different criteria was included in
the abstract. Criteria had to be explicitly reported to be
counted. For instance, even though in some cases the
type of data collection (retrospective vs. prospective)
could be inferred from the context, studies were only
coded as reporting the type of data collection according
to the STARD criteria if the type of data collection was
mentioned explicitly in the abstract. In addition, for each
abstract, the modality, (e.g., CT), body region (e.g.,
chest), pathology (e.g., lung cancer), and task (e.g., classi-
fication) were recorded. For each abstract, only one mo-
dality, body region, pathology, or task was selected. If
the modality was missing or could not be inferred from
the abstract, it was coded as “not available” (n = 3). If
more than one body region was analyzed in a study, the
abstract was sorted into the category “general” (n = 7).

Similarity analysis
The text of all abstracts was compared in a similarity
analysis using the Jaccard coefficient. The Jaccard coeffi-
cient is the ratio of the intersection over the union of
two sets. A Python (version 3.7) [17] script was devel-
oped, taking in the full text of each abstract and splitting
it into single words, thus creating a set (unordered col-
lection of unique elements) for each abstract. In the next
step, all abstracts were compared and the intersection
(unique common words) and union (all unique words)
of all possible pairs of abstracts were calculated to deter-
mine the Jaccard coefficient for each pair. If the Jaccard

coefficient was higher than 0.5, then the two abstracts
were considered to be highly similar.

Results
General characteristics of abstracts
Out of the 184 abstracts included in our analysis, 127
(69.0%) were oral presentations (106 scientific presenta-
tion 57.6%; 21 MyT3 presentations 11.4%). The
remaining 57 were electronic posters (31.0%). The three
countries with the most accepted abstracts were the
People’s Republic of China with 58 abstracts (31.5%),
Germany with 26 abstracts (14.1%), and India with 15
abstracts (8.2%), see Table 2.

Topics
With 87 abstracts (47.3%), CT was the modality most
featured in accepted abstracts, followed by MRI (47;
25.5%) and plain radiography (17; 9.2%), see Table 3.
The body regions with the most research focus were

the abdomen (43; 23.4%), the chest (42; 22.8%), and the
brain (32; 17.4%), see Table 4.
All abstracts covered a wide range of pathologies

and topics. The pathologies/topics most prominently
featured in the accepted abstracts were lung nodules
(16; 8.7%), image reconstruction (12; 6.5%), and breast
cancer (10; 5.4%). Most of the research in the ab-
stracts used machine learning techniques for classifi-
cation (108; 58.7%), with 67 (36.4%) using deep
learning and 41 (22.3%) using radiomics, followed by
segmentation (32; 17.4%) and technical applications
(21; 11.4%), see Table 5.

STARD for abstract adherence results
Out of the 10 STARD for abstract criteria analyzed in
this study, on average, 5.36 (SD = 1.35; Mdn = 5.00)
were reported by the 184 abstracts, see Fig. 1. There was
no significant difference in the number of reported

Table 1 STARD criteria for abstracts (adapted from Cohen et al. [13])

Category Item

Study of diagnostic accuracy Study uses at least one measure of diagnostic accuracy (e.g., sensitivity, specificity, predictive values, or AUC)

Study objectives Objectives of the study are clearly stated

Data collection Provides information on whether the study was prospective or retrospective

Eligibility criteria Eligibility criteria for participants and settings where the data were collected

Type of series Consecutive, random, or convenience series

Index/reference standard Index test and reference standard

Number of participants Number of participants with and without target condition

Estimates of accuracy Estimates of diagnostic accuracy and their precision (CI)

General interpretation General interpretation of results

Implication for practice Implications for practice

Registration number* Registration number and name of registry

*Registration number was not coded for in the current investigation
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STARD criteria between abstracts accepted for oral pres-
entation (M = 5.35, SD = 1.31) and abstracts accepted
for the electronic poster session (M = 5.39, SD = 1.45),
t(182) = − 0.18, p = .86, d = 0.03.
One hundred and eleven (60.3%) abstracts stated as

their main goal to assess the accuracy of a new method
and therefore reported at least one measure of accuracy
(sensitivity, specificity, predictive values, or AUC), see
Fig. 2. Study objectives were clearly stated by 183
(99.5%) abstracts. With regard to data collection, 63
(34.2%) abstracts reported whether the conducted study
was prospective or retrospective. Only 17 (9.2%) ab-
stracts included information about eligibility criteria for
participants and settings where the data were collected.
Additionally, only 25 (13.6%) abstracts provided infor-
mation on whether participants formed a consecutive,
random, or convenience series. Information about index
tests or reference standards was included by 114 (62.0%)
abstracts.
Seventy-four (40.3%) abstracts reported the number of

participants with and without the target condition that
were included in the analyses. The overall majority of

Table 2 Distribution of abstracts from participating countries

Country Number of abstracts Percent

People’s Republic of China 58 31.5

Germany 26 14.1

India 15 8.2

USA 12 6.5

Netherlands 11 6.0

Italy 9 4.9

UK 7 3.8

Switzerland 6 3.3

Austria 5 2.7

Taiwan 4 2.2

Japan 3 1.6

Republic of Korea 3 1.6

Spain 3 1.6

Brazil 2 1.1

Canada 2 1.1

France 2 1.1

Greece 2 1.1

Hungary 2 1.1

Israel 2 1.1

Lithuania 2 1.1

Turkey 2 1.1

Belgium 1 0.5

Hong Kong 1 0.5

Poland 1 0.5

Portugal 1 0.5

Russian Federation 1 0.5

Saudi Arabia 1 0.5

Table 3 Modalities featured in accepted abstracts

Modality Number of abstracts Percent

CT 87 47.3

MRI 47 25.5

Plain radiography 17 9.2

Mammography 9 4.9

Ultrasound 8 4.3

Nuclear medicine 6 3.3

Text analysis 4 2.2

Other 3 1.6

Not available 3 1.6

Table 4 Body regions featured in accepted abstracts

Body region Number of abstracts Percent

Abdomen 43 23.4

Chest 42 22.8

Brain 32 17.4

Breast 14 7.6

Cardiac 9 4.9

General 7 3.8

Head/neck 7 3.8

MSK 7 3.8

Prostate 7 3.8

Vascular 6 3.3

Other 5 2.7

Genitourinary 3 1.6

Spine 2 1.1

Table 5 Use cases of machine learning techniques

Task Number of abstracts Percent

Classification 67 36.4

Classification (radiomics) 41 22.3

Segmentation 32 17.4

Technical 21 11.4

Detection 13 7.1

Technical (radiomics) 6 3.3

Other 4 2.2
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abstracts (177; 96.2%) reported estimates of diagnostic
accuracy. All abstracts (184; 100.0%) gave a general
interpretation of the results. However, only 38 (20.7%)
abstracts listed potential implications for practice.

Additional quality criteria adherence
Seventy-eight (42.4%) abstracts reported having used a
validation set for evaluating model performance, see Fig.
3. Confidence intervals were only reported by 44 (23.9%)
abstracts. Public data sets to train the models were used
by 24 (13.0%) studies, and 33 (17.9%) studies evaluated
an existing algorithm (commercial or otherwise) that
was not developed as part of the study.

As an additional quality indicator, we also analyzed
the number of unique participants per study. One hun-
dred and twenty (65.2%) abstracts reported the unique
number of participants. The median sample size was
104, ranging from 7 to 4800.

Similarity analysis
This analysis returned 3 pairs of abstracts that were
highly similar (Jaccard coefficient > .5). Two of those
pairs were abstracts in which the same methodology was
applied to different pathologies, which resulted in similar
terminology being used to sum up the results. However,
each study in both pairs constituted an original piece of
research. In case of the third pair, the exact same

Fig. 1 Histogram showing the number of STARD criteria reported by each abstract

Fig. 2 Percent of abstracts that reported individual STARD criteria
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abstract was accepted twice with only minimal changes.
Both abstracts were accepted for oral presentation.

Discussion
Our study of artificial intelligence abstract from ECR
2019 found the following: with regard to international
participation, the People’s Republic of China was the
country with the most abstracts. The modality with the
most research focus was CT. The body regions that were
studied the most in the abstracts were the abdomen, the
chest, and the brain. All abstracts covered a wide range
of pathologies, so no clear focus could be determined.
The most prominent use case for machine learning was
classification.
With regard to the quality of reporting, the mean

number of STARD criteria reported by the abstracts was
5.32. Most papers identified the research as a study of
diagnostic accuracy and described the study objectives.
Also, a majority of papers cited the index test or refer-
ence standard. Some estimates of accuracy were re-
ported by most papers, and a general interpretation of
the results was provided. However, there is still room for
improvement: details about the data collection, eligibility
criteria, and the type of series were rarely reported. Add-
itionally, only few studies provided confidence intervals
for the results. And only few studies focused on potential
implications for practice. Most notably, only 42.4% of
studies used a validation set. As mentioned before, the use
of a validation set is crucial when assessing the perform-
ance of a given model because overfitting to the test set
can lead to artificially inflated performance metrics.
Overall, these results are in line with a previous study

on the accuracy of reporting of radiomics in oncologic
studies [18]. In that study, 77 articles from high-impact

imaging journals were analyzed with regard to adherence
to the TRIPOD checklist [19]. Additionally, a Radiomics
Quality Score (RQS) taking into consideration demands
specific to radiomics studies was calculated for each
paper. Similar to our results, papers only reported
around half of the information required by the standard-
ized checklist (TRIPOD 57.8%). Furthermore, the mean
Radiomics Quality Score, taking into account clinical
utility, test-retest analysis, prospective study, and open
science, was only 26.1%. These results are not surprising
in light of a study on the acceptance of journal reporting
guidelines in the field of radiology, which found that
only 15% of authors relied on reporting guidelines and
checklists when planning their studies [20].
Combining these findings and the results from our

own study, it is safe to conclude that the state of reporting
of imaging studies using machine learning and radiomics
could be improved. One step in this direction could be to
move beyond general performance metrics, such as accur-
acy or area under the curve (AUC), and focus more on
diagnostic predictive values, such as positive predictive
values (PPV) and negative predictive values (NPV), which
may be better suited to estimate whether a given model
could be useful for clinical practice [21].
To improve reporting in general, it may be helpful to

present authors with a checklist during the submission
process, such as STARD (which has been implemented
for ECR 2020), so that missing information can be added
before submitting the abstract. We think that in several
cases, the missing information may have been available
but was not added to the abstracts. We are aware of the
fact that the word count of the abstracts was limited and
authors were not able to add long, detailed descriptions
of their studies.

Fig. 3 Percent of abstracts that reported additional quality criteria
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Our study has several limitations: as mentioned before,
our study was limited to the quality of reporting. The
quality of the studies themselves was not assessed.
Therefore, we cannot fully answer the question whether
the sharp increase in machine learning-focused publica-
tions mainly consists of quality publications with a
strong methodology or methodologically flawed studies
just following the latest trend.
Based on the current investigation, we cannot deter-

mine if there is a correlation between the quality of
reporting and the quality of the reported studies them-
selves. However, a high quality of reporting is the basis
for a correct assessment of a scientific study. Thus, fu-
ture analyses of conference abstracts may include add-
itional quality criteria to further analyze the content and
quality of abstracts.
Additionally, even though the topics of the abstracts to

the ECR 2019 may give an overview of where the general
field of artificial intelligence research in radiology is
headed, there are many factors that determine whether
an abstract is submitted to a conference. For instance,
some authors may have chosen to present their research
at different conferences, such as the RSNA. Therefore,
abstracts from the ECR 2019 only represent a small part
of the research landscape and the trends reflected in the
topics should be interpreted carefully. Furthermore, this
study only focused on accepted abstracts to ECR 2019.
Rejected submissions could not be analyzed.
An additional limitation of the present study is its sole

focus on artificial intelligence research. Even though we
did find room for improvement with regard to the qual-
ity of reporting, this may be true for other areas of re-
search in radiology as well. Thus, future studies should
compare the quality of reporting of different areas of
radiological research to determine whether compliance
with the STARD checklist is particularly low in artificial
intelligence research or if compliance is generally low
across different disciplines.
In sum, to further improve the quality of abstracts and

the review process, we suggest providing both authors
and reviewers with simple checklists, such as STARD
[13], CONSORT [14], STROBE [15], and PRISMA [16],
to ensure that abstracts contain all relevant information
and that abstracts are judged based on the same stand-
ard. These checklists could be based on the STARD cri-
teria with additional suggestions for machine learning
papers. Notably, as studies using machine learning be-
come more frequent, there are efforts to extend existing
checklists to include information specific to machine
learning research [22, 23]. For instance, a new checklist
with 9 key considerations for authors of radiology re-
search on artificial intelligence can serve as a guideline
for authors what critical information should be included
in a paper or abstract [24]. Regarding double entries, a

server-side similarity analysis could be implemented to
catch double entries during the submission process.
Taken together, these measures could help to further

increase the quality of machine learning research in
radiology and improve the communication of scientific
results at future conferences.
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