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Structured report data can be used to
develop deep learning algorithms: a proof
of concept in ankle radiographs
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Abstract

Background: Data used for training of deep learning networks usually needs large amounts of accurate labels.
These labels are usually extracted from reports using natural language processing or by time-consuming manual
review. The aim of this study was therefore to develop and evaluate a workflow for using data from structured
reports as labels to be used in a deep learning application.

Materials and methods: We included all plain anteriorposterior radiographs of the ankle for which structured
reports were available. A workflow was designed and implemented where a script was used to automatically
retrieve, convert, and anonymize the respective radiographs of cases where fractures were either present or absent
from the institution’s picture archiving and communication system (PACS). These images were then used to retrain
a pretrained deep convolutional neural network. Finally, performance was evaluated on a set of previously unseen
radiographs.

Results: Once implemented and configured, completion of the whole workflow took under 1 h. A total of 157
structured reports were retrieved from the reporting platform. For all structured reports, corresponding radiographs
were successfully retrieved from the PACS and fed into the training process. On an unseen validation subset, the
model showed a satisfactory performance with an area under the curve of 0.850 (95% CI 0.634–1.000) for detection
of fractures.

Conclusion: We demonstrate that data obtained from structured reports written in clinical routine can be used to
successfully train deep learning algorithms. This highlights the potential role of structured reporting for the future
of radiology, especially in the context of deep learning.
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Key points

� Data from structured reports can greatly facilitate
development of deep learning algorithms.

� Fully automated workflows for training of deep
learning networks can easily be implemented.

� A proof of concept for the detection of ankle
fractures is presented and achieves satisfactory
performance.

Background
Recently, the application of computer vision techniques
and especially deep learning to evaluate plain radiographs
or computed tomography exams has been extensively
discussed in radiology [1–3]. Consequently, in the last few
years, numerous groups have published papers describing
promising applications of deep learning algorithms in
radiology.
Various studies were reported where the authors devel-

oped and trained deep neural networks to perform auto-
mated diagnosis or triage of plain radiographs. While
some of those relied on manual review and labeling of the
images to establish a valid ground truth (e.g., detection for
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of humerus fractures [4], hip fractures [5], and wrist frac-
tures [6]), other relied on automatically extracting image
labels from the written radiological reports associated with
the imaging study [7–9]. As radiological reports are usu-
ally written in a prose-like, non-standardized form, tech-
niques such as natural language processing (NLP) are
needed, to analyze the reports and extract meaningful
labels to be used in further training of the neural network.
Compared to manual review labeling, the latter approach
is much more efficient and scalable, thus enabling larger
datasets to be compiled for the subsequent training of the
neural networks. However, as was shown, e.g., in the case
of the CheXNet paper [10], this also has the potential to
introduce inaccuracies and uncertainties which are inher-
ent to variations in NLP [11].
With more and more advances in computer vision and

deep learning technologies and algorithms, it seems that one
of the only remaining challenges is the availability of accur-
ately labeled datasets. It would, therefore, be desirable if data
from clinical routine could be used to provide reliable labels
without the need for potentially error-prone NLP or time-
consuming manual labeling by human expert readers.
One possibility to make data from clinical routine

more readily usable could be structured reporting (SR)
which has long been proposed by various radiological
societies [12–14]. Structured reporting aims at standard-
izing report content and language, thus making the re-
port more machine readable. Some studies have
demonstrated the usage of data extracted from struc-
tured reports for calculation of various statistics [15, 16].
This approach could also be useful in the context of

training deep learning algorithms. Therefore, the aim of
this study was to propose an example workflow where
date from structured reports is used to extract accurately
labeled training data from an institution’s picture archiv-
ing and communication system (PACS). As a proof of
concept, we show this by using this data to retrain a pre-
trained convolutional neural network (Inception V3) for
the detection of fractures in ankle radiographs.

Materials and methods
Starting in late 2017, structured reporting was intro-
duced at our tertiary care institution. Various IHE
MRRT-compliant report templates were created and in-
stalled in a dedicated open-source reporting platform
[17, 18]. The reporting platform had previously been de-
veloped at our institution using only standard web-tech-
nologies and could be accessed from the clinical
workstations by the reporting radiologists. To facilitate
its usage in clinical routine, it was fully integrated in the
radiologists’ workflow and connected to the institutions
radiology information system (RIS) and PACS. All radi-
ologists received in-person training on how to use the
reporting platform and the templates and could contact

the developer any time if problems occurred. At the time
of reporting, the radiologists were able to either use the
standard RIS reporting engine, including speech recogni-
tion, or start reporting in the structured reporting plat-
form. Usage of the reporting platform was neither
enforced nor incentivized. To ensure the correct patient
and study context, the RIS constructs a URL-call that
passes the relevant patient and study information to the
reporting platform. Upon completion of the radiological
report in the platform data, the structured reports were
stored in the platform’s database as discrete information
thus allowing for easily machine-readable reports.

Use case and patient selection
During the initial phase of set up of the structured
reporting platform, various report templates had been
created. While most templates focused on computed
tomography or magnetic resonance imaging, some tem-
plates pertaining to conventional radiography were also
developed. As basis for this proof of concept, we chose
to focus on a rather simple use case using only plain ra-
diographs. For the purpose of this study, we chose to
use data from cases where plain radiographs of the ankle
were obtained in the context of trauma (fracture/no
fracture) and for which structured reports had been
written using the above-mentioned platform (Fig. 1).
All reports were written between August 2017 and

September 2018. As radiologists were free to decide
whether to use the structured reporting template or to
write a conventional narrative report, the studies in-
cluded were not consecutive.

Structured reporting and image retrieval
The “cx.ankle.trauma” template contained four drop-
down menus where the reporting radiologist could select
whether or not fracture, joint effusion, soft tissue swelling,
or other relevant findings were either present or absent
(Fig. 2). Apart from that, the template allowed for free-text
entry of the corresponding finding. The source-code of
the template can be found in Additional file 1.
Upon completion of a report, the corresponding report

content was stored in the reporting platform’s dedicated
database where each report field corresponds to a specific
column in the pertinent table. Consequently accessing the
column “select_fracture” of the “cx.ankle.trauma” table
returned either “yes” if a fracture was present or “no” if ab-
sent. Thus, we created a combination of MySQL queries
that would retrieve the relevant information from the cor-
responding database tables. To facilitate manipulation of
these data, we designed a workflow in Rapidminer 9.0
(RapidMiner, Cambridge, MA, USA) that allowed for
more intuitive visualization of the data manipulation
(Fig. 3). In the first step, all relevant patient and study data
was queried, while also the reports created with the
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Fig. 1 Examples of radiographs used in the study (a no fracture, b fracture present)

Fig. 2 Screenshot of the template used for structured reporting of ankle radiographs
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“cx.ankle.trauma” template were retrieved. Through join-
ing and filtering operations, it was possible to first build a
complete table where all reports were associated with the
relevant patient and study information (local patient ID
and DICOM Study Instance UID). Subsequently, this table
was split into separate lists for reports with and without
reported fractures. These lists were then exported as
comma separated value (CSV) files so that in a second
step a small Python (Python Software Foundation. Avail-
able at http://www.python.org) script could be used to
query and retrieve the corresponding images from the in-
stitution’s PACS and export them as JPEG files into two
separate folders (one folder for images with fractures and
one for images without fractures).

Convolutional neural network retraining workflow
The main focus of this study was not on the training of
a convolutional neural network (CNN) but rather on the
workflow of using label data from IHE-MRRT compliant
report templates. We therefore chose to limit this part
of the study to a simple retraining of a preexisting CNN
on a binary classification task.
A TensorFlow model of the Inception V3 architecture

[19], pretrained on ImageNet, was used to retrain the last
fully connected layer. For the purpose of this study, we
used the following standard hyperparameters: cross-en-
tropy loss function, learning rate 0.01, batch size 32, and
2000 training steps. As the deep learning part was not the
main focus, we did not attempt to optimize those settings

but chose reasonable hyperparameters known to result in
adequate learning performance, while also allowing for
training on standard a graphics processing unit (GPU).
Nevertheless, various random data augmentation tech-
niques, such as scaling (+ 10%), cropping (− 10%), bright-
ness (+ 10%), and horizontal flip were used to improve
generalizability as the dataset was rather limited. Before
retraining the CNN, 8% of all images were selected ran-
domly and set aside from the training set to be used for
validation of the final model. To compensate for unbal-
anced group sizes in the training dataset, the images from
the smaller group were upsampled to the number of the
larger group.
The computation was performed on a single server

(Intel Core i7-8700K CPU, 64 GB DDR RAM, NVIDIA
GeForce GTX 1080 Ti GPU). The model’s predictions
and corresponding probabilities on the final validation
set were recorded in a CSV file and used for calculating
the diagnostic performance of the model.

Statistical analysis
All statistical analysis was done using R 3.4.0 with
RStudio 1.1.463 [20]. Receiver operating curve (ROC)
analysis was performed using the pROC package [21].
To calculate sensitivity, specificity, as well as positive
and negative predictive value, the operating point that
yielded the highest Youden’s index was selected from
the ROC analysis.

Fig. 3 Graphical representation of the access to the report database. Various tables need to be retrieved and combined. Finally, two lists of cases
with and without fractures are written and saved as CSV files
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Results
As usage of structured reporting for plain radiographs
remained limited during the period included in this study
(August 2017 and September 2018), only 157 out of 1186
ankle radiographs (equals to 13.2%) had been reported on
by 16 different radiologists (mean reports per radiologist
10 ± 4) using the structured reporting platform.

For all of these 157 patients, anteroposterior ankle ra-
diographs were available in the PACS and could be re-
trieved successfully. Mean patient age was 43.0 years
(SD = 21.0 years; 76 female and 81 male). For final train-
ing and analysis, 144 images were included (129 with
fractures, 28 without apparent fractures). The remaining
13 patients (eight with fractures, five without apparent
fractures) were set apart as final validation set.
In order to compensate for unbalanced group sizes in

the training group, the 28 images showing no fracture
were upsampled (i.e., copied repeatedly) during retrain-
ing of the network to balance out the 129 images show-
ing fractures.
Once implemented and configured, completion of the

whole workflow (from database query to final evaluation
of model performance) took under 1 h (retraining of the

Fig. 4 Visualization of the training process (above: accuracy, below: cross entropy, orange: training set, blue: testing set). After 2000 training steps,
a final accuracy of 0.969 was achieved

Table 1 Confusion matrix showing the results on the final
validation set

Fracture (CNN) No fracture (CNN) Total

Fracture (true) 5 3 8

No fracture (true) 0 5 5

Total 5 8 13
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CNN accounted for around 35 min). The learning curve
of the training process is shown in (Fig. 4).
After training, the model yielded a final accuracy

(overall fraction of correct classification) of 0.769 (95%
CI 0.742–0.796) on the unseen validation set (Table 1).
Sensitivity was 0.625 (95% CI 0.290–1.0) and specificity
1.0 (95% CI 1.0–1.0) with a positive predictive value of
1.0 (95% CI 1.0–1.0) and a negative predictive value of
0.625 (95% CI 0.290–0.960) for presence of fracture.
ROC analysis revealed an area under the curve (AUC) of
0.850 (95% CI 0.634–1.000) with an optimal operating
point of 0.545 (Fig. 5).

Discussion
Structured reporting has been described as the fusion re-
actor for radiology [22]. Various previous studies have
shown that structured reports provide numerous advan-
tages in clinical routine [23–30]. In this paper, we provide
further evidence that structured reporting could play a cru-
cial role in advancing developments in the field of radi-
ology. Especially with the recent advent of deep learning
techniques, there is a strong need for machine-readable ac-
curate labels to images [2, 31, 32]. While many challenges
of the past regarding computational power and techno-
logical issues for deep learning have been solved over the
past few years, the main hurdle preventing radiology from
leveraging the potential of these technologies has been a

lack of large data sets with high-quality labels. This is
mostly due to the fact that radiological reports are still in
most cases written as unstructured narrative text. Extrac-
tion of information from such free-text reports is time-con-
suming and depends on the completeness and the quality
of the reports. Individual variations in language and style
can lead to inconsistencies and uncertainties that could po-
tentially impair the quality of the dataset. Therefore, re-
searchers need to rely on manually reviewing and labeling
data, which can be time-consuming and is therefore diffi-
cult to implement on a large scale. Theoretically, these
challenges could be overcome by using natural language
processing (NLP) to extract the relevant information from
the radiological reports. However, this can potentially intro-
duce a relevant number of incorrect labels to the dataset
since generally sensitivity and specificity of such systems
are only around 90% [33].
Our proposed workflow addresses these challenges since

it utilizes data from structured reports generated during rou-
tine clinical practice. Thus, no additional workup of the
dataset is needed to provide reliable and standardized labels
for the training of deep learning algorithms. Considering
that only a rather small fraction (13.2%) of all reports was
created using the structured reporting templates during the
period included in this study, it can be assumed that the pe-
rformance of the trained model could substantially be im-
proved if more radiographs would have had corresponding

Fig. 5 ROC-analysis for the final validation set of previously unseen images
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structured reports. Certainly, the most important challenge
radiologists face when using structured reporting is the not-
able change in workflow. In our case, the structured report-
ing platform required the user to use the mouse and the
keyboard to input the report, thus preventing him from
work with the PACS viewer while composing the report.
Better integration of structured reporting tools (e.g., with
speech recognition and tighter PACS integration) could help
to improve the adoption of structured reporting in clinical
routine.
The present study has some limitations: first, we did not

re-evaluate the reports for diagnostic accuracy. Secondly,
and certainly more importantly, the dataset used for the pur-
pose of this study was rather small and unbalanced. There
are several options to address such imbalances. In our case,
we opted to apply oversampling of the underrepresented
class (no fracture) as we did not want to discard any useful
data. However, this approach has a certain tendency to over-
fit, since some examples are used multiple times. To allevi-
ate this effect, we applied data augmentation techniques to
the training dataset (scaling, flipping, cropping, etc.). Never-
theless, for a clinically applicable algorithm, other solutions
to the class imbalance problem should be considered, such
as undersampling, cost-sensitive learning, or other more ad-
vances techniques [34–36].
Performance of the algorithm therefore needs to be

viewed as only preliminary and not clinically useful, espe-
cially since a selection bias toward simple cases in which the
radiologists were more comfortable using the structured
reporting platform cannot be ruled out. However, this was
beyond the intended scope of this study. The proposed
workflow nevertheless clearly demonstrates and underlines
the value of structured reporting in the context of machine
learning and artificial intelligence and is in line with the key
research priorities as defined by in an intersociety roadmap
for foundational research on artificial intelligence in medical
imaging [37, 38]. Especially with the possibilities to link spe-
cific parts of the report content to ontologies such as
RadLex, the IHE MRRT profile provides an interoperable
way to allow for easier pooling of datasets across various in-
stitutions while maintaining reliable label data [18, 39].

Conclusion
Of course, a widespread implementation of structured
reporting will have a significant impact on the radiolo-
gist’s daily work and may not be applicable to all cases
and all clinical scenarios. Nevertheless, our study further
highlights the need for to push toward more structured
reporting in clinical routine, as it seems the most prac-
tical approach to obtain high-quality report data for vari-
ous future developments. Users should therefore urge
vendors to provide practical solutions that allow for easy
access to and usage of report information for further
analysis and usage in deep learning projects.

Additional file

Additional file 1: cx.ankle.trauma template. (HTML 4 kb)
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