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Abstract
Medical imaging is a vital part of the clinical decision-making process, especially in an oncological setting. Radiology has
experienced a great wave of change, and the advent of quantitative imaging has provided a unique opportunity to analyse patient
images objectively. Leveraging radiomics and deep learning, there is increased potential for synergy between physicians and
computer networks—via computer-aided diagnosis (CAD), computer-aided prediction of response (CARP), and computer-aided
biological profiling (CABP). The ongoing digitalization of other specialties further opens the door for even greater multidisci-
plinary integration. We envision the development of an integrated system composed of an aggregation of sub-systems
interoperating with the aim of achieving an overarching functionality (in this case‚ better CAD, CARP, and CABP). This will
require close multidisciplinary cooperation among the clinicians, biomedical scientists, and (bio)engineers as well as an admin-
istrative framework where the departments will operate not in isolation but in successful harmony.
Key Points
• The advent of quantitative imaging provides a unique opportunity to analyse patient images objectively.
• Radiomics and deep learning allow for a more detailed overview of the tumour (i.e., CAD, CARP, and CABP) from many
different perspectives.

• As it currently stands, different medical disciplines have developed different stratification methods, primarily based on their
own field—often to the exclusion of other departments.

• The digitalization of other specialties further opens the door for multidisciplinary integration.
• The long-term vision for precision medicine should focus on the development of integration strategies, wherein data derived
from the patients themselves (via multiple disciplines) can be used to guide clinical decisions.
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Medical imaging has historically played a key role in cancer
screening, diagnosis, staging, and therapeutic response moni-
toring. On a daily basis, treating physicians rely on input from
imaging to help formulate patient management plans [1]. This
is especially true within the context of modern oncological
guidelines, where patients are stratified into increasingly com-
plex subgroups based on biological, clinical, and radiological
parameters.

Historically, qualitative semantic features were used to de-
scribe tumour morphology—as observed in the patient image.
These descriptions were a reflection of a scoring system based on
visual assessment. Semantic features were shown in the literature
to have correlations with stage, prognosis, and even response
prediction [2]. However, as one could imagine, this method suf-
fered from shortcomings rooted in its dependence on subjective
scoring and the limited sensitivity of the human eye.

Ubiquitous modern imaging modalities, such as CT,
MRI, and PET in radiology (and digital images in pathol-
ogy), are primarily quantitative in nature. This characteris-
tic is harnessed, using computational algorithms to extract
quantitative features and generate mineable data. Rather
than relying solely on subjective interpretation of images,
these quantitative features can be used to objectively char-
acterize tumour morphology.
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In radiomics, medical images are processed to generate
quantitative features and these mineable data can then be used
for clinical purposes. Radiomic features serve the purpose of
describing morphological characteristics (e.g. density distri-
bution, recurrent patterns and textures, shape and outline,
etc.) in an objective, quantitative manner. The ambition is to
find completely non-invasive radiomic features that can be
used as predictive and prognostic biomarkers.

The promise of radiomics

The advent of radiomics has opened a brand new avenue in
cancer research and presents a unique opportunity to data
scientists and radiologists alike. Broadly speaking, two prom-
inent potentials have emerged for radiomics—tumour charac-
terization and therapeutic response prediction (Fig. 1).

The search has begun to identify imaging markers to be
used to assess biological parameters (i.e. genetic mutations
or surface expression of particular molecules) in the tumour.
Normally, such biological assessment of a tumour is achieved
by biopsy—a process that is highly invasive, carries potential
risk for patient morbidity, and can only elucidate information
for lesions in sites easily accessible to surgeons. Radiomics
provides the opportunity to non-invasively assess the biolog-
ical profile (i.e. surface marker expression, genetic mutational
status, blood markers, etc.) of all the lesions simultaneously
and instantaneously. With the increased use of computer
models to diagnose conditions and predict response to therapy,

this new field where biological parameters can non-invasively
be assessed using quantitative features and computer models
can be termed computer-aided biological profiling (CABP).

One of the earlier studies to leverage radiomic features in the
assessment of genetic mutational status (i.e. radiogenomics)
was the work of Segal et al. in human liver cancer where com-
binations of 28 imaging traits were shown to be capable of
reconstructing 78% of the global gene expression profile (i.e.
mRNA levels) of these tumours [3]. Further research ensued on
a number of tumour types—with varying degrees of success.

With the rise of deep-learning-based image analysis, comput-
er algorithms can be used to extract radiomic features on a large
scale that could then be linked to predictive and prognostic bio-
markers in cancer (that would otherwise be obtained surgically).

Unlike more traditional radiomics approaches where fea-
ture extraction and data analysis consisted of two separate
steps, deep learning fuses these processes together and itera-
tively optimizes one with respect to the other. In other words,
deep learning provides radiomics models with optimal fea-
tures and optimal data analysis for a specific clinical problem.
This advanced form of computer-aided biological profiling
(where a neural network can extract features and link them
together on a massive scale) can be termed deep learning
mediated tumour profiling (DL-TP).

The next application of radiomic features in cancer re-
search was prediction of response to different forms of treat-
ment [i.e. computer-aided response prediction (CARP)]. In
non-small-cell lung cancer (NSCLC), Coroller et al. identified
seven features that were predictive for pathological gross

Fig. 1 A schematic of a future radiomics pipeline highlighting a
simplified workflow for CABP and CARP wherein patient images are
input into a specialized (series of) AI algorithm(s) and, based on the
outcome, can be classified. CABP algorithms assess the profile of the

tumour (for stratification) while CARP algorithms focus purely on the
prediction of response to (and ultimately selection of) therapy. CAD:
computer-aided diagnosis; CARP: computer-aided response prediction;
CABP: computer-aided biological profiling
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residual disease and one feature for pathological complete
response [4]. Further studies later identified other radiomic
features that would predict the response to conventional treat-
ment (i.e. chemo-/radiotherapy) in bladder cancer [5] and lo-
cally advanced rectal cancer [6].

Integrated systems in healthcare

While the suffix B-omics^ has come to denote the idea of
extracting valuable information from data sets, radiomics is
only the latest addition to the ever-growing list of new fields of
study within the fusion of advanced technology and modern
medicine. Images derived from tissue (e.g. general microsco-
py, immunohistochemistry, etc.) have also been subject to
quantitative analysis and new information is being generated
beyond what would be observed by a pathologist, i.e.
pathomics. Genomics, the branch of molecular biology con-
cerned with the mapping of the human genome, has helped to
identify many genetic mutations and pathways that have been
used for prognostication or as novel targets for modern thera-
peutics and has heavily relied on computer models developed
by skilled bioinformaticians.

As it currently stands, different medical disciplines have
developed different stratification methods, primarily based
on their own field (i.e. radiological classifications, pathologi-
cal and chemical laboratory classifications, clinical checklists
used for prognostication, etc.)—quite often to the exclusion of
other departments. As these traditional scoring systems were
often based on subjective interpretations of analogue readouts,
combining these disparate outputs is quite challenging. The
rise of the quantitative aspects of various medical disciples
(i.e. the B-omics^) presents a remarkably unique opportunity
wherein information from different diagnostic modalities can
be objectively integrated.

Conclusion

The long-term vision for precision medicine should focus on
the development of integration strategies, wherein data de-
rived from the patients themselves can be used to guide the
treating physician. Through intricate analyses that integrate
clinical data, blood markers, pathomics, radiomics, and geno-
mics, we envision that a patient can be provisionally diag-
nosed (via computer-aided diagnosis), stratified into a

Fig. 2 A schematic flow chart
envisioning the usage of patient-
derived data (in light blue) from
raw materials (in purple) as a
means to improve CAD, CARP,
and CABP and ultimately help
guide decisions by the multidis-
ciplinary management team

Insights Imaging (2018) 9:911–914 913



molecular subtype of their tumour (via computer-aided bio-
logical profiling), and have a recommended treatment formu-
lated (via computer-aided response prediction). This aggrega-
tion of sub-systems cooperating with the aim of achieving an
overarching functionality (in this case‚ better CAD, CARP,
and CABP) is termed the integration system (see Fig. 2).
This will require hand-in-hand multidisciplinary collaboration
between the biomedical field (i.e. clinicians, geneticists, radi-
ologists, pathologists, clinical chemists) and the technical field
(i.e. computer scientists, physicists, engineers, statisticians,
and mathematicians) as well as an organizational structure
wherein the departments will operate not in isolation but in
successful integration.
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