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Abstract
Magnetic resonance imaging (MRI) plays a central role
in the early diagnosis of cerebral vascular events. Today,
MRI is used not only for the detection of acute ischae-
mic lesions, but also to fine tune the diagnosis and im-
prove patient selection for early therapeutic decision-
making. In this perspective, new tools such as arterial
spin labelling (ASL) and susceptibility-weighted imaging
(SWI) sequences have been developed. These MRI se-
quences enable noninvasive assessment of brain damage,
providing important diagnostic and prognostic informa-
tion: evaluation of cerebral parenchymal perfusion; de-
tection and aetiological assessment of thrombi; ruling
out differential diagnoses. After a brief recall of the fun-
damental basis of these sequences, this article proposes
an update on their current contribution to the early man-
agement of stroke victims.

Teaching Points
• These noninvasive sequences provide essential information
for early management of acute stroke.

• They can detect zones of parenchymal hypoperfusion.
• Susceptibility-weighted sequences provide information on
thrombus localisation and composition.

• ASL can identify certain aetiologies of stroke mimics.
• Post-therapeutic ASL perfusion status predicts outcome.
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Introduction

MRI is an advanced tool for pre-therapeutic management of
acute stroke. MRI can be used to assess the extent of brain
infarction, localise the site of arterial occlusion, and search for
evidence ruling out potential contraindications for thrombol-
ysis. In recent years, the advent of 3-T MRI scanners for
routine clinical applications has incited interest in new se-
quences exploiting the higher field strength, e.g. arterial spin
labelling (ASL) and susceptibility-weighted imaging (SWI)
sequences. This opens the way for new perspectives such as
noninvasive assessment of parenchymal hypoperfusion, pre-
cise localisation of the thrombus and its origin, or characteri-
sation of nonvascular stroke mimics. Here we propose an
update on the contribution of these new techniques for
acute-phase management of stroke patients.

SWI sequences

Fundamentals

These gradient-echo sequences are acquired with a long echo
time (TE) in order to take full advantage of the magnetic sus-
ceptibility phenomenon. Magnetic susceptibility corresponds to
the variation in the local magnetic field of a material exposed to
an external magnetic field. This occurs for instance in the ve-
nous compartment, which contains a large amount of
deoxyhaemoglobin, a highly paramagnetic substance.
Paramagnetic substances create a field oriented in the same di-
rection as the higher intensity main field, leading to a lower local
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signal. When a long TE is used, the dephasing resulting from
spin-spin interactions and field heterogeneity is increased. TE
can thus be set to yield a phase opposition phenomenon between
deoxyhaemoglobin and the adjacent parenchyma, further low-
ering the signal [1]. Moreover, magnetic susceptibility evolves
proportionally with the B0 magnetic field so that the phenome-
non is more marked with 3 T than 1.5 T.

There are several types of susceptibility-weighted se-
quences. Susceptibility-weighted imaging (Siemens
Heathcare, Erlangen, Germany) and Venobold (Philips
Healthcare, Best, The Netherlands) are based exclusively on
reading a long TE. Other sequences, such as susceptibility-
weighted angiography (SWAN) (General Electrics
Healthcare, Milwaukee, WI, USA) and susceptibility-
weighted imaging with phase enhancement (SWIp) (Philips
Healthcare, Best, The Netherlands), are based on reading mul-
tiple TEs set at long and short values. This method takes
advantage of the more marked time-of-flight (TOF) effect
when reading shorter TEs, adding to the magnetic susceptibil-
ity effect observed on longer TE images.

Applications for pre-therapeutic management of acute
ischaemic stroke

Haemorrhagic transformation

Susceptibility-weighted sequences are much more sensitive
for the detection of haemorrhagic transformation than either
non-contrast CT scan or T2 gradient echo sequences. This
greater sensitivity is important not only in the acute phase of
ischaemic stroke, but is also highly contributive to the diag-
nosis of all types of intracranial bleeding [2–5].

Arterial thrombus

One of the major challenges for MRI exploration of acute
stroke is to search for aetiological elements and factors pre-
dictive of post-therapeutic outcome. SWI sequences provide
information on thrombus localisation and composition.

Intra-arterial signal voids on T2 gradient echo images,
termed susceptibility vessel sign, were initially described as
suggestive of cardioembolic thrombi [6, 7]. Indeed, those
thrombi are mainly composed of red cells and thus blood
degradation products have a strong paramagnetic effect com-
pared with fibrin-rich atheromatous thrombi [8].

It appears that a more recently described two-layered sus-
ceptibility sign would be more sensitive and much more spe-
cific for cardioembolic thrombi than the susceptibility vessel
sign (Fig. 1), which can arise via many mechanisms [9].

Whatever the origin of the thrombus, in acute ischaemic
stroke, the susceptibility vessel sign would be correlated with:

– a lower rate of recanalisation after intravenous thrombol-
ysis compared with arterial occlusion without the suscep-
tibility vessel sign [10, 11], particularly for proximal
localisations [12], for lengths greater than 20 mm, for
thrombi with irregular contours [13], and for susceptibil-
ity artefacts extending beyond the arterial lumen [14];

– a favourable 3-month functional outcome in patients who
undergo mechanical thrombectomy for anterior circula-
tion occlusion [15], but not with a higher rate of
recanalisation [16].

Because of its greater sensitivity, and particularly so with a
strong magnetic field, SWI offers a more precise assessment
of thrombus morphology. For determining the site of occlu-
sion, SWI exhibits better sensitivity and specificity than T2
gradient echo (Fig. 2) or 3D TOF imaging [17–19]. It is also
much more effective in identifying distal thrombi, for both
anterior [17, 20, 21] and posterior [19] localisations (Fig. 3).
Detection of multiple distal thrombi is of major importance,
since in this situation the 3-month functional outcome is less
favourable compared with a unique occlusion [22]. However,
distal thrombi may be confused with hypointense venous
structures or microbleeds on SWI. The sequences based on a
multi-TE readout are more efficient in doubtful cases. Indeed,
the TOF effect related to the shortest TE read allows
confirming the intra-arterial origin of the signal void assigned
to the thrombus thanks to the susceptibility effect.

Fig. 1 An 85-year-old patient
presenting left hemibody deficit
on DWI (a) and SWI (b and c)
sequences in the axial plane. a
Acute superficial sylvian and
deep right ischaemic event. b and
c Long thrombus in the M1 seg-
ment of the right middle cerebral
artery with a two-layered suscep-
tibility sign

92 Insights Imaging (2017) 8:91–100



Brush sign

Thanks to the BOLD effect, SWI sequences can also be used to
indirectly assess deoxyhaemoglobin content in peri-encephalic
veins. Indeed, when exposed to experimental hypoxia, the ve-
nous compartment gives a proportionally lower signal that can
be detected visually [23]. During acute ischaemia, the local ox-
ygen deprivation secondary to arterial occlusion is seen as a
hypointense zone in the cortical and deep veins called the brush
sign [24], as multiple hypointense vessels [25], or as prominent
vessel [26]. The presence of these signs in the acute phase is
associated with a less severe clinical presentation (lower initial
NIHSS score), lower lesion diffusion-weighted imaging (DWI)
volume, more extensive penumbra, and more pronounced col-
laterals [25]. Moreover, the brush sign, reflecting cerebral hypo-
perfusion, would be correlated with penumbra volume. Luo
et al. [27] demonstrated the absence of significant mismatch
between DWI-MTT (mean transit time) maps produced by the
dynamic susceptibility contrast MRI (DSC-MRI) and DWI-
SWI maps (Fig. 4). Susceptibility-weighted sequences would

thus enable effective noninvasivemeasurement of the penumbra
in acute ischaemic stroke.

In the absence of thrombolytic treatment, the initial extent
of the brush sign would be correlated with the final infarct
volume and the severity of the functional outcome [26]. In
case of middle cerebral artery occlusion treated by intravenous
thrombolysis, the presence of a brush sign would be associat-
ed with a higher risk of haemorrhagic transformation and a
less favourable 3-month functional outcome [28].

Arterial spin labelling

Fundamentals

Arterial spin labelling (ASL) is a brain perfusion sequence that
does not require contrast injection. A salve of radiofrequency
waves is applied to a box positioned in the neck area, upstream
from the brain region to be studied in order to locally saturate the
proton spins of the water molecules in the arterial blood and thus

Fig. 2 A 48-year-old patient presenting sudden-onset vertigo. DWI (a),
T2 spin-echo (b), and SWI (c) sequences in the axial plane. a Acute
ischaemic lesion in the territory of the left posterior inferior cerebellar

artery. b No intra-vascular signal anomaly. c Susceptibility vessel sign
revealing an intra-arterial thrombus in the left posterior inferior cerebellar
artery

Fig. 3 A 72-year-old patient with
right homonymous lateral
hemianopsia. DWI (a), 3D TOF
(b), minimum intensity projection
(c), and multiplanar reconstruc-
tion (d) of the SWAN sequence in
the axial plane. aAcute ischaemic
lesion in the territory of the left
posterior cerebral artery. b No vi-
sualisation of the left P2 (white
arrow). c and d Susceptibility
vessel sign in P2 (curved arrow).
d TOF effect of the SWAN se-
quence identifies the susceptibili-
ty vessel sign associated with the
thrombus and the upstream arte-
rial segment (arrowhead)
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play the role of an endogenous contrast agent. After a certain
transit time,whichdependsupon thesubject’sageandcirculatory
conditions, thesaturatedprotonsreach thebrainparenchymagen-
erating the labelled image. A second acquisition is madewithout
prior saturation of the water molecule spins, generating a control
image. Subtraction of the labelled and control images generates a
perfusion-weighted image used to produce an absolutemeasure-
ment of cerebral blood flow (CBF). There are several types of
ASL sequences. Continuous ASL (CASL), pulsed ASL
(PASL), and pseudo-continuous (pCASL) are based on different
excitation methods and present specific advantages and
disadvantages.

In general, the CASL method has a higher signal-to-noise
(S/N) ratio but induces an excessive specific absorption rate,
particularly at 3 T. With PASL, labelling is particularly effec-
tive, but with a low S/N ratio. The pCASL method has the
advantages of both the preceding methods, with a satisfactory
S/N ratio and a limited specific absorption rate. It is currently
recommended for clinical applications, preferably with turbo
spin-echo 3D acquisition [29].

Post-labelling delay (PLD) should to be optimal for pCASL.
This parameter should be adjusted on a case-by-case basis and
correspond as closely as possible to the time needed for labelled
protons to reach the regionof interest. If thePLDis tooshort, allof
the labelled bolus may not have time to fully integrate the paren-
chyma to be explored, particularly junctional areas. This can lead
to a significant local signal loss, which could bemisdiagnosed as
false hypoperfusion regions. Patient-related factors can also lead
to systemised false hypoperfusion areas, resulting for example

from stenosis of the supra-aortic trunks, which produces a longer
transit time between the labelling zone and the region of interest.
In this case, it may be difficult to differentiate between false and
real hypoperfusion, and other sequences, such as DWI or MR
angiography, may be helpful to confirm the diagnosis.

Other artefacts related to the arterial transit can also occur.
Seen as linear or serpingious hypersignals within the arteries
of the Willis polygon, they are related to the persistence of
labelled protons in the vascular compartment because of an
overly short PLD. PLD is thus an essential parameter that
must be adjusted to the patient’s circulatory status.

Standardised PLD values have been validated for patient
age and pathological condition: 1500 ms for children;
1800 ms for healthy adults aged <70 years, and 2000 ms for
adults aged >70 years or for patients with a suspected neuro-
logical condition, irrespective of the origin [29].

It should be pointed out that ASL is sensitive to motion. It
is recommended to use background suppression and prospec-
tive correction methods to reduce motion artefacts [29].
However, in cases of highly agitated or confused patients,
good quality ASL maps remain difficult to obtain.

Applications for the exploration of acute ischaemic stroke

Evaluation of the penumbra zone and DWI/perfusion
mismatch

Several 3-T MRI studies have provided objective evidence of
the good correlation among computed tomography perfusion,

Fig. 4 A 76-year-old patient seen
in an emergency setting for right
brachiofacial motor deficit 3 h af-
ter symptom onset. DWI (a),
FLAIR (b), ASL (c), ASL/DWI
fusion (d), and SWI (e and f) se-
quences in the axial plane. a
Acute right superficial sylvian in-
farction. b The FLAIR sequence
fails to visualise any infarct zone.
Slow circulation in the cortical
branch of the right middle cere-
bral artery, hypersignal (curved
arrow). c Blue zone (white
parentheses) visualises a wide
right sylvian zone of hypoperfu-
sion. d Mismatch: DWI
hypersignal and ASL hypoperfu-
sion. e Susceptibility vessel sign
in the M2 segment of the right
middle cerebral artery, thrombus.
f Right sylvian (white
parentheses) brush sign; the ex-
tension is the same as the hypo-
perfusion zone visible on the ASL
sequence (image c)
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Fig. 5 A 76-year-old patient seen
in an emergency setting for
sudden-onset left hemibody
hypoesthesia. DWI (a), ASL (b),
3D TOF (c), and SWI (d) se-
quences in the axial plane. a
Small infarct zone in the right in-
ternal temporal region. b
Intravascular hypersignal; bright
vessel sign upstream from the
thrombus (arrowhead). Right oc-
cipital hypoperfusion with DWI
mismatch (curved arrow). c
Visualisation defect in the P2
segment of the right posterior ce-
rebral artery (white arrow). d
Susceptibility vessel sign in P2;
thrombus (black arrow)

Fig. 6 Control image 24 h after
intravenous thrombolysis in a
patient seen in an emergency
setting for a superficial left
sylvian ischaemia with favourable
clinical outcome. DWI (a and c)
SWI/ASL fusion (b), andASL (d)
sequences. a Left superficial
sylvian acute ischaemic lesion. b
Zones of hypointense
haemorrhagic transformations on
the SWI sequence superimpose
with the hyperperfusion zones on
the ASL (arrowheads). c and d
Anterior sylvian involvement
with partial recovery on the DWI
images of the posterior portion
corresponding to the zone of hy-
perperfusion (white arrows)
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DSC-MRI, and ASL for determining zones of parenchymal
hypoperfusion in acute stroke (Fig. 4) [30–33]. Thus ASL
provides a reliable assessment of penumbra volume based
on the following CBF values:

– ASL-CBF <20 ml/100 g/min. This is correlated with
MTT >10 s on DSC-MRI [34];

– ASL-CBF 40% lower than in healthy contralateral tissue.
Lesion volumes thus determined are correlated with vol-
umes measured on computed tomography perfusion
maps (Tmax 5.5 s) and DSC-MRI (Tmax + 6 s) as well
as with the 24-h DWI lesion in patients without reperfu-
sion [30].

ASL reliability and reproducibility have been established
for 3-T assessment of penumbra volume, while the lower S/N
ratio hampers 1.5-T performance [35].

Localisation of the arterial thrombus

During the acute phase of ischaemic stroke, a bright vessel
appearance on ASL sequences localises the thrombus (Fig. 5).
This bright vessel sign corresponds to an accumulation of
protons in labelled arterial blood immediately upstream from
the arterial occlusion. The sensitivity of the bright vessel sign
would be superior to that of the susceptibility vessel sign
[36–38]. The bright vessel sign can also reveal certain distal
arterial occlusions not initially detected on the vascular se-
quences, e.g. 3D TOF sequences [38].

Post-therapeutic hyperperfusion

When early arterial recanalisation occurs after intravenous
thrombolysis, focal zones of hyperperfusion, termed luxury per-
fusion, can appear within the initial hypoperfusion zone. These
zones are sometimes visible only on the ASL sequences and not
on DSC-MRI, further complicating their interpretation [39–41].

Thus the presence of hyperperfusion zones on the ASL
sequences of a control MRI early after thrombolysis is asso-
ciated with improved functional outcome at 24 h and 3months
and with a smaller final infarct volume [39, 40]. These zones
of hyperperfusion would correspond to preserved regions that
achieve restitutio ad integrum after the acute episode [40]
(Fig. 6).

In opposition, there is ongoing debate on how early hyper-
perfusion zones would be associated with haemorrhagic risk
since the available evidence is contradictory [40, 41].
Nevertheless, outcome would be better in hyperperfusion pa-
tients independently of the presence or not of haemorrhagic
transformation [40]. Post-therapeutic ASL perfusion status
predicts outcome.

Diagnosis of stroke mimics

Stroke mimics are non-vascular neurological pathologies that
reproduce the symptoms of stroke. According to the literature,
they occur in 1 to 14.5 % [42–48] of patients treated with
intravenous thrombolysis for suspected acute stroke, with a
mean of 4.38 % [46]. These different studies report that these
patients have a low risk of haemorrhage, estimated at 0 to 1 %,

Fig. 7 Brain MRI in a 65-year-
old patient with sudden-onset left
hemibody deficit. FLAIR (a),
DWI (b and c), 3D TOF (d), ASL/
TOF fusion (e), and ASL (f) se-
quences in the axial plane. No
visible lesion on the FLAIR se-
quence. b and d Hyperintense
cortical zone on the DWI images
showing a right temporo-parieto-
occipital zone not corresponding
to a vascular territory (white
arrow), with involvement of the
homolateral pulvinar
(arrowhead). d, e and f Dilatation
of the sylvian and right posterior
cerebral arteries (parentheses) as-
sociated with elevated CBF
(white arrows) in a context of
status epilepticus
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Fig. 9 A 21-year-old patient presenting sudden-onset aphasia. Initial (top
row) and control (H24, bottom row) brain MRI with FLAIR (a, e), DWI
(b, f), ASL (c, g) and SWI (d, h) sequences in the axial plane. Initial MRI,
a and b No visible acute ischaemic zone. c Large area of hypoperfusion

affecting the whole left hemisphere (parentheses) related to migraine
aura. d Left hemispheric brush sign (white arrows). Control MRI (H24)
shows no ischaemic lesion (e and f), a normal left hemispheric perfusion
(g), and a disappearance of the brush sign (h)

Fig. 8 Brain MRI in an 85-year-
old patient with a history of right
sylvian ischaemic stroke present-
ing with recurrent left hemibody
deficiency. FLAIR (a and d),
DWI (b and e), and ASL/DWI
fusion (c and f) sequences in the
axial plane. a, b, c Sequelar right
posterior sylvian zone with no
sign of recent ischaemia (white
arrows). d, e, f Hyperperfusion
zone bordering the superior part
of the cavity (arrowhead),
without FLAIR or DWI anomaly,
related to a partial seizure on
ischaemic sequelae
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and a better functional prognosis than patients who undergo
thrombolysis for confirmed ischaemic stroke [49]. There is
however a significant treatment-related cost increment, esti-
mated at $5400 in one American study [49]. These elements
should incite efforts to optimise candidate selection for
thrombolysis.

In order of frequency, the causes of stroke mimics are:
partial epilepsy and psychiatric disorders, and then at variable
frequencies depending on the report, infectious diseases (men-
ingitis and meningoencephalitis), migraine with aura, brain
tumours, cortical vein thrombosis, demyelinating inflammato-
ry diseases, and metabolic or toxic pathologies. ASL can iden-
tify certain aetiologies of stroke mimics.

When there is an epileptic origin, ASL imaging shows
focal hyperperfusion during the ictal and early post-ictal
phases with increased CBF in the epileptogenic grey mat-
ter [50–52]. These zones of hyperperfusion are not limited
to a single cerebral vessel territory and are frequently as-
sociated with suggestive morphological anomalies such as
hypersignals from the pulvinars or the splenium of the
corpus callosum on FLAIR and DWI sequences [53]
(Fig. 7). ASL can also identify epileptogenic foci, which
develop in ischaemic scar tissue in patients given emer-
gency care for suspected recurrent stroke in a previous
infarction zone, demonstrating high flow rate zones situ-
ated on the borders of parenchymatous sequelae (Fig. 8).
In the inter-ictal phase, ASL can identify epileptogenic
foci located in focal hypoperfusion zones [54].

In migraine aura, perfusion imaging can reveal anomalous
focal brain perfusion with a longMTTand decreased CBF and
cerebral blood volume [55, 56]. In this situation ASL can also
identify areas of decreased CBF [53]. These perfusion anom-
alies can sometimes resemble those observed in ischaemic
stroke and may be associated with a brush sign [57] (Fig. 9),
but are frequently bilateral, involving more than a single vas-
cular territory, and predominating in posterior regions [53].

If the imaging is obtained late, at the headache
phase, ASL reveals hyperperfusion with increased CBF
[53, 58] that can be difficult to distinguish from other
stroke mimics such as potential luxury perfusion.
Nevertheless, the clinical presentation is usually suffi-
cient to successfully guide diagnosis [53].

Conclusion

SWI and ASL sequences take advantage of the stronger mag-
netic field and have demonstrated their contribution to 3-T
MRI exploration of acute ischaemic stroke. SWI provides
prognostic elements useful for identifying the localisation,
morphology, and aetiology of the thrombus, as well as the
extent of the parenchymal hypoperfusion, while improving
the spatial resolution and sensitivity of T2 gradient-echo

sequences for the detection of haemorrhagic transformation.
ASL should not be used as a routine sequence because of the
acquisition time, but provides precious information for the
differential diagnosis in specific situations, giving insight into
the early post-therapeutic outcome and a noninvasive assess-
ment of the penumbra.
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