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Abstract

Myocardial fibrosis is always present in end-stage heart failure
and is a major independent predictor of adverse cardiac out-
come. Cardiac magnetic resonance (CMR) is an imaging
method that permits a non-invasive assessment of the heart
and has been established as the “gold standard” for the eval-
uation of cardiac anatomy and function, as well as for quan-
tifying focal myocardial fibrosis in both ischaemic and non-
ischaemic heart disease. However, cardiac pathologies
characterised by diffuse myocardial fibrosis cannot be evalu-
ated by late gadolinium enhancement (LGE) imaging, as there
are no reference regions of normal myocardium. Recent im-
provements in CMR imaging techniques have enabled para-
metric mapping of relaxation properties (T1, T2 and T2¥)
clinically feasible within a single breath-hold. T1 mapping
techniques performed both with and without contrast enable
the quantification of diffuse myocardial fibrosis and myocar-
dial infiltration. This article reviews current imaging tech-
niques, emerging applications and the future potential and
limitations of CMR for T1 mapping.
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Teaching points

* Myocardial fibrosis is a common endpoint in a variety of
cardiac diseases.

* Myocardial fibrosis results in myocardial stiffness, heart
failure, arrhythmia and sudden death.

» T1-mapping CMR techniques enable the quantification of
diffuse myocardial fibrosis.

* Native T1 reflects myocardial disease involving the myocyte
and interstitium.

* The use of gadolinium allows measurement of the extracellular
volume fraction, reflecting interstitial space.
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Abbreviations
CMR cardiac magnetic resonance

LGE late gadolinium enhancement

ECM extracellular matrix

CVF collagen volume fraction

GBCA gadolinium based contrast agents

ECV extracellular volume fraction

MOLLI modified Look-Locker inversion recovery

ShMOLLI  shortened modified Look-Locker inversion
recovery

SASHA saturation recovery single-shot acquisition

SAPPHIRE saturation pulse prepared heart rate indepen-
dent inversion recovery

LL Look-Locker

IR inversion recovery

SSFP steady-state free-precession

SENSE sensitivity encoding

TI inversion times

ROI region of interest

EQ-CMR equilibrium contrast-CMR
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Introduction

The normal myocardium is composed of cardiac cells, blood
vessels and nerves embedded within a complex three-
dimensional space, the interstitium or extracellular space.
The interstitium is a complex and dynamic environment, vital
for normal cardiac structure and function. In the normal hu-
man heart, the extracellular matrix (ECM) is predominantly
made up of collagen scaffolding [1, 2] and contains a ground
substance of proteoglycans and glycosaminoglycans, as well
as fibroblasts and immune cells [3]. One of the distinctive
factors of its pathology is interstitial space expansion, normal-
ly through the development of fibrosis. Myocardial fibrosis is
associated with worsening ventricular function, abnormal car-
diac remodelling and increased ventricular stiffness [4]. More-
over, fibrosis plays an important role in the development of
arrhythmia and sudden death [5], having been shown that it is
an independent predictor of major adverse cardiac events
(heart failure, arrhythmia and death) [6].

Currently, the only method to quantify diffuse fibrosis is
invasive biopsy, which carries significant morbidity, is prone
to sampling error and fibrotic involvement of the whole left
ventricle cannot be determined [7]. Blood biomarkers for
fibrosis assessment are also known to have complex con-
founding factors. Late gadolinium enhancement (LGE) imag-
ing with cardiac magnetic resonance (CMR) has been the
“gold standard” for detecting focal myocardial fibrosis in
clinical practice. While LGE is clinically useful [8], reliance
on relative signal intensity changes and nulling of “normal
appearing” myocardium make it difficult to identify subtle
abnormalities such as diffuse interstitial fibrosis [9]. A unique
feature of CMR is its ability to use proton relaxation times,
such as T1 to characterise myocardial tissue [9]. These relax-
ation times can be quantified using recently created mapping
sequences [10, 11].

This article describes the emerging techniques of myocar-
dial T1 mapping and extracellular volume quantification,
evaluates its capacity to characterise myocardial tissue and
demonstrates its clinical relevance.

Etiophysiopathology of myocardial fibrosis

The healthy myocardium contains an ECM that is a major
determinant of its structural integrity and mechanical func-
tions [3]. Normally, the ECM and fibrillar collagen network
form only 6 % and 2-4 %, respectively, of the structural space
within the heart [12]. However, the interstitium is actively
maintained by the relationships between itself, myocytes, the
neurohormonal system, mechanical forces and cardiac fibro-
blasts [13]. Within these coexisting matrices, a constant flux
of tissue and collagen turnover takes place, coordinated by
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regulatory cytokines, growth factors, enzymes, hormones and
direct cell-to-cell communication [14].

Diffuse myocardial fibrosis is a covert process that occurs
as a part of normal ageing [8] but is accelerated in disease [15,
16, 17, 18]. Although fibrotic remodelling is not completely
understood, after a specific cardiovascular stress (e.g. an isch-
aemic or mechanical injury), a cascade of chemokines, cyto-
kines, neurohormonal factors and matrix metalloproteinases
lead to local cell activation and collagen synthesis [19]. Myo-
cardial fibrosis, defined as a significant increase in the colla-
gen volume fraction (CVF) of myocardial tissue, is a common
endpoint in a variety of cardiac diseases [20]. The distribution
of myocardial fibrosis, however, varies according to the un-
derlying pathology [20]. The progressive accumulation of
collagen develops a range of ventricular dysfunctional pro-
cesses that generally affect diastolic and subsequently systolic
function [4]. Usually, myocardial fibrosis is classified as in-
terstitial or replacement fibrosis.

Replacement or scarring fibrosis corresponds to the replace-
ment of myocytes after cell damage or necrosis by plexiform
fibrosis [21]. It may have localised (Fig. 1) (ischaemic cardio-
myopathy, myocarditis, hypertrophic cardiomyopathy and sar-
coidosis) or diffuse distribution (chronic renal insufficiency, toxic
cardiomyopathies and inflammatory diseases) depending on the
underlying aetiology. The most common cause of replacement
fibrosis is scarring from myocardial infarction. LGE is a validat-
ed way to identify focal replacement fibrosis [8].

Interstitial fibrosis has a diffuse distribution within the inter-
stitium and its subtypes include reactive and infiltrative fibrosis.
Reactive fibrosis has a progressive onset and follows the increase
in collagen synthesis by myofibroblasts under the influence of
different stimuli. It has mostly been described in hypertension
[15] and diabetes [16], but it is also present in the ageing heart
[22], in idiopathic dilated cardiomyopathy [23], and in left ven-
tricular pressure-overload and volume-overload states induced
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Fig. 1 Scarring or replacement fibrosis after myocardial infarction: a
stellate fibrous scar (blue areas) replaces myocardial parenchyma (Mas-
son trichrome staining x40)
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by chronic aortic valve regurgitation and stenosis [24]. It has also
been reported in the remote non-infarcted myocardium after
infarction [18]. Infiltrative fibrosis is more unusual and is induced
by the progressive deposit of insoluble proteins (amyloidosis)
[25] (Fig. 2) or glycosphingolipids (Anderson-Fabry disease)
[26] in the cardiac tissue. Their pathophysiology follows similar
patterns as reactive fibrosis. Interstitial fibrosis precedes irrevers-
ible replacement fibrosis [27]. Reactive and infiltrative fibrosis
may be reversible under specific therapy [28]. Therefore, the
early detection of cardiac involvement is of critical importance to
therapeutic management.

Detection of myocardial fibrosis

Until now, the only approach to assess myocardial fibrosis has
been endomyocardial biopsy. This methodology allows qualita-
tive macroscopic assessment with Masson Trichrome staining
[29] and quantitative morphometry (quantification of CVF) with
picrosirius red [30] (Fig. 3). However, this technique is invasive
and prone to sampling errors. CMR T1 mapping of the myocar-
dium has the potential to quantify myocardial fibrosis in a non-
invasive way. Preliminary studies suggest that these techniques
are reproducible and may be more reliable than the current
biopsy gold standard, because the biopsy sample represents less
than a thousandth of the total myocardial volume. Furthermore,
these techniques can potentially quantify the fibrosis of the whole
heart, which truly reflects the global myocardial fibrosis burden.
These new biological parameters have the ability to detect early
disease, guide therapy and predict outcomes [31].

Myocardial T1 mapping

Quantitative myocardial T1 mapping is a CMR technique that
provides in vivo tissue characterisation [10]

In CMR images, the pixel signal intensity is based on the
relaxation of hydrogen nuclei protons in a static magnetic
field. T1 relaxation time depends on the molecular environ-
ment of the water molecules in the tissue and therefore

Fig. 2 Cardiac AL amyloidosis
with interstitial (perimyocytic)
and vascular involvement (star).
(Congo red stain with a normal
light and b ultraviolet light
microscopy x100). Red areas
represent amyloid deposition

characterises each tissue very specifically. T1 relaxation time
varies from one type of tissue to another, but also within the
same tissue depending on its physiopathological status (in-
flammation, oedema, fat, fibrosis, etc.).

Gadolinium-based contrast agents (GBCAs) shorten T1.
These low-molecular-weight extracellular agents are small
enough to pass across the vascular wall into the extracellular
space, yet are large enough that they do not penetrate cells
with intact membranes. They accumulate passively in the gaps
between cells and the increased volume of distribution of
interstitial expansion in “scar’ tissue [32]. This forms the basis
of the LGE for detection of focal fibrosis and recent develop-
ments have built upon this, further allowing scrutiny of diffuse
interstitial expansion (Fig. 4).

A T1 map of the myocardium is a parametric reconstructed
image, where each pixel’s intensity directly corresponds to the
T1 relaxation time of the corresponding myocardial voxel.
Therefore, it allows signal quantification (in milliseconds) on
a standardised scale of each myocardial voxel with high spatial
resolution [10]. Compared with LGE images, T1 mapping
CMR techniques eliminate the influences of windowing and
variations in signal enhancement by directly measuring the
underlying T1 relaxation times. Pre-contrast or native T1 times
in normal myocardium are longer than post-contrast T1, due to
the small amount of residual gadolinium in the myocardial
interstitium (Fig. 5). Native and post-contrast T1 mapping can
be performed to measure the extracellular volume fraction
(ECV) [32], which has important prognostic value [31] and
shows promise for the detection of diffuse myocardial fibrosis
[33, 34]. These techniques will solve the problem of detecting
the processes that diffusely affect the myocardium.

T1 mapping methodology

T1 mapping sequences

T1 maps originate from a series of co-registered images ac-
quired at different times of T1 recovery, typically following a
magnetisation preparation by inversion or saturation [35].
Raw images used for T1 mapping have to be acquired at
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Fig. 3 Dilated cardiomyopathy
of toxic origin with myocardial
focal replacement containing
fibrous tissue (star) and interstitial
widening for fibrosis (Masson
trichrome staining). Blue areas
depict fibrosis, red areas are
cardiomyocytes. (b) Picrosirius
red stain enhances the
perimyocytic pattern of fibrosis
(red areas represent fibrosis). (¢)
Picrosirius red stain of normal
myocardium for comparison.
(Original magnification x40)

identical times in the cardiac cycle. Different CMR acquisition
sequences have been used to obtain myocardial T1 maps,
including the modified Look-Locker inversion recovery
(MOLLI) [10], shortened MOLLI (ShMOLLI) [36], satura-
tion recovery single-shot acquisition (SASHA) [37] and satu-
ration pulse prepared heart rate independent inversion recov-
ery (SAPPHIRE) [38].

T1 measurements can be altered by several factors, such as
the acquisition scheme, magnetisation transfer, flow, T2 effect
and motion [35, 36, 37, 39, 40]. This is an essential point to
consider before performing myocardial T1 maps, because it
directly influences the accuracy and reproducibility of the final

T1 measurements. This will also be considered when compar-
ing results between different studies. Different T1 mapping
strategies will have varying sensitivities to motion artefacts,
heart rate, and intrinsic T1 values ranges [41]; Table 1 shows
normal values of myocardial T1 mapping at different studies.
The most assessed T1-mapping sequence has been de-
scribed by Messroghli et al. [10, 41] and is the MOLLI
sequence that provides high-resolution T1 maps of human
myocardium. Although it is sensitive to extreme heart rate
values and tends to slightly underestimate the true T1 value,
the method allows a rapid and highly reproducible T1 map of
heart with high levels of intra- and inter-observer agreement

Fig. 4 T1 mapping in hypertrophic cardiomyopathy. a LGE imaging
demonstrating patchy mid-wall enhancement in the septum (white
arrows). b MOLLI T1 map at 3 T (Magneton Trio-Tim; Siemens,
Erlangen, Germany) demonstrating increased T1 value (1,161 ms) in an
area without LGE (ROI) because of diffuse fibrosis. The T1 value in the
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area with LGE (focal fibrosis) is 1,281 ms. ¢ Post-contrast T1 map
illustrating excellent agreement between LGE (black arrows). Post-con-
trast T1 values are shortened in the area with late enhancement (301 ms)
as well as in the rest of the septum (465 ms)



Insights Imaging (2015) 6:189-202

193

2000ms

Fig.5 Quantification of native T1 values of a healthy volunteer in a four-
chamber view obtained at 3 T. The resulting pixel by pixel colour native
T1 map is displayed using a customised table where normal myocardium
is purple and increasing T1 ranges from orange to yellow. Normal values

[42]. The MOLLI method [10, 41] overcame the limitations of
motion and prolonged acquisition time of Look-Locker (LL)
sequences [43], incorporating an efficient sampling of the T1
relaxation curve. The MOLLI sequence employs selective
data acquisition at a given time of the cardiac cycle over
successive heartbeats and merges data from multiple LL ex-
periments into one data set. Each MOLLI study consists of
three successive LL inversion recovery (IR) experiments with
different inversion times (TI) which are performed consecu-
tively within one breath-hold, for a total of 11 images over 17
heartbeats. Images are acquired in late diastole using a single-
shot steady-state free-precession (SSFP) technique combined
with sensitivity encoding (SENSE) [44]. By combining the
three inversions, the relaxation curve is sampled in an inter-
leaved manner, resulting in a sufficient number of points for
accurate T1 quantification (Fig. 6) [10]. With some vendors,

ofnative T1 at 3 T (Magneton Trio-Tim; Siemens) with MOLLI sequence
are 1,031+£24 ms. Post-contrast T1 values at 15 min are much shorter
(557 ms, in the range of orange in the colour scale), due to the relaxing
effect of the residual gadolinium in the myocardial interstitium

these data are automatically entered into three-parameter
curve fitting at the scanner and T1 times are calculated on a
per-pixel basis. To generate the inline T1 map, the acquired IR
images are first registered using a motion correction algorithm
which is based on estimating synthetic images presenting
contrast changes similar to the acquired images solving a
variational energy minimisation problem [45] (Fig. 7).

The ShAMOLLI sequence requires a short breath-hold [36]
and can generate rapid and high-resolution myocardial T1
maps. The imaging time with ShAMOLLI is 9.0+1.1 s, com-
pared with the 17.6+2.9 s required with MOLLI. In order to
shorten the breath-hold, ShAMOLLI does not achieve a full
recovery of the longitudinal magnetisation between sequential
inversion pulses. SAMOLLI uses a similar effective TI prin-
ciple to MOLLI but over only nine heartbeats. SAMOLLI has
less heart rate dependency, which may improve accuracy. The

Table 1 Reference values of native myocardial T1 mapping at different studies

Field strength Scanner

Reception coil T1 mapping sequence T1 values (ms)

Messroghli et al. [42] 2006 15T Gyroscan Intera CV, Philips — MOLLI 980+53
Piechnik et al. [36] 2010 15T Avanto, Siemens 32-channel ShMOLLI 966+48
15T Avanto, Siemens 32-channel MOLLI 976+46
3T Trio, Siemens 16-channel ShMOLLI 1,166+£60
3T Trio, Siemens 16-channel MOLLI 1,169+45
Lee et al. [58] 2011 3T Verio, Siemens 32-channel MOLLI 1,3154+39
Rogers et al. [59] 2013 15T Philips, Best 32-channel MOLLI 976+37
3T Philips, Best 32-channel MOLLI 1,108+67
Von Knobelsdorff et al. [49] 2013 3 T Verio, Siemens 32-channel MOLLI 1,158 (range, 1,005-1,295)
Kellman et al. [82] 2013 15T Avanto, Siemens 32-channel MOLLI 1,012+25
Piechnik et al. [83] 2013 15T Avanto, Siemens 16-channel ShMOLLI 962425
15T Avanto, Siemens 32-channel ShMOLLI 962+25
Puntmann et al. [74] 2013 3T Achieva TX, Philips 32-channel MOLLI 1,070+55
Fontana et al. [76] 2014 15T Avanto, Siemens 16-channel ShMOLLI 967+34
Liu et al. [84] 2014 3T Trio, Siemens 12-channel MOLLI 1,232+£51

@ Springer



194 Insights Imaging (2015) 6:189-202

LL| LL2 LL3
,_H (_L\ AL
4 A\
TAI[ (100 ms) Tl (200 ms) TI5 (350 ms)
180° 180° 1807
o | - o 1 an - = - 1 - = &
. L~

"I

-1

[ R N R RN RN D Y X
e LA AN B A At A SN BLA

ol

Image 1-1 1-2 1-3

o
0
d
g
5

4
4
4
4
d
4
i -
4
-+

Y

Merged image set

Fig. 6 MOLLI pulse sequence scheme. Vertical bars represent image
acquisition. Dashed lines represent undisturbed signal recovery. Three
sets of LL experiments are performed successively with increasing TI
within one breath-hold’s time. Images are acquired with a specific trigger

measurements of myocardial T1 by ShMOLLI are in good
agreement with previous measurements using MOLLI [36].

The recently described SASHA sequence [37] uses a
single-shot balanced SSFP readout to provide good signal-
to-noise ratio and blood-tissue contrast. This approach will
overcome the limitations of MOLLI that underestimate T1
values [10, 41, 36] and which are known to have greater
underestimation in short T2 tissues such as the myocardium
[46]. This sequence consists of ten electrocardiogram-
triggered single-shot balanced SSFP images in a breath-hold.
The first image is acquired without magnetisation preparation
and the remaining nine images follow saturation pulses with
variable saturation recovery times [37]. The accuracy of
SASHA T1 values is independent of absolute T1, T2, heart
rate, flip angle and off-resonant frequencies up to 696 Hs.

In the presence of arrhythmias, a common co-morbidity
in patients with heart failure, T1 mapping image quality is
usually sub-optimal. Arrhythmia-insensitive inversion re-
covery sequences have been developed with the purpose
of generating a technique insensitive to heart rate variabil-
ity [38]. The novel preparation pre-pulse, called SAP-
PHIRE, which consists of a combination of saturation
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delay (TD) to select end-diastole. For post-processing (calculation of T1
values), the images are regrouped into one data set according to their
effective TI. (Reprinted, with permission, from Messroghli et al. [10])

and inversion pulses, is introduced to remove the
magnetisation history in each heartbeat and eliminate the
need for rest periods in T1 mapping.

T1 mapping: acquisition protocol and post-processing

The most widely used and most extensively validated se-
quences for T1 mapping are MOLLI-based sequences [10,
42, 47]. Data may be acquired in basal, mid-ventricular and
apical short-axis and in four-chamber views. To quantify
T1 values, a region of interest (ROI) can be drawn in
the septum in a four-chamber plane (excluding areas of
focal fibrosis), assuming this to be representative of the
whole myocardium. The ROI can be placed, as well, in
the short-axis if it is more convenient for avoiding scar
areas. The ROI has to be within the myocardium and
does not include blood or epicardial fat (Fig. 8) [48]
Another strategy to quantify T1 values is segmental
analysis, but it is time-consuming and can also be
problematic due to ventricular motion artefacts, which
occur most frequently in the inferolateral region [49].
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Fig. 7 MOLLI T1 mapping in a healthy subject acquired at 3 T (Mag-
neton Trio-Tim; Siemens). The top row shows the original images ac-
quired at different TI times. The bottom row shows the motion corrected
images using a non-rigid registration algorithm. By merging these source

Post-contrast T1 mapping and ECV

The use of an extrinsic contrast agent adds another dimension
to CMR tissue characterisation. The interstitial space can be
directly assessed using standard gadolinium chelates. The
post-contrast T1 maps are evaluated at different time points
after contrast administration and may be used to obtain a curve
of myocardial T1 recovery reflecting the contrast agent wash-
out [42] (Fig. 9).

At a fixed time after contrast administration, T1 may be
reduced in cardiac disease, suggesting increased interstitial
space [34]. However, in addition to heart rate and
acquisition-related confounders, isolated post-contrast T1
values are influenced by a number of factors, including body
fat percentage, reduced renal function, altered haematocrit,
native T1, delay time in measurement after contrast adminis-
tration and gadolinium characteristics (dose, concentration
and water exchange rate). Consequently, native T1 mapping
and ECV are currently preferred for T1 quantification [35]. If,
instead, the ratio of signal change in blood and myocardium
after contrast administration is calculated, corrected by the
haematocrit, the ECV, which reflects the interstitial space,
can be calculated, avoiding confounding factors.

Original IR
images

1192 ms 2229 ms 3279 ms

Motion
corrected
IRimages

2000ms

T1 map

images into one data set, T1 values can be computed for every pixel with
three-parameter curve fitting; a map of T1 in the imaging section can then
be generated from these pixel values

The ECV technique introduces a potentially important new
method to examine the myocardium because it is sensitive to
the distribution of the left ventricular myocardium into its
cellular and ECM compartments. Alterations in these com-
partments occur from different pathophysiological processes
[50]. The ECV reflects the volume fraction of heart tissue that
is not taken by cells. ECV may be measured using manual
regions of interest (ROIs) drawn on T1 maps (Fig. 10), by
performing a manual or semi-automatic image registration of
T1 maps [51] or by a fully automated method calculating
pixel-wise ECV parametric maps [52], if native and post-
contrast T1 images are co-registered, quantified and adjusted
for the haematocrit.

Expansion of the ECV represents a non-specific increase in
free water in the myocardium and occurs in a variety of
pathologies, including focal and diffuse fibrosis, oedema,
and amyloidosis. In the absence of amyloid or oedema [53],
expansion of the myocardial CVF is responsible for most
ECM expansion, which culminates in mechanical, electrical
and vasomotor dysfunction.

The myocardial ECV may be estimated from the concen-
tration of extracellular contrast agent in the myocardium rel-
ative to the blood in a steady state. The contrast agent

@ Springer
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Fig. 8 Quantification of native
T1 values from a healthy
volunteer in a four-chamber plane
(a) and in a short-axis (b) view. A
ROI is drawn in the septum. Care
is particularly taken to avoid
“contamination” with signal from
the blood pool and the epicardial
fat. Normal values of native T1 at
3 T with MOLLI sequence are
1,031+24 ms. (Reprinted and
modified, with permission, from
Perea et al. [48])

1031ms ——>

distributes between extracellular space and blood plasma such
that the relative pre- and post-contrast signal changes measure
the myocardial ECV [32, 54]. The measurements are only
valid for tissues where contrast agent concentration is in
equilibrium (steady state) or dynamic equilibrium (dynamic
steady state) with the contrast agent concentration in the blood
pool. Following an intravenous injection, contrast agents are
continuously cleared from the blood via renal clearance. If the
contrast exchange rate between the blood and the tissue of
interest is faster than the renal clearance, then the ratio of
contrast agent concentration in the tissue and the blood will,
after the short initial period, achieve a dynamic equilibrium
and remain unchanged over time [32]. By then substituting in
the blood contrast volume of distribution (equal to one minus
the haematocrit) the myocardial contrast volume of distribu-
tion is obtained, reflecting the fraction of the tissue which is
interstitial space, also referred to as myocardial ECV. The
ECV in the myocardium is then calculated as follows:

ECVpyo = [l-haematocrit] X ARlpyo/AR1pig0d

1200

1000 958

o]
(=]
o

Time (ms)
for]
o
o

200 530,56 557.02 5575 558,13 ~—Time (ms)

381,71

200 307,69

0 2 4 6 8 10 15 30
Time (min)
Fig.9 Myocardial T1 values obtained in a healthy volunteer from minute
0 to minute 30 after administration of 0.15 mmol/kg of gadopentetate
dimeglumine. T1 values are expressed as means. The exponential recov-
ery of myocardial T1 reflects the washout of the contrast agent from the
myocardium
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Where AR1 is (1/T1 pre-contrast — 1/T1 post-contrast)

Equilibrium distribution can be achieved with a primed
contrast infusion (equilibrium contrast-CMR [EQ-CMRY])
[55] or might be approximated by the dynamic equilibration
achieved by delayed post-bolus measurement [56, 57].

EQ-CMR is a robust, non-invasive method to quan-
tify diffuse myocardial fibrosis, which has been validat-
ed against the current gold standard of surgical myocar-
dial biopsy CVF quantification in patients with aortic
stenosis and hypertrophic cardiomyopathy [55]. EQ-
CMR is achieved by primed infusion (a loading bolus
of 0.1 mmol/kg followed by a slow continuous infusion
of 0.001 mmol/kg/min [equivalent to 0.1 mmol/kg over
90 min]) [55]. Standard LGE imaging is possible after
the bolus, although the sensitivity of LGE may decline
since doses as low as 0.1 mmol/kg have reduced sensi-
tivity for myocardial infarction. This technique is time-
consuming, but continuous infusion removes contrast
kinetic effects, measuring diffuse fibrosis in vivo.

The bolus only technique assumes that at a sufficient time
after a single-contrast bolus, a dynamic equilibrium exists [56]
allowing the equivalent ECV measurement. Post-gadolinium
ECV s stable from approximately 8.5 min after administration
of a bolus and remains at a steady state up to 50 min after
gadolinium injection [56, 58] The contrast dose varies across
groups (0.15 [51] or 0.2 [56] mmol/kg), enabling a quality
LGE imaging 10-15 min after bolus. ECV can be measured
with simple gadolinium contrast bolus as accurately as with an
infusion, but with slightly less precision [56]. The bolus
strategy to measure myocardial ECV is preferred against the
primed infusion because it simplifies the data acquisition
protocol and facilitates its integration into routine CMR prac-
tice. This technique has been validated histologically in dis-
tinct disease groups and the correlation with CVF is similar to
that with the infusion technique and does not differ statistical-
ly [57]. Bolus only is sufficient for ECV measurement across a
range of cardiac diseases. However, when ECV is >40 %
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Fig. 10 ECV measured using manual ROIs drawn on T1 maps in a
patient with idiopathic dilated cardiomyopathy. a Four-chamber myocar-
dial delayed enhancement CMR image shows absence of late contrast
enhancement. b, ¢ T1 maps using MOLLI; pre-contrast (b) and post-

(amyloid, LGE areas of hypertrophic cardiomyopathy and
myocardial infarction), the bolus only technique consistently
measures ECV higher compared with infusion, therefore, in
selected cases (especially amyloidosis) the infusion method is
preferred.

T1 values are affected by confounding variables men-
tioned before. Due to these factors, T1 times cannot be
readily compared to T1 data from other centres. There
are different normal T1 values in the literature depend-
ing on the field strength, the scanner manufacturer, the
kind of sequence and other parameters related with the
acquisition protocol and the post-processing [36, 58, 59,
49]. In order to use native myocardial T1 mapping to
accurately identify disease states, it is advisable to ob-
tain the reference values in each scenario by performing
a study with healthy volunteers. In contrast, ECV is an
inherent physiological property that should not be

Table 2 Normal values of myocardial ECV at different studies

contrast (¢) showing marked T1 shortening. The two T1 maps are
combined with 1-haematocrit blood correction to calculate ECV.
Haematocrit in this patient was 38 % and ECV 31 % (slightly elevated,
reflecting diffuse fibrosis)

affected by these variables. The ECV data of normal
volunteers do not significantly differ between the differ-
ent studies, being in the range of 24-28 % [56, 58, 59,
60, 61, 62]; see Table 2.

Clinical applications of interstitial imaging

Native T1 distinguishes normal from abnormal myocar-
dium, indicating myocardial disease involving both the
myocyte and interstitium. Measurement requires no ex-
ogenous contrast administration, making it feasible in
patients with severe renal dysfunction or pregnancy.
Cardiac T1-mapping without the use of a GBCA has
been shown to be sensitive to a variety of pathologies
where increased water is present, such as oedema [63,

Field Scanner Contrast Technique Dose T1 mapping  ECV
strength (mmol/kg) sequence (%)
Broberg et al. [60] 2010 1.5T/3 T Achieva/Intera, Gadodiamida Only bolus 0.15 Look-Locker 24.8
Philips
Schelbert et al. [56] 2011 1.5 T Espree, Siemens Gadoteridol Only bolus 0.2 MOLLI 24.1
Lee et al. [58] 2011 3T Verio, Siemens Gadopentetate Only bolus 0.15 MOLLI 26.7
Dimeglumine
Kellman etal. [61]2012 15T Avanto/Espree, Siemens ~ Gd-DTPA Only bolus 0.15 MOLLI 254
Sado et al. [85] 2012 15T Avanto, Siemens Gadoterate Bolus+infusion ~ 0.1+0.002/min* FLASH IR 253
Meglumine
Salerno et al. [62] 2013 15T Avanto, Siemens Gd-DTPA Bolus+infusion ~ 0.1+0.001/min®  MOLLI 28.5
Liu et al. [86] 2013 15T Avanto/Espree, Gadopentetate Only bolus 0.15 MOLLI 26.9
Siemens Dimeglumine

#Bolus of 0.1 mmol/kg followed by infusion of 0.002 mmol/kg/min
°Bolus of 0.1 mmol/kg followed by infusion of 0.001 mmol/kg/min
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Fig. 11 T1 mapping in acute myocardial infarction. Subendocardial
enhancement (a) in the inferolateral, midventricular segment of the left
ventricle. Although the T2-weighted images (b) show only a mild

64], focal or diffuse fibrosis [65] and amyloidosis [66].
Acute myocardial injury is accompanied by intracellular
and interstitial oedema and is traditionally detected by
increased T2 signal, although pre-contrast T1 mapping
may prove to be equally effective and robust [64]. The
oedema in myocardial ischaemia and infarction can be
recognised by increases in T1 with high sensitivity and
specificity [67, 68, 69] (Fig. 11). In chronic myocardial
infarction, there is replacement of myocardial cells by
fibrosis with an increase in extracellular collagen. Con-
sequently, T1 values are higher than in normal myocar-
dium, but not as high as in acute myocardial infarction
[67]. For determining the area at risk, native T1 and T2
mapping provide similar results and closely match the
area at risk as defined by microspheres in animal
models [64]. Native T1 mapping is superior compared
with T2-weighted and LGE techniques in detecting
acute myocarditis [70, 71], which is helpful in subtle
focal disease [72] and may detect pathology missed by
LGE technique, such as pan-myocarditis [72]. Native T1

Fig. 12 TI mapping in
amyloidosis. MOLLI non-
contrast T1 map in a normal
volunteer (a), and cardiac
amyloid patient (b). Note the
markedly elevated myocardial T1
time in the cardiac amyloid
patient (1,195 ms, into the orange
range of the colour scale)
compared with the normal control
(1,048 ms, in purple range of the
scale)

T

@ Springer

increase in brightness (long arrows), there is an area of increased T1
values (1,208 ms, into the orange range of the colour scale) (short
arrows) (c¢) exceeding the area of LGE enhancement

values provide diagnostic accuracy to discriminate be-
tween normal and diffuse fibrosis in patients with non-
ischaemic dilated cardiomyopathies [73, 74] and hyper-
trophic cardiomyopathy [73, 74], having the potential to
become a test in patients with suspected diffuse fibrosis,
which may be missed by classic LGE imaging. Further-
more, native T1 is significantly elevated in patients with
aortic stenosis and correlates with the CVF quantified at
biopsy [65]. Diffuse fibrosis is an important clinical
parameter in aortic stenosis and is also reflected in the
degree of postoperative recovery. However, fibrosis is a
potentially reversible phenomenon under several thera-
pies [75]. Cardiac amyloidosis shows markedly in-
creased non-contrast T1 relaxation times in the myocar-
dium [66, 76], even more pronounced that in aortic
stenosis [66] (Fig. 12). Myocardial T1 mapping is an
accurate technique for the detection of cardiac involve-
ment in amyloidosis, avoiding the administration of
GBCA that frequently is problematic in this group of
patients [66]. Other pathologies may result in a decrease

- -. '
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Fig. 13 Native (a) and post-contrast with the EQ-CMR technique (b) T1
maps in a patient with AL amyloidosis. A ROI is placed in the septum
(white ROI) and in the blood (black ROI) in the native and post-contrast
T1 maps. Native T1 value is increased (1,219 ms; N, 1,031+24) and post-

of native Tl values, like Anderson-Fabry disease, be-
cause of the intracellular lipid accumulation [77], and
iron overload where T1 mapping is superior to the
classic T2* sequence for the detection of early iron
overload [78].

The use of GBCA allows a direct measurement of the size
of the extracellular space, reflecting interstitial disease. The
values of myocardial ECV are increased in cardiac diseases
(hypertrophic [55] and dilated [79] cardiomyopathy, aortic
stenosis [55], infarction [51], diabetes [80] and congenital
heart diseases with myocardial dysfunction [60]) reflecting
diffuse myocardial fibrosis. In myocarditis, where expansion
of ECV is due to oedema/inflammation/necrosis, the ECV
quantification with LGE imaging improve the diagnostic ac-
curacy of CMR compared with standard “Lake Louise”
criteria [81]. Expansion of the myocardial ECV in amyloidosis
is higher than in any other disease generating diagnostic
specificity above a certain threshold [53] (Fig. 13). Myocar-
dial ECV measurement has the potential to become the first
non-invasive test to quantify cardiac amyloid burden.

These new techniques might help us to detect subclinical
myocardial changes in cardiovascular risk populations that
otherwise could be missed by traditional imaging techniques,
enabling an improvement in therapeutic strategies, monitoring
the treatment effect and improving clinical outcome.

Conclusions

The T1 mapping techniques and ECV imaging by CMR
appear to be sufficiently robust methods for diagnosis of many
cardiac diseases. Just as native T1 mapping may be considered
an intrinsic myocardial contrast, the ECV after GBCA is a
direct measurement of the size of the extracellular space,
reflecting interstitial disease. This technique separates the

contrast T1 time is shortened (481 ms). The two T1 maps values com-
bined with 1-haematocrit blood correction enable the calculation of the
ECV that is increased (68 %) in this patient. (Native blood T1, 1,121 ms;
post-contrast blood T1, 541 ms; haematocrit, 48 %)

myocardium into its cellular and interstitial components. The-
se techniques promise early detection of the disease and have
the potential to provide a more individualised therapy. Con-
sequently, native T1 mapping and ECV might supply a CMR
biomarker for myocardial fibrosis, justifying their use in clin-
ical practice. However, more research is required before a
large-scale application for clinical decision-making can be
recommended.
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