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Abstract
Various healthcare domains have witnessed successful preliminary implementation of artificial intelligence (AI)
solutions, including radiology, though limited generalizability hinders their widespread adoption. Currently, most
research groups and industry have limited access to the data needed for external validation studies. The creation and
accessibility of benchmark datasets to validate such solutions represents a critical step towards generalizability, for
which an array of aspects ranging from preprocessing to regulatory issues and biostatistical principles come into play.
In this article, the authors provide recommendations for the creation of benchmark datasets in radiology, explain
current limitations in this realm, and explore potential new approaches.

Clinical relevance statement Benchmark datasets, facilitating validation of AI software performance can contribute
to the adoption of AI in clinical practice.

Key Points
● Benchmark datasets are essential for the validation of AI software performance.
● Factors like image quality and representativeness of cases should be considered.
● Benchmark datasets can help adoption by increasing the trustworthiness and robustness of AI.
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Graphical Abstract

BBenchmark datasets, facilitating validation of AI software performance can
contribute to the adoption of AI in clinical practice.
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Category Performance Metrics

(Binary) Classifica�on
Accuracy, Sensi�vity, Specificity, Posi�ve Predic�ve Value 

(PPV), Nega�ve Predic�ve Value (NPV), F1 Score

(Binary) Classifica�on (low 
prevalence)

Area under the Receiving Opera�ng Characteris�c Curve 
(AUC-ROC), Area under the Precision-Recall Curve (AUC-PR), 

F1 Score

Segmenta�on
Dice Similarity, Intersec�on Over Union (Jaccard Index), 

Hausdorff Distance

Regression
Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE)

Detec�on
Free Response Opera�ng Curve (FROC), Intersec�on over 

Union (IoU), Mean Average Precision (mAP)

Introduction
The development of artificial intelligence (AI) algorithms
in healthcare has gained significant momentum in recent
years, including in radiology. In early 2023, there were
more than 200 commercially available AI software solu-
tions for radiology alone [1]. One important aspect of
external validation of AI models is the creation of bench-
mark datasets. A benchmark dataset is a well-curated
collection of expert-labeled data that represents the entire
spectrum of diseases of interest and reflects the diversity of
the targeted population and variation in data collection
systems and methods. Such datasets are vital for validating,
in the sense of establishing the reliability and accuracy of,
AI models, increasing trustworthiness, and the chance of
robust performance in real-world applications [2–4].
If the dataset used to develop and validate an AI algo-

rithm is not representative of the target population, biases
could arise that could have severe consequences for a
large group of patients [3]. For instance, if a dataset is
derived from a relatively homogenous source population
from within a well-established healthcare system, the
developed algorithms may not generalize effectively to, for
example, a limited-resource setting with different demo-
graphic and pathophysiological features of the population.
This may further amplify health inequities, potentially

leading to worse healthcare outcomes for those margin-
alized populations [5]. Also, algorithms developed on
over-used public datasets derived from a hospital popu-
lation may exhibit subpar performance if applied in a
screening setting on individuals with similar demo-
graphics but different disease prevalence [6, 7]. This could
lead to missed diagnoses on a large scale, especially in the
light of automation bias [8]. Logullo et al [9] reviewed
studies in which AI was trained to diagnose lung nodules
(detect, segment, or classify them) using public datasets.
They showed that 49% of their included studies used
LIDC-IDRI [10] or LUNA [11] or a dataset derived from
them during model development and/or validation. The
characteristics of such public datasets might differ from
those of the intended use case of an AI algorithm that
utilized them for training/validation. For example, the
volume quantification of nodules might have been derived
from manual diameter measurements, which will give
different results compared to fully automated measure-
ments. In addition, these public datasets might have been
preprocessed and their quality might differ from those
used in clinical practice. It is therefore essential to per-
form further analysis to ensure the clinical utility of the
dataset prior to deciding if it should be used for the
particular task of interest.
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It is imperative to create and enable access to bench-
mark datasets encompassing diverse populations and
disease characteristics to validate the performance of an
AI algorithm and test its generalizability. Moreover, the
benchmark creation process must be transparent and
rigorously documented. Furthermore, the dataset should
be representative of the clinical context it is designed to
address (e.g., screening and clinical diagnosis). Conse-
quently, creating a benchmark dataset is not a straight-
forward task, as biases could arise in various steps in its
formation process [3]. Factors to limit bias include the
data sources used, anonymization steps, data format, and
annotation methods.
There are initiatives to standardize infrastructure for

validating AI software in imaging, enhancing transparency
[1]. Furthermore, recommendations for a benchmark
dataset for medical imaging in screening settings exist, but
no standardized approach for clinical applications [12]. In
pathology, proposals for creating test datasets to validate
AI performance are already in place [13]. For more gen-
eral AI solutions, it might be argued that local fine-tuning
of a model and strict post-market surveillance is most
efficient since data are scarce. However, before model
deployment, the models’ weaknesses need to be estab-
lished before introduction in the clinic, especially in rare
diseases.
This paper explores the key considerations in creating

imaging benchmark datasets (Fig. 1) to validate the per-
formance of AI software, addressing challenges like data
quality and data heterogeneity, and emphasizing domain
experts’ input. Finally, it discusses metrics for evaluating
model performance and provides recommendations for
creating benchmark datasets in clinical practice. The pri-
mary objective of this paper is to guide the development of
these datasets for AI software assessment in hospitals.

Imaging benchmark dataset creation
When developing a benchmark dataset, there are several
steps to be taken [4, 12]. The following section highlights
and examines the most crucial of these steps.

Identification of specific use case
It is essential to identify the specific use case(s) prior to
creating a benchmark dataset. This involves considering
various tasks such as object detection, binary or multiclass
classification, segmentation, and regression, and their
requirements (e.g., correct bounding box for detection,
correct contour for segmentations, etc.). The clinical
context, including the disease(s) of interest, modality,
target population, and healthcare setting, should be
clear, such as detecting chest X-ray abnormalities vs a
normal chest X-ray in patients presenting to the emer-
gency department of a secondary or tertiary referral

center. Furthermore, it is important to identify the
most accurate ground truth labels. In many cases the
expert user is regarded as the ground truth, but more on
practical grounds than based on actual proof. Follow-up
of patients or more extensive diagnostics are often lacking
resulting in the absence of a definitive ground truth.
For example, biopsy results should be preferred to clinical
observations to decide if a lung nodule is malignant,
but they are either not available at all (yet) or just not
included in the data collection. Furthermore, in this
case, the required 2-year follow-up data that could be
used to confirm the benign nature of nodules is also often
lacking.

Representativeness of cases
A crucial aspect to consider is the representativeness of
cases encountered in clinical practice. The dataset must
reflect real-world scenarios, including the disease severity
spectrum, and ensure diversity in terms of demographics,
vendors, and other factors.
One challenge that is difficult to address is the inclusion

of rare diseases. Given their low prevalence, a very large
sample size would be needed for these cases to be properly
represented. Since it is commonly unfeasible to acquire a
sufficiently large dataset, one proposed method is aug-
menting the dataset by generating synthetic data including
variants of the underrepresented subsets [14]. For seg-
mentation tasks, the inclusion of synthetic cases has been
shown to lead to an improvement of the intersection over
union (IoU) of up to 30% [15]. For detection tasks like that
of the chromophobe subtype, synthetic histology images
improved accuracy in clinical settings [16]. However,
potential biases introduced by synthetic dataset hetero-
geneity in clinical practice are still under research [17].
Considering all the above-mentioned factors (spectrum

of disease, diverse demographics, etc.) will help guarantee
that the dataset is representative of the patient population
and the intended clinical setting (e.g., primary care, public
hospital, academic centers, or population screening).
For instance, a dataset derived from a population-based

screening cohort is unsuitable for validating algorithms
intended for routine computed tomography (CT) scans of
the hospital population due to differences in scan proto-
cols and disease prevalence. Validating algorithms is
challenging due to clinical indication heterogeneity and
incidental findings leading to new diagnoses, especially in
broader clinical settings like abdominal CT scans. In these
cases, there may be patients with varying indications
ranging from analysis of an incidental finding to periodic
oncologic follow-up [18, 19]. This is why it may be more
straightforward to implement or evaluate AI techniques in
highly specialized environments characterized by well-
defined indications and a limited spectrum of findings,
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such as mammography screening [20, 21] and prostate
cancer detection on MRI [22].
An example of a non-representative dataset in terms of

population characteristics is the MIMIC-CXR dataset
[23, 24], which consists mainly of data from a single
hospital’s emergency department [6]. MIMIC-CXR is a
large-scale dataset of chest X-ray images with associated
radiology reports. For chest CT for lung nodule detection
tasks well-known datasets are the LIDC-IDRI [10] and
its derived LUNA16 [11]. Their popularity among
researchers is due to being the only publicly available
datasets providing lung nodule coordinates. However, AI
solutions based on these datasets may have limited gen-
eralizability. A study by Li et al [25] showed that algo-
rithms trained on independent datasets and LUNA16

maintained high performance when tested on a non-
LIDC-IDRI dataset. In contrast to that study, Ahluwalia
et al [6] showed that when chest radiograph classifiers
are validated in a geographically and temporally different
real-world dataset their diagnostic performance may drop
in certain subgroups. Thus, caution must be exercised
when applying a solution developed based only on, for
example, the public LUNA16 dataset to real-world
scenarios.

Proper labeling
The main characteristic of a well-curated benchmark
dataset is that it should be properly labeled to be used as
a reference standard for validation studies, ideally by
having sufficiently long follow-up, or pathological proof

Fig. 1 Considerations for the creation of a benchmark dataset
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(biopsy and/or histology). Often, reader consensus or
majority voting is taken as a proxy, since histology or
cross-sectional imaging of all participants is usually not
available in a retrospective study design, nor ethically
feasible in a prospective setting. This (inherently imper-
fect) approach requires the involvement of domain
experts, including radiologists. The years of experience of
these experts should be considered and reported, and
cases with poor interobserver agreement should be
identified and analyzed for any (systematic) errors.
Another consideration related to the labeling process is
the types of labels that should be accompanied by proper
instructions, especially when these labels are collected
from different hospitals, to ensure homogeneous results.
It is also crucial to decide on the annotation format like
DICOM (DICOM-SEG, RTSTRUCT), NIfTI, or BIDS
[26]. For ultrasound images, any image annotation format
that either preserves the grayscale image or the RGB
colors is sufficient [27]. Diaz et al [26] provided a com-
prehensive guide of (open access) data curation tools and
Willemink et al [28] presented a list of steps for pre-
processing medical imaging data and explained the diffi-
culties in data curation and data availability.
Another important consideration is the types of metadata

that should be included along with the annotations. Metadata
can include information such as de-identified patient demo-
graphics, relevant clinical history, etc., which can help con-
textualize the labeled data and provide useful information for
downstream analysis. The inclusion and analysis of metadata
should be done with caution since there might be correlations
between metadata of different formats [29]. In addition to the
above, metadata should also reflect the information available
to an AI model in clinical practice, if it is to be used directly
for inference in clinical cases [30]. At last, it is possible to
include in metadata (like in DICOM-SEG), information on
whether the labels were obtained manually, semi-automated,
or fully automated using an AI algorithm, to ensure anon-
ymity, as well as to allow the evaluation of inter and intra-
observer variability. For cases with multiple binary segmen-
tations (e.g., one from each radiologist) some approaches that
can be used to select the input mask to an AI algorithm are
taking the intersection of the masks, their mean, their union,
or randomly selecting one of them. It is also possible to
perform a majority vote on a pixel basis [31]. The above
methods are two-stage approaches in which curated labels
are created based on the available ones [32]. There is also the
need to provide specific recommendations on how to deal
with regions where radiologists are uncertain if they belong to
a tumor or not [33].
Of equal importance to the type and format of metadata

is the issue of data harmonization. Data collected from
multiple centers is needed to enhance stability and
robustness but exhibit variations in clinical and/or

imaging characteristics obtained from diverse scanners
and protocols [34]. Common harmonization techniques
for tabular data include standard scaling and ComBat
[35], whereas histogram equalization, adaptive histogram
equalization, and contrast-limited adaptive histogram
equalization are commonly used to harmonize medical
images [36]. There are still open research questions
regarding the limitations of reproducibility of harmoni-
zation methods, especially when the variations are related
to radiomic features [37]. For example, the ComBat har-
monization is a statistical method developed to remove
the batch effects in microarray expression. However,
unlike gene expression arrays for which ComBat was
designed, radiomic features have different complexity
levels, which are expected to be non-uniformly affected by
variations in imaging parameters [38]. Furthermore,
ComBat harmonization aims only to remove the variance
attributed to the batch effects while maintaining the
biological information, but using ComBat to correct
these effects directly on patient data without providing the
correct biological covariates that actually do have an effect
on radiomic feature values will lead to a loss of biological
signals. This is because ComBat will assume that the
variations in radiomic feature values are only attributed to
the defined batch, and thus would not perform uniformly
[39]. For the above reasons, ComBat corrections cannot
just be applied during inference, and it rather requires
both the training and test data to be processed together by
a model, changing the feature values as well. Even in the
case of a single participant, the entire harmonization
process should be repeated from scratch, and the model
would have to be retrained as well. Therefore, the ComBat
method cannot deal with prospective data (impractical to
be used in clinical settings), since its performance depends
on variations between batches, making its use not optimal
and not applicable to clinical practice [39–42]. Currently,
European Horizon 2020 projects work on data harmoni-
zation methods [43]. One of them is the ChAImeleon
project [44] which recently announced a challenge in
which harmonized multimodality imaging and clinical
data will be provided for many types of cancer, allowing
development and comparison of algorithms.

Sample size and bias considerations
A benchmark dataset should be appropriately sized for
the task at hand, and should consider the clinically rele-
vant difference in effect size, and the desired level of
statistical significance to be achieved. Preferably, sample
size calculations are performed, although no standardized
method is available for modern AI tools to date due to
their complexity [45, 46]. Generic sample size calculations
can be performed in cases where areas under the curve
(AUCs) are calculated, with a minimum sample size for a
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given AUC, confidence interval, and confidence level
provided [47]. A review performed by Balki et al [46]
showed that evidence of sample size calculations is scarce
in AI applications in medical research. Only a few studies
performed any kind of sample size analysis. Rajput et al
[48] showed that to consider the sample size adequate, the
classification accuracy of a model should be above 80%
and the effect size should be bigger than 0.5 according to
Cohen’s scale. For sample size calculation of the validation
dataset, Goldenholz et al [45] developed a model-agnostic
open-source tool that can be used for any clinical vali-
dation study. Balki et al showed that both pre- and post-
hoc methods have their strengths and weaknesses and
advise that researchers should try to perform both to
estimate sample sizes or consult a biostatistical when
conceptualizing a study [46]. It should also be noted that
the choice of sample size also depends on the algorithm
that will be used. More complex models (based on deep
learning (DL)) usually require more data compared to
machine learning algorithms (e.g., decision trees). As
traditional sample size estimations cannot derive a con-
clusion regarding the clinical value of a machine learning
algorithm due to its complexity; tools like sample size
analysis for machine learning can be useful [45]. Using
this tool, by specifying the performance metrics to cal-
culate, and some other parameters such as the required
precision, accuracy, and the ‘coverage probability’, an
estimation of the minimum sample size required to
achieve metric values above a cut-off value can be pro-
vided. For machine learning solutions other than pre-
dictive models there is still no consensus on the sample
size, but the more variables and the rarer the outcome, the
larger the sample size needed.
The availability of resources to collect the data, and the

rarity of diseases of interest, may limit the number of cases
unless the dataset is augmented. The dataset’s balance—
whether maintaining natural disease prevalence or having
equal normal and disease cases—depends on its intended use.
If the dataset will be used to validate the real-world applic-
ability of an AI algorithm, then the natural disease prevalence
as present in the target population should be maintained. If
the dataset’s purpose is to be used to train machine learning
algorithms, then a balanced dataset is preferable since
otherwise a very large sample size is needed to obtain optimal
performance. Furthermore, it is not guaranteed that increas-
ing the sample size will lead to a more accurate AI algorithm,
as demonstrated in the case of distinguishing various clinical
conditions that could indicate the presence of prodromal
Alzheimer’s disease [49]. Efforts should be made to ensure
that the risk of bias is low by considering possible factors of
bias during dataset creation [30].
One dataset that is frequently used in the literature [50, 51]

as an external validation for AI tools is the MIMIC-CXR

dataset [22, 23]. Caution should be given to the fact that it
consists of single-center data and might not be representative
of geographically different populations. A study by Ahluwalia
et al [6] showed that if a subgroup analysis is performed, the
performance of chest radiograph classifiers is dependent on
patient characteristics, clinical setting, and pathology. Still, the
creation of such large databases can facilitate progress in
creating AI solutions that could potentially be implemented
in clinical practice and should be promoted, especially given
the fact that they are still largely lacking for other imaging
modalities like CT, MRI, and PET/CT. Many other forms of
bias can arise during the data collection and annotation
phases. A detailed overview is provided in a recent review [3].

Image quality and de-identification
When creating a benchmark dataset in radiology, image
quality is crucial. Images must be free of artifacts that
render them undiagnostic and should be correctly pre-
processed [28]. Furthermore, to ensure reproducibility,
any preprocessing of the images (e.g., noise reduction,
intensity normalization, or augmentation) should be
thoroughly described and the software (code) used should
be made available to the researchers who will perform the
validation. Images in a benchmark dataset should be
acquired using appropriate acquisition settings and
parameters, similar to those of the intended use. Be aware
that images from older scanners in open datasets might
differ from current clinical practice, making them unsui-
table for benchmarks. Detecting the performance drift of
an algorithm that was trained with such images, can be
done with different methods such as just using the scan
date to exclude them or unsupervised prediction align-
ment [52] to correct for that drift. Other methods include
checking the metadata for parameters that indicate the
year of the scanner, or the image quality of the scans and
confirming that it is not of low resolution, that there are
no signs of degradation, and that there are normal levels
of noise present. Apart from the above, data drift can also
be caused by changes in clinical population (demographic
or disease prevalence changes), and/or changes in clinical
guidelines, diagnostic criteria, and treatment protocols
used in clinical practice. Therefore, these factors should
always be assessed to evaluate if a data drift occurred.’
Data privacy and security are legally required in

healthcare. Protection of personal data can be achieved
through different techniques like randomization (deletion
of identifiers), cryptographic techniques, restricted access,
etc. [53], which also must comply with relevant regula-
tions. In the case of a restricted dataset, hosting it using
privacy-preserving techniques (e.g., encryption) can
ensure the protection of sensitive information.
In the European Union (EU), privacy and security laws,

especially Europe’s General Data Protection Regulation
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(GDPR), do not allow unrestricted data sharing with other
institutions to improve models. Even with de-identified
metadata, it has been shown that it is for example still
possible to reconstruct the face of the individual who
underwent an MRI scan of the head [54]. One promising
solution to the privacy preservation issue is federated
learning (FL) strategies, where the model is brought
to data from different institutions (and therefore
heterogeneous patient data) to train and test without
compromising privacy and security as the data do not
leave the center’s server [55, 56]. In the case of FL, as
image and label quality verifications cannot be done in a
centralized approach, data quality becomes the sole
responsibility of the data-providing institution. At last,
special caution should be taken for cases in which patient
data are burnt in the DICOM images and/or secondary
captures. Some methods to automate the process of
removing burnt patient data exist [57], but manual
intervention might still be needed to confirm the cor-
rectness of these methods.

Accessibility and documentation
An important concern when developing benchmark data-
sets, taking the findable, accessible, interoperable, and
reusable principles into account [58], is easy accessibility
for researchers. The dataset should come with a metadata
file containing the information needed to access and handle
data. Moreover, the manuscript describing the dataset and
possible use cases should follow specific reporting guide-
lines appropriate to the type of application [59]. Relevant
clinical and demographic information should also be made
available to allow subgroup analysis [60].
Xie et al [61] used the MIMIC-IV-ED database [62] to

create a publicly available benchmark dataset of electronic
health records of more than 400,000 adults admitted to
the emergency department of a hospital. By making such a
large dataset publicly available, they stimulate other
researchers and companies to use that database to develop
and test their solutions. Another example of a large
dataset available to researchers is the NLST dataset [63].
The dataset consists of either low-dose CT scans or chest
radiographs, along with accompanying clinical data. It is

maintained and can be accessed through the cancer
imaging archive [64]. Both these datasets are easily
accessible and are accompanied by participants’ clinical
and demographic characteristics.

Performance metrics
Apart from dataset creation considerations, different
aspects of the performance metrics chosen to evaluate the
model should also be taken into account. Performance
metrics help identify the inherent weaknesses of the
model that could cause bias.

Performance metrics selection
The selection of performancemetrics is crucial in assessing an
algorithm’s performance on a benchmark dataset in radiology.
Performance metric selection depends on the model’s
objectives or desired outcomes, and different metrics may be
more appropriate for different tasks [65, 66]. For example,
metrics such as sensitivity and negative predictive value
(NPV) are relevant for a dataset designed for screening pur-
poses given the low prevalence of disease. Providing recom-
mendations on metrics’ relevance in clinical scenarios can
improve dataset usage and awareness of pitfalls [65].
For most clinical tasks, multiple performance metrics

should be reported to give an overall impression of the
model performance, including its inherent errors given a
specific clinical setting (e.g., low prevalence) [67]. It
should be ensured that they provide clinically relevant
information that is easily interpretable by the end-user.
Table 1 shows some commonly used performance metrics
and their categories.
Importantly, some of those metrics like the AUC-ROC

and accuracy derived from a balanced dataset do not
directly translate to low prevalence settings due to the
naturally large proportion of false negatives, even in a
poor classifier. It should be noted that the same metric
may be referred to in different ways based on the domain
it is applied to. For example, the Dice coefficient could be
the same as the F1 score for segmentation, or recall could
be the same as sensitivity depending on the profession of
the end-user. It is also recommended to report confidence
intervals since they are of high importance for

Table 1 Commonly used performance metrics and their categories [67, 96]

Category Performance metrics

(Binary) Classification Accuracy, sensitivity, specificity, positive predictive value, NPV, and F1 score

(Binary) Classification (low prevalence) The area under the receiving operating characteristic curve (AUC-ROC), the area under the precision-recall

curve, and the F1 score

Segmentation Dice similarity, IoU (Jaccard Index), and Hausdorff distance

Regression Mean squared error, root mean squared error, and mean absolute error

Detection Free response operating curve, IoU, and mean average precision (mAP)
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performance metrics in biomedical research due to the
extra information they provide for the samples used [68].

Subgroup analysis
Reporting performance metrics for subgroups, such as by
age, sex, or race [5, 69, 70], can help to assess bias and
identify specific subgroups in which the model might
underperform. It should be noted that GDPR does not
allow requests from participants to declare their race
unless this is the study’s primary goal, limiting the pos-
sibilities for this subgroup analysis. A workaround can be
using summary demographics at a group level, which has
disadvantages. Tripathi et al [71] reviewed publicly
accessible imaging datasets and found that there are many
issues related to, among others, demographics, race, and
geographic diversity of different populations.
Tools like Aequitas [72], and FUTURE-AI [73], can help

to analyze the fairness and bias of models and provide
guidance on how to address any issues that arise, and
PROBAST-AI [30, 74] will provide guidelines on assessing
the risk of bias. However, the final version of PROBAST-
AI has not yet been published [59]. Regulations and
recommendations on how to avoid biases can be found in
the European Parliament’s document for AI in healthcare
[75]. Furthermore, information about specific subgroups
and the data used to develop an algorithm can be pro-
vided through Model Cards [76], helping to enhance
transparency and accountability in model deployment.
It is beneficial to utilize a benchmark dataset to evaluate the

presence of bias within specific subgroups of the populations
mentioned above. However, in addition to this approach,
various techniques can be employed during the development
and post-processing of the model to mitigate these biases [77]
such as generative AI techniques to augment the training
data. For instance, Burlina et al [78] demonstrated that by
generating synthetic fundus images of the eye, the dis-
crepancies between individuals with dark and light skin tones
were minimized. Another approach is the application of
adversarial methods, which not only enhance a model’s per-
formance on a specific variable of interest but also minimize
the ability of a second model to correctly identify protected
attributes from the features learned by the first model [79]. Li
et al [80] successfully demonstrated this approach for skin
lesion classification. Finally, model predictions can be cali-
brated across different subgroups as part of the post-
processing stage. Ultimately, the effectiveness of these meth-
ods can be assessed by comparing themodel’s performance to
the benchmark dataset, which can also include examples
generated with these techniques (e.g., synthetic images).

Baseline performance and generalization
Establishing and reporting a reference (baseline) perfor-
mance based on criteria set by clinicians on how well a

model should perform on a particular task of interest, can
provide context for the lower bound of required perfor-
mance. Comparing AI software’s performance on
benchmark datasets with that of radiologists or other
expert clinicians reveals areas where AI or clinicians are
superior, indicating the potential added value of the
software. For example, for medical images, a carefully
designed study, e.g., according to the multi-reader multi-
case design, is recommended to establish if AI could be
beneficial, although this could be very resource-intensive
given the number of human readers required [81].
The comparison of the AI performance vs clinical

experts is challenging due to the fact that the clinically
preferred settings of the algorithm depend on the context.
Efforts to create open-source datasets include the WILDS
benchmark dataset [82], aiming to address naturally
occurring distribution shifts (changes in imaging char-
acteristics) in a diverse set of problems (e.g., in tumor
identification tasks across different acquisition sites),
BenchMD for variations across hospitals [83], and the
DomainBed suite [84], consisting of multi-domain data-
sets, and focusing on assessing the generalizability of AI
algorithms in real-world settings. Another great resource
of publicly available datasets, along with their perfor-
mance on a dataset of interest can be found in the papers
with code website [85], and datasets focusing on medical
imaging tasks in the GitHub repository of Adalca [86].
After establishing a baseline performance on an open-
source dataset, a restricted-access benchmark dataset that
has not been used for model development can then be
utilized to get an estimate of the true performance of the
developed AI algorithm in new, unseen cases.
Another way to assess the limitations of an algorithm

developed on a different source population is to conduct a
failure analysis [4] using a benchmark dataset. Oakden-
Rayner et al [87] evaluated the performance of a DL
model designed to detect fractures on X-rays. Even
though the model maintained a very good performance
during external validation, an algorithmic audit revealed
an elevated error rate in unexpected edge cases, such as
Paget’s disease, along with a significant alteration in the
model’s operating point.

Number of times allowed to test
Finally, it is essential to consider how many times an
algorithm is allowed to run on the same benchmark
dataset used for external validation only [12]. Providing the
dataset and allowing many evaluations of the algorithm in
the benchmark dataset can increase the risk of overfitting,
resulting in misleading performance results. Establishing
a limit to the number of runs or providing a different
fraction of the dataset in each test run can help mitigate
that risk. Ideally, the benchmark dataset should not be
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directly accessible to the users and the specific cases used
during validation should be selected randomly each time
(given that the dataset size allows that). A study by Roelofs
et al [88] demonstrated, that contrary to popular belief,
when a separate test set is used only once to obtain the
final ranking in Kaggle competitions (although a holdout
set with similar characteristics could have been used
multiple times for the public ranking), there were limited
indications of significant overfitting, showing that the test
set could potentially be used multiple times. At last, an
agreement should be achieved prior to performing the
validation on where the results would be available (peer-
reviewed journal, website, etc.) and ensure that they
are reported correctly using the designated reporting
guidelines [59].

Other considerations before creating and using a
benchmark dataset
Apart from the dataset and the performance metrics used
to evaluate a software’s performance, other factors can
affect the creation and use of a benchmark dataset. These
are listed below.

Regulatory compliance
Creating a benchmark dataset requires adherence to
regulations like GDPR or HIPAA [89], ensuring data
privacy and security, and addressing ethical considera-
tions such as transparency and fairness. These regulations
evolve constantly (upcoming AI Act in EU [73]) necessi-
tating regular dataset updates and maintenance. This
involves allocating resources and expertise in regulatory
compliance throughout the workflow, from data acquisi-
tion to reporting validation results. It is also important
to thoroughly vet the privileges and access granted to
the software provider when validating their software to
ensure no compromise of patient privacy and security.
This can also be achieved by installing the software locally
and granting it access to the data offline or by using
encryption. Moreover, compliance with local Institutional
Review Board regulations must be achieved prior to using
patient data for model development/validation.

Maintenance and integration
Providing the dataset together with technical support is
essential. This includes assistance with software installa-
tion and evaluating algorithms against the benchmark.
Furthermore, the dataset’s interoperability with various
picture archiving and communication systems, tailored
for either clinical or research purposes [26], is important.
A user-friendly interface with clear instructions for var-
ious actions is needed for that. Alternatively, the dataset
can be distributed and securely accessed through plat-
forms like the cancer imaging archive [90, 91].

Discussion
In recent years, numerous vendors have entered the
medical imaging market with AI products to assist clin-
icians, and even though external validation might have
been performed in a limited form in some cases [92],
generalizability issues persist with CE-marked or FDA-
cleared models, depending on the end-users clinical
context. While recommendations on reducing biases exist
[3, 59, 74, 77, 93], they do not provide a foolproof guar-
antee against it. Besides this, AI companies most often do
not disclose what data were used exactly to train their
models making it hard to compare the training data to the
data used in the local clinical setting.
To deal with the absence of benchmark datasets, this

publication provides valuable insights for creating such
datasets, selecting relevant performance assessment
metrics, and considerations on how AI software can be
integrated into the clinical workflow. By addressing these
aspects, the implementation of AI in radiology has the
potential to become more reliable, effective, and ethically
sound, ultimately leading to improved patient outcomes.
Moreover, recent initiatives like the European Cancer
Imaging Initiative (EUCAIM), a federated European
digital infrastructure, will result in a large-scale, high-
quality dataset ideal for benchmarking [43].
From a stakeholder perspective, choosing an AI software is

a non-trivial task since it requires considering parameters
like its diagnostic or prognostic performance, interpret-
ability, usability, error rate, integrated workflow, turnaround
time, etc., as well as providing services concerning main-
tenance, post-market surveillance, etc. [94]. Even though
there exist publicly available imaging datasets, these cannot
be used for validation of AI software since vendors might
have used part of that dataset to develop their algorithm and
therefore, if this dataset is used for validation it will result in
overestimation of the true performance of the algorithm.
Caution should also be taken during inference to apply the
same preprocessing steps as those used during the training
of the developed algorithm. Moreover, caution should be
given to the fact that the equipment and the acquisition
methods constantly improve (e.g., photon counting CT [95])
and benchmark datasets might end up being outdated at the
point of release or some time afterward. Other limitations
include the need for an expert opinion to establish the
reference standard and possibly the fine-tuning of the
parameters of the algorithm that might be required to fit
those of the benchmark dataset. At last, the recent AI act in
the EU [73] poses new challenges in the adaptation and use
of AI solutions in clinical practice that should be considered.
Prior to creating a benchmark, it is important to con-

sider the task in which this dataset would be used. Efforts
should be made towards creating more benchmark data-
sets since they are essential for the validation of AI
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software before it can be used in clinical practice. Fur-
thermore, a direct comparison of the performance of
different vendors on those datasets would allow clinicians
to decide which software performs better on a given task.

Conclusion
In this paper, we provided detailed recommendations
regarding benchmark dataset creation, aiming to assist
researchers, clinicians, and data scientists in creating
high-quality benchmark datasets that are reliable, diverse,
and representative of real-world medical data. Ultimately,
we believe that the creation of benchmark datasets will
facilitate the development of more effective AI models by
increasing trust in them, and potentially lead to improved
patient outcomes and better healthcare delivery.
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