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Explainable breast cancer molecular
expression prediction using multi-task
deep-learning based on 3D whole breast
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Abstract

Objectives To noninvasively estimate three breast cancer biomarkers, estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2) and enhance performance and interpretability via multi-
task deep learning.

Methods The study included 388 breast cancer patients who received the 3D whole breast ultrasound system
(3DWBUS) examinations at Xijing Hospital between October 2020 and September 2021. Two predictive models, a
single-task and a multi-task, were developed; the former predicts biomarker expression, while the latter combines
tumor segmentation with biomarker prediction to enhance interpretability. Performance evaluation included
individual and overall prediction metrics, and Delong’s test was used for performance comparison. The models’
attention regions were visualized using Grad-CAM++ technology.

Results All patients were randomly split into a training set (n= 240, 62%), a validation set (n= 60, 15%), and a test set
(n= 88, 23%). In the individual evaluation of ER, PR, and HER2 expression prediction, the single-task and multi-task
models achieved respective AUCs of 0.809 and 0.735 for ER, 0.688 and 0.767 for PR, and 0.626 and 0.697 for HER2, as
observed in the test set. In the overall evaluation, the multi-task model demonstrated superior performance in the test
set, achieving a higher macro AUC of 0.733, in contrast to 0.708 for the single-task model. The Grad-CAM++ method
revealed that the multi-task model exhibited a stronger focus on diseased tissue areas, improving the interpretability
of how the model worked.

Conclusion Both models demonstrated impressive performance, with the multi-task model excelling in accuracy and
offering improved interpretability on noninvasive 3DWBUS images using Grad-CAM++ technology.

Critical relevance statement The multi-task deep learning model exhibits effective prediction for breast cancer
biomarkers, offering direct biomarker identification and improved clinical interpretability, potentially boosting the
efficiency of targeted drug screening.
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Key Points
● Tumoral biomarkers are paramount for determining breast cancer treatment.
● The multi-task model can improve prediction performance, and improve interpretability in clinical practice.
● The 3D whole breast ultrasound system-based deep learning models excelled in predicting breast cancer biomarkers.

Keywords Breast cancer, Deep learning, Ultrasound imaging
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Introduction
Breast cancer is a prevalent form of cancer among women
and contributes substantially to cancer-related fatalities
[1]. Breast cancer could be classified based on the
expression of these tumoral biomarkers: estrogen receptor
(ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) [2]. These biomarkers
are crucial in clinical decision-making, as they assist in
predicting the response to specific therapies and offering
valuable prognostic insights [3].
In recent years, medical image analysis, such as lesion

detection, diagnosis, and disease monitoring, has sig-
nificantly advanced through the use of deep learning-based
artificial intelligence (AI) techniques [4–6]. Several studies
have demonstrated that AI techniques can identify breast
cancer biomarkers and molecular subtypes from
hematoxylin-eosin-stained breast cancer pathological
images [3, 7]. However, noninvasive imaging is a more
patient-friendly option than histopathological examination.

Some studies have utilized deep learning to determine
biomarkers based on multi-modal ultrasound (US) imaging
[8, 9]. Utilizing US-based assessment to identify molecular
subtypes can significantly enhance the accuracy of breast
cancer diagnosis. This approach offers a deeper insight into
the disease’s heterogeneous nature while minimizing
patient discomfort. Such noninvasive techniques are pivo-
tal in understanding the complexity of breast cancer
without adding unnecessary patient strain. Though pro-
mising, these studies suffer from a variety of shortcomings.
Multi-modal US imaging is difficult to standardize as it
heavily relies on operator expertise [10]. In response, some
researchers have explored using breast Magnetic Reso-
nance Imaging (MRI) as an alternative to US. However,
breast MRI is often not available at the initial point of
cancer detection, and its use is not universally standard
across different countries for all breast cancer patients [11].
While MRI has many advantages, its drawbacks also limit
its wide adoption, especially in resource-limited areas.
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Furthermore, while some studies [3, 8] claimed their
methods were “interpretable,” their AI models lack explicit
constraints but directly provide final predictions. This lack
of constraints renders their results unexplainable in most
scenarios [3].
To address these shortcomings, a three-dimensional

whole-breast US system (3DWBUS) has been recom-
mended. 3DWBUS integrates automation and 3D scan-
ning technology into a system that embodies efficiency,
reproducibility, and comprehensive tumor analysis
[12, 13]. In addition, 3DWBUS has been shown to
increase the early detection rate of breast cancer among
women with dense breast tissue [14]. The remaining
challenge is creating more explainable AI technology. The
multi-task learning neural network has been shown to
work well under the constraint of tumor segmentation
[15], improving the “black-box” deep learning model’s
transparency [16].
This study assessed the effectiveness of single-task and

multi-task learning approaches for predicting three clini-
cally relevant breast cancer biomarkers using 3DWBUS.
We hypothesize that incorporating a segmentation task to
the current approach could improve the accuracy of pre-
dicting biomarker expression. This enhancement could
also increase interpretability through advanced model
visual explanation technologies, like Grad-CAM++ [17].

Materials and methods
Study population
Patients who consecutively underwent 3DWBUS exam-
inations at Xijing Hospital from October 2020 to

September 2021, as part of their routine clinical care, were
included in this study. All patients met the following
inclusion criteria: (a) had biopsy-proven breast cancers;
(b) pre-biopsy images on 3DWBUS and therefore these
images do not have biopsy scars. The exclusion criteria
were as follows: (a) poor 3DWBUS image quality (n= 3);
(b) incomplete pathological reports (n= 1); (c) multiple
tumors in a 3DWBUS image (n= 20). Figure 1 shows a
flow chart of patients’ recruitment.
In this study, we did not record the breast density and

all are mass-type lesion cases and invasive ductal carci-
noma cases.

3DWBUS images acquisition
All 3DWBUS images used in this study were acquired
using Invenia 3DWBUS 2.0 (GE Healthcare). Acquisition
parameters are reported in Table 1.

Model construction
Tumor annotation and image preprocessing
One radiologist manually delineated the tumor on each
section using open-source medical imaging software (3D
Slicer [18, 19], version 5.0.3; https://www.slicer.org/). An
experienced radiologist then manually reviewed and cor-
rected the boundaries of the segmented volumes of
interest. Importantly, both radiologists conducted their
analyses blinded to any clinical and pathological infor-
mation. Considering the multi-view scan of 3DWBUS
scans, the radiologist exclusively reviewed the volume that
presents the lesion in the clearest view.
Data preprocessing included cropping, resizing, inten-

sity clipping, and normalization. After preprocessing, each
image was resized into 128 × 128 × 128 and normalized to
0–1. The details of data preprocessing are described in
“Data preprocessing” in Supplementary Materials.

Single-task model architecture’
A modified 3D ResNet model [20] was employed in the
single-task setting to analyze 3DWBUS data. The archi-
tecture of this model is illustrated in Fig. 2 (top panel).

Fig. 1 Flow chart of patient recruitment

Table 1 Acquisition parameters of the clinically
acquired 3DWBUS

Orientation Left, Right

Matrix (pixels) 841 × 482

Slice thickness (mm) 0.48

Transducer frequency range (MHz) 6–15

Soft Tissue Thermal Index 0.25

Mains frequency 50/60

Number of piezoelectric elements 768
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The 3DWBUS images first underwent several layers,
including a convolutional layer, batch normalization layer,
and rectified linear unit activation layer, followed by a
maximum pooling layer. Then four modules, each with a
3D convolutional block and multiple 3D identity blocks,
were applied to the images. Finally, an average pooling
layer transformed the feature map into a feature vector. A
fully connected layer with a sigmoid activation generated
the prediction probability.

Multi-task model architecture
The model architecture is shown in Fig. 2 (bottom panel).
Inspired by Zhou et al [21], we employed the same ResNet
architecture used in the single-task model for the multi-
task model, adding an extra max-pooling operation for
feature extraction and classification. Then a segmentation
branch consisting of convolutional and upsampling blocks
attempted to recover the segmentation results. The
upsampling blocks incorporated skip connections with
the corresponding feature map from the encoding stage to
capture more contextual information.
In the multi-task framework, a 3DWBUS volume is

input into the network, yielding a 3D segmentation
probability map and a classification score. During train-
ing, this input volume is enhanced by an element-wise
addition with the segmentation probability map from the
previous iteration. This modulation technique aims to

sharpen the network’s focus on tumor regions, thereby
improving classification performance and explanatory
capability.

Model training and implementation
The training set was used to develop the model, the
validation set was utilized to select hyperparameters, and
the test set was used to evaluate the models. The single-
task and multi-task learning models were trained for 250
epochs with a batch size of 8 using the adaptive moment
estimation optimizer with a learning rate of 10e–4. We
used the cross-entropy loss for the classification task and
the dice loss for the segmentation task to train the models.
To address the potential overfitting issue, we adopted data
augmentation techniques, including random rotation,
flipping, and translation.

Model visualization
We utilized Grad-CAM++ to investigate how the neural
network identified pertinent tumor information and
whether the segmentation task constraint enhanced its
interpretability. Following the original Grad-CAM++
setting, we selected deep feature maps from the final
convolutional layer. This layer encapsulates the network’s
most abstract and informative features, offering a balance
between high-level semantics and spatial detail, allowing
us to analyze the focus of both single-task and multi-task

Fig. 2 Neural network architecture (Conv, Convolutional Layer; BN, batch normalization layer; FC, fully connected layer)
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models. Subsequently, we computed the gradients
between the prediction results and feature maps utilizing
Grad-CAM++. This process generated class-specific
heatmaps highlighting the image regions influencing the
network’s predictions, providing visual attention visuali-
zation. The heatmaps were color-coded using the turbo
color scheme, with blue or red indicating higher pre-
dictive value and purple representing lower predictive
value. Analyzing these heatmaps provided insights into
the neural network’s decision-making process concerning
relevant tumor information, where higher predictive
values indicated a greater contribution to its decisions.
Moreover, t-distributed stochastic neighbor embedding

(t-SNE) algorithm [22] was employed to reduce the 2048-
dimensional features extracted by the multi-task and
single-task models to three dimensions in the test set.
Subsequently, these reduced features were visualized in
three-dimensional space to illustrate the differences in
feature distribution between samples with positive or
negative expressions for ER/PR/HER2. For the sake of
transparency and to facilitate reproducibility, we have
fixed the relevant parameters of t-SNE as follows: per-
plexity set to 30, learning rate at 80, number of iterations
at 1000, the initial method chosen as ‘PCA’, and a mini-
mum gradient norm (min_grad_norm) of 1e-7.

Statistical analysis
We performed statistical analyses using R (version 4.0.4;
http://www.r-project.org/) and MedCalc (version 15.8;
http://www.medcalc.org/).
To investigate whether the sample size in our study was

sufficient to detect an area under the receiver operator
characteristic curve (AUC) value different from 0.500, we
estimated the sample size based on the following para-
meters: power, 80%; two-sided significance level, 0.05; the
alternative hypothesis of the true AUC values of multi-
task model for each biomarker’s prediction in test set
compared with the null hypothesis of AUC= 0.5; the ratio
of classes, the real ratios in our study (ER= 20 negative/
68 positive cases, PR= 26 negative/62 positive cases,
HER2= 38 negative/50 positive cases) [23].
We evaluated the model performance in two ways:

individual and overall. For individual evaluation, we cal-
culated AUC with 95% confidence intervals (CI) to eval-
uate the predictive performance of the different models
for individual biomarkers. Then we calculated accuracy
(ACC), sensitivity (SEN), and specificity (SPEC) from the
receiver operating characteristic (ROC) curve based on
the optimal cut-off value obtained by maximizing the
Youden index from the ROC curve analysis. Additionally,
we used DeLong’s test to compare the performance of
different models, considering p values less than 0.05 to be
statistically significant.

Furthermore, as we conducted a model for predicting
multiple biomarkers, which can be considered a multi-
label task model, we computed several metrics to compare
the overall performance of different models. These
metrics included macro ACC, macro Recall, macro Pre-
cision, macro F1 score, and macro AUC, drawing
inspiration from existing research in multi-label classifi-
cation [24].

Results
Population and scan parameter description
Finally, a total of 388 3DWBUS images of breast cancer
were collected. The breast cancer cases were classified
into three molecular subtypes using immunohistochem-
ical findings and silver-enhanced in situ hybridization test,
based on ER, PR, and HER2 information. Among the
collected images, 300 cases expressed positive PR, 276
expressed positive ER, and 176 expressed positive HER2.
The cohort was randomly divided at the patient level

into a training set (n= 240, 62%), a validation set (n= 60,
15%), and a test set (n= 88, 23%). The characteristics of
the breast cancer cases used in the study are listed in
Table 2. The tumor characteristics of the training, vali-
dation, and test sets were not significantly different (all
p values > 0.05).

Individual prediction performance of different models
The performance of the individual prediction for each
biomarker of the different models is shown in Table 3.

Table 2 Baseline characteristics

Characteristic All patients

(n= 388)

Training and

validation sets

(n= 300)

Test set

(n= 88)

p*

Age (years) 52 ± 12 52 ± 13 54 ± 10 0.06

BMI (kg/m2) 23.4 ± 3.0 22.3 ± 2.9 23.6 ± 3.1 0.85

Family history,

n (%)

27 (7) 21 (7) 6 (7) 0.94

Memopause,

n (%)

204 (53) 153 (51) 51 (58) 0.26

ER 0.87

positive 300 232 68

negative 88 68 20

PR 0.99

positive 276 214 62

negative 112 86 26

HER2 0.62

positive 160 122 38

negative 228 178 50

p* values indicated comparisons of the difference between different datasets
N represented the number of involved patients in each dataset
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The predicted probability of our single-task and multi-
task models for each breast biomarker in training and test
sets is shown in Figs. 3a–f and 4a–f.
The single-task model achieved an AUC of 0.814 in the

validation set and an AUC of 0.809 in the test set for ER
prediction, an AUC of 0.689 in the validation set and
0.688 in the test set for PR prediction, and predicted
HER2 with an AUC of 0.571 in the validation set and
AUC of 0.626 in the test set (all p < 0.001 for the AUC;
Fig. 3g–i). According to DeLong’s test, there were no
significant differences in the Receiver Operating Char-
acteristic (ROC) curves between the validation and test
sets across all biomarker predictions (all p values > 0.05).
This suggests that the model did not exhibit overfitting.
The multi-task model with an AUC of 0.745 in the

validation set and an AUC of 0.735 in the test set for ER
prediction, an AUC of 0.748 in the validation set and an
AUC of 0.767 in the test set for PR prediction and pre-
dicted HER2 with an AUC of 0.712 in the validation set
and AUC of 0.697 in the test set (all p < 0.001; Fig. 4g–i).
According to DeLong’s test, there was still no significant
difference in ROC curves between the validation and test
set for each biomarker prediction (all p > 0.05), also
indicating no overfitting.
Furthermore, DeLong’s test was utilized to compare the

ROC curves of different models pairwise, and the results

are presented in Table 3. Regarding ER prediction, the
single-task model showed better diagnostic performance
than the multi-task model both in the validation set
(AUC= 0.814 vs. 0.745, p= 0.446) and the test set
(AUC= 0.809 vs. 0.735, p= 0.295), although the differ-
ence was statistically insignificant. For PR prediction, the
multi-task model outperformed the single-task model in
the validation set (AUC= 0.748 vs. 0.689, p= 0.481) and
the test set (AUC= 0.767 vs. 0.688, p= 0.248). Similarly,
for HER2 prediction, the multi-task model performed
much better than the single-task model in the validation
set (AUC= 0.712 vs. 0.571, p= 0.182) and the test set
(AUC= 0.697 vs. 0.626, p= 0.394). However, according
to DeLong’s test, no significant difference was observed
between pairwise models for each biomarker prediction in
either the validation or test set.
As for the statistical power, a sample size of 60 patients

(46 with positive and 14 with negative) was required for
ER in the test set, 39 patients (27 with positive and 12 with
negative) for PR prediction, and 68 patients (37 with
positive and 29 with negative) for HER2 prediction.
Therefore, the sample sizes in this study (88 in the test
set) were adequate to detect the true AUCs of 0.735 (for
predicted ER), 0.767 (for predicted PR), and 0.697 (for
predicted HER2) different from 0.500 with 80% power in
the test set.

Table 3 Prediction performance of single-task model, multi-task model for individual biomarker

AUC (95% CI) ACC (95% CI) SEN (95% CI) SPEC (95% CI) p*

Validation set (n= 60)

ER

Multi-task model 0.745 (0.605–0.885) 0.667 (0.548–0.786) 0.609 (0.486–0.732) 0.857 (0.768–0.946) 0.446

Single-task model 0.814 (0.686–0.941) 0.717 (0.603–0.831) 0.652 (0.531–0.772) 0.929 (0.864–0.994)

PR

Multi-task model 0.748 (0.621–0.876) 0.700 (0.584–0.816) 0.659 (0.539–0.779) 0.789 (0.686–0.892) 0.481

Single-task model 0.689 (0.548–0.831) 0.683 (0.565–0.801) 0.659 (0.539–0.779) 0.637 (0.515–0.759)

HER2

Multi-task model 0.712 (0.562–0.855) 0.717 (0.603–0.831) 0.619 (0.496–0.742) 0.769 (0.662–0.876) 0.182

Single-task model 0.571 (0.421–0.722) 0.617 (0.494–0.740) 0.619 (0.496–0.742) 0.615 (0.492–0.738)

Test set (n= 88)

ER

Multi-task model 0.735 (0.618–0.853) 0.682 (0.585–0.779) 0.662 (0.563–0.761) 0.750 (0.660–0.840) 0.295

Single-task model 0.809 (0.717–0.900) 0.693 (0.597–0.789) 0.632 (0.531–0.733) 0.900 (0.837–0.963)

PR

Multi-task model 0.767 (0.664–0.870) 0.739 (0.647–0.831) 0.710 (0.615–0.805) 0.808 (0.726–0.890) 0.248

Single-task model 0.688 (0.573–0.803) 0.659 (0.560–0.758) 0.613 (0.511–0.715) 0.769 (0.681–0.857)

HER2

Multi-task model 0.697 (0.586–0.808) 0.682 (0.585–0.779) 0.711 (0.616–0.806) 0.600 (0.498–0.702) 0.394

Single-task model 0.626 (0.509–0.744) 0.625 (0.524–0.726) 0.658 (0.559–0.757) 0.660 (0.561–0.759)

p* values indicated comparisons of DeLong’s test between different single-task model and multi-task model
N represented the number of involved patients in each dataset
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Overall prediction performance of different models
The performance of the single-task and multi-task models
in predicting overall outcomes is presented in Table 4.
The results demonstrate that the multi-task model out-
performs the single-task model in all multi-label evalua-
tions, both in the validation and test sets. Specifically, in
the test set, the multi-task model achieved an macro AUC
of 0.733, macro ACC of 0.588, macro Precision of 0.804,
macro Recall of 0.694, and macro F1 score of 0.738,
whereas the corresponding figures for the single-task
model were 0.708, 0.535, 0.792, 0.634, and 0.693, respec-
tively. In the validation set, the multi-task model also kept
better performance than single-task in a small margin
(macro AUC= 0.734 vs. 0.691, macro ACC= 0.539 vs.
0.529, macro Precision= 0.798 vs. 0.759, macro Recall=
0.643 vs. 0.629, macro F1 score= 0.697 vs. 0.683).
Furthermore, we conducted a stratification in the test

set based on lesion sizes, using a criterion inspired by

previous studies [25, 26]: lesions with a diameter greater
than 15 mm were compared against those smaller than
15mm. The results, shown in Supplementary Table 1,
indicate that the proposed multi-task method consistently
outperforms the single-task model for the PR/HER2
individual evaluation and shows better overall perfor-
mance on both small and large lesions (macro AUC=
0.752 vs. 0.691 for the small lesions and 0.723 vs. 0.715
for the large lesions).

Model visualization
The Grad-CAM++ heatmaps, resulting from the
visualization in the test set, were superimposed on the
3DWBUS images, as illustrated in Fig. 5. Notably, both
models showed a significant preference for blue or red
areas, whereas they paid less attention to the purple
regions. Furthermore, the Grad-CAM++ results
demonstrated that the multi-task model exhibited an

Fig. 3 Predicted probability of the single-task model for each breast biomarker in validation set (A–C) and test set (D–F). The prediction performances of
the single-task model in the validation set and test set for each breast biomarker (G–I)
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increased focus on the lesion regions in specific samples
of the test set.
The results of the t-SNE analysis shown in Fig. 6 indi-

cate that, overall, the features extracted by the multi-task
model exhibit a greater ability to distinguish between PR
and HER2 positive and negative samples compared to the
single-tasking model. As shown in Fig. 6B, C, based on the
features computed by the multi-task approach, we can
clearly identify the red circle that maximally distinguishes
as many positive and negative sample categories as pos-
sible. As shown in Fig. 6E, F, this is challenging for the
single-task approach. In contrast, as shown in Fig. 6A, D,
the single-task model exhibits superior discriminatory
ability in ER prediction.

Discussion
We developed and validated both a single-task model and
a multi-task model on 3DWBUS images for efficiently

predicting the expression of three clinically relevant bio-
markers to breast cancer.
Both models based on 3DWBUS images demonstrated

satisfactory results for breast cancer biomarker expression
prediction (macro AUC > 0.7 in the test set), underscoring
the good performance of the deep learning models.
Moreover, the multi-task model consistently out-
performed the single-task model across various metrics,
indicating its superior performance. Specifically, the
multi-task model showed improvements across all eva-
luation metrics for overall prediction. Regarding indivi-
dual biomarker prediction, the multi-task model achieved
higher AUC values for PR and HER2, but a lower AUC
value for ER. This indicates a trade-off where the model,
while losing some accuracy in ER prediction, gains sig-
nificantly in predicting PR and HER2, leading to an overall
enhancement in performance. Notably, the image features
extracted by the multi-task model exhibited clear

Fig. 4 Predicted probability of the multi-task model for each breast biomarker in validation set (A–C) and test set (D–F). The prediction performances of
the multi-task model in the validation set and test set for each breast biomarker (G–I)
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differentiation for PR and HER2 between positive and
negative samples, as confirmed by t-SNE analysis. Con-
versely, the single-task model exhibited superior t-SNE
visualization for ER prediction. These findings partially
account for the performance disparity between the two
methods. Moreover, the multi-task model improves
explainability, especially when considering the segmen-
tation task. The Grad-CAM++ heatmap results revealed
that the multi-task model specifically focused on the
breast cancer tumor. It extracted lesion area features for
the entire tumor, instead of other breast structures, unlike
the single-task model. This feature contributes to a better
understanding and interpretability of how the multi-task
model functions, which further proves our hypothesis.
Indeed, the multi-task model outperformed the single-

task model across various metrics, regardless of whether it
is individual or overall prediction. This can be attributed
to the fact that the single-task deep learning model
extracted high-dimensional features from 3DWBUS
without any constraints, and hence, has selected some

redundant features as shown in Fig. 5. As the study by
Feng et al [27] revealed, lesions with 3DWBUS imaging
features such as the retraction phenomenon strongly
correlate with the molecular subtypes. The single-task
model failed to extract sufficient lesion-related features,
thereby hindering accurate prediction. In contrast, the
multi-task model introduced an explicit segmentation
task that compelled the classification branch to extract
more relevant information about the lesion [21]. This
aligns with the underlying mechanism of multi-task
learning, as concluded by Zhang et al [28], and provides
a plausible explanation for the superior performance of
the multi-task model.
Several studies have explored the use of AI technology to

predict breast cancer biomarkers’ expression. Nevertheless,
most of these algorithms [7, 29–32] were developed using
whole slide images scanned from the histopathological
slides. However, the pathological images are much more
local representations of the lesion, from the biopsy
alone and may be biased by the sample location etc.

Table 4 Overall prediction performance of single-task model, multi-task model

macro AUC (95% CI) macro ACC (95% CI) macro Precision (95% CI) macro Recall (95% CI) macro F1 score (95% CI)

Validation set (n= 60)

Multi-task model 0.734 (0.622–0.846) 0.539 (0.413–0.665) 0.798 (0.696–0.900) 0.643 (0.522–0.746) 0.697 (0.581–0.813)

Single-task model 0.691 (0.574–0.808) 0.529 (0.403–0.655) 0.759 (0.651–0.867) 0.629 (0.507–0.751) 0.683 (0.565–0.801)

Test set (n= 88)

Multi-task model 0.733 (0.641–0.825) 0.588 (0.485–0.691) 0.804 (0.721–0.887) 0.694 (0.598–0.790) 0.738 (0.646–0.830)

Single-task model 0.708 (0.613–0.803) 0.535 (0.429–0.637) 0.792 (0.707–0.877) 0.634 (0.533–0.735) 0.693 (0.597–0.783)

N represented the number of involved patients in each dataset

Fig. 5 Representative 3DWBUS images and the corresponding Grad-CAM++ heatmaps. The blue or red regions represent areas activated by the multi-
task model with higher activation, while the purple regions represent those with lower activation

Huang et al. Insights into Imaging          (2024) 15:227 Page 9 of 13



Furthremore, pathology examinations are invasive and
patient unfriendly. In contrast, our study opted to use
comprehensive and noninvasive 3DWBUS images to pre-
dict biomarkers, and the single-task and multi-task models
demonstrated a similar prediction performance to previous
pathology-based studies [3].
Similar to our study, some studies have utilized US

images to develop noninvasive methods. Zhang et al [8, 9]
utilized multi-modality mammography and US for accu-
rate prediction. Although our multi-task model’s perfor-
mance was not as high as Zhang’s, it is possible that our
single-modality (B-mode only) approach constrained the
feature source and limited the performance. Nevertheless,
our multi-task approach demonstrated comparable per-
formance, showcasing its ability to effectively leverage the
information contained within a single-modality image for
precise predictions. Moreover, our approach directly
predicted the expression of biomarkers rather than spe-
cific tumor typing as in the research mentioned above,
which is challenging but clinically useful as it enabled
clinicians to identify the expressed biomarkers directly
and facilitated targeted drug screening. Although this

approach degraded our models’ performance, it enhanced
interpretability and promoted acceptance by physicians.
Furthermore, our method encompasses all three bio-
markers in contrast to previous studies [31–33] that
focused solely on predicting a single biomarker—either
ER, PR, or HER2. This comprehensive approach aligns
more closely with clinical requirements, offering a more
holistic view for diagnostic purposes [34, 35].
Additionally, many AI-based methods have been devel-

oped to predict the molecular subtypes of breast cancer
based on MRI [36–38]. Ha et al [39] (n= 216, n represents
the sample size), Zhang et al [40] (n= 244) and Sun et al
[41] (n= 266) have each developed MRI-based deep
learning models for this purpose. However, the relatively
small dataset sizes in these studies potentially limit the
performance of their models. Moreover, the use of MRI is
often constrained by various factors, including high
examination costs, limited scanner availability, the neces-
sity for contrast agent injection, and extended waiting
times, etc. Consequently, MRI images may not be readily
accessible to every patient. In contrast, utilizing a more
substantial dataset (n= 388), our study demonstrates

Fig. 6 Three-dimensional representation of the distribution of features extracted from the multi-task model for prediction of ER (plot A), PR (plot B),
HER2 (plot C). Three-dimensional representation of the distribution of features extracted from the single-task model for prediction of ER (plot D), PR (plot
E), HER2 (plot F)
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superior performance over the methods above, capitalizing
on 3DWBUS images’ advantages such as standardization,
lower costs, and reduced examination time.
We acknowledge several limitations in this study. First,

it should be noted that this is a retrospective study. To
more robustly ascertain the efficacy of the proposed
method, conducting additional prospective experiments is
imperative. Second, the study was performed at a single
center. While our results were reliable and feasible based
on sample size calculations, future studies with larger
sample sizes from multiple centers will be necessary to
validate our prediction performances. Third, the
HER2 subgroup had a relatively small sample size due to
the lower frequency of this type of breast cancer in clinical
reality. This category imbalance problem certainly affects
the performance of HER2 prediction (Table 3). In future
studies, it will be necessary to include more data on
HER2 subtype to achieve a balanced predictive perfor-
mance across multiple molecular typings. Fourth, the
3DWBUS images used in this study were obtained from
only one US device. Hence, the generalizability of the
models still requires further validation. A multi-device
validation process is essential to ensure broader applic-
ability and reliability of these models. Finally, although
our multi-task model showed a better heatmap than the
single-task model, it was still challenging to interpret the
biological meaning of the extracted imaging features and
predictions made by the deep learning method. Investi-
gating the biological significance of these imaging features
requires further research [42].
Recently, various single-task deep learning methods

have shown promise in different WBUS applications, such
as predicting lymph node metastases for local staging [43],
guiding clinical management [44] and evaluating treat-
ment response [45]. Our research focuses on breast can-
cer subtype prediction, and our multi-task model has
demonstrated significant potential in this area, achieving
better results compared to single-task models. We believe
that our model has the potential to be transferred to other
applications, thereby achieving better performance in
these areas. In the future, we will further refine our model
and validate its applicability in different clinical scenarios,
ultimately facilitating its implementation in routine clin-
ical practice.
In conclusion, our study demonstrates that both single-

task and multi-task models can accurately predict bio-
markers’ expression from breast cancer 3DWBUS images,
with the multi-task model exhibiting superior perfor-
mance and enhanced explainability. Utilizing Grad-
CAM++ technology, the heatmap generated by the
multi-task model showed a more concentrated focus on
the lesion region. Although further improvement and

validation are necessary before automated breast cancer
biomarker prediction models can be integrated into
clinical workflows, their notable accuracy and interpret-
ability position these methods as valuable supplements to
current clinical practices. Their initial utility may extend
to research and quality control applications. For instance,
biomarker-based selection or triage of patients in large
clinical trials could significantly streamline therapy
development pipelines. In addition, this approach
could facilitate the identification of more informative
tumor regions for biomarker evaluation, as indicated by
heatmaps generated using Grad-CAM++. Last, this
research lays the groundwork for future studies aimed
at comparing clinical workflows with and without
the incorporation of this advanced machine-learning
framework.
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3DWBUS 3D whole breast ultrasound system
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AI Artificial intelligence
AUC Area under the receiver operator characteristic curve
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SPEC Specificity
t-SNE t-distributed stochastic neighbor embedding algorithm
US Ultrasound
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