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Abstract

Objectives The study aimed to investigate the relationship between the radiomic features of perivascular adipose
tissue (PVAT) and abdominal aortic aneurysm (AAA) growth after endovascular aneurysm repair (EVAR).

Methods Patients with sub-renal AAA who underwent regular follow-up after EVAR between March 2014 and March
2024 were retrospectively collected. Two radiologists segmented aneurysms and PVAT. Patients were categorised into
growing and non-growing groups based on volumetric changes observed in two follow-up computed tomography
examinations. One hundred seven radiomic features were automatically extracted from the PVAT region. Univariable
and multivariable logistic regression was performed to analyse radiomic features and clinical characteristics.
Furthermore, the performance of the integrated clinico-radiological model was compared with models using only
radiomic features or clinical characteristics separately.

Results A total of 79 patients (68 ± 9 years, 89% men) were enroled in this study, 19 of whom had a growing
aneurysm. Compared to the non-growing group, PVAT of growing AAA showed a higher surface area to volume ratio
(non-growing vs growing, 0.63 vs 0.70, p= 0.04), and a trend of low dependence and high dispersion manifested by
texture features (p < 0.05). The area under the curve of the integrated clinico-radiological model was 0.78 (95%
confidence intervals 0.65–0.91), with a specificity of 87%. The integrated model outperformed models using only
radiomic or clinical features separately (0.78 vs 0.69 vs 0.69).

Conclusions Higher surface area to volume ratio and more heterogeneous texture presentation of PVAT were
associated with aneurysm dilation after EVAR. Radiomic features of PVAT have the potential to predict AAA
progression.
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Clinical relevance statement Radiomic features of PVAT are associated with AAA progression and can be an
independent risk factor for aneurysm dilatation to assist clinicians in postoperative patient surveillance and
management.

Key Points
● After EVAR for AAA, patients require monitoring for progression.
● PVAT surrounding growing AAA after EVAR exhibits a more heterogeneous texture.
● Integrating PVAT-related features and clinical features results in better predictive performance.

Keywords Abdominal aortic aneurysm, Endovascular aneurysm repair, Radiomics, Perivascular adipose tissue, Growth
status classification

Graphical Abstract

PPerivascular adipose tissue surrounding a growing abdominal aortic aneurysm after
endovascular aneurysm repair exhibits higher surface area-to-volume ratio and more
heterogeneous texture.
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Introduction
An abdominal aortic aneurysm (AAA) is defined as an
aortic diameter of > 3 cm, with the primary risk being
rupture and the associated risk of haemorrhagic death.
Guidelines recommend repairing aneurysms with a
maximum diameter exceeding 5.5 cm in males and 4.5 cm
in females [1]. Endovascular aneurysm repair (EVAR) is a
minimally invasive procedure that is safer than traditional
open repair, but still requires long-term follow-up mon-
itoring [2]. Therefore, exploring pertinent variables rela-
ted to post-EVAR AAA growth is imperative for
monitoring and treating AAA patients.
The causes of aneurysm growth are multifaceted, including

endoleaks, endotension, hemodynamic factors, etc. Growing

and non-growing groups could have factors contributing to
aneurysm growth, and the level of these factors in the
growing group was higher, whereas the non-growing group
exhibited these factors to a lesser extent or not at all. Cur-
rently, research has shown an independent association
between obesity and AAA development [3]. Perivascular
adipose tissue (PVAT), which anatomically surrounds blood
vessels, is now recognised as an active endocrine organ
capable of secreting various adipokines, cytokines, and
growth factors that can either hinder or promote the devel-
opment of cardiovascular diseases [4, 5]. For aneurysms,
adipose tissue infiltration into blood vessels and the secretion
of proinflammatory factors may promote active macrophage
infiltration, thereby inducing aneurysm development [6, 7].
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Additionally, research has demonstrated a correlation
between PVAT and the dimensions of the thoracic and
abdominal aorta, suggesting that local fat deposits may
contribute to aortic remodelling [8]. Furthermore,
researchers have used the radiomic features of PVAT to
assess coronary artery risk, yielding results that surpass
traditional risk stratification methods [9]. For AAA,
increased PVAT attenuation has been independently
associated with AAA growth [10], and symptomatic
aneurysms exhibit higher rates of adipose tissue attenua-
tion [11]. However, studies have not focused on differ-
ences in the radiomic features of PVAT surrounding
AAAs with different growth statuses. Moreover, they have
not investigated whether radiomic features can be used to
predict the classification of AAA growth status. There-
fore, we aimed to investigate the relationship between the
radiomic features of PVAT and the status of AAA growth
after EVAR and to further explore the differentiation
between growing and non-growing AAAs. We hypothe-
sised that PVAT could help predict the status of AAA
progression after EVAR.

Materials and methods
Study design and population
The Institutional Review Board of Peking Union Medical
College Hospital approved this retrospective study and
waived the requirement for informed consent. This
retrospective study included all patients with sub-renal
AAAs treated at Peking Union Medical College Hospital
between March 2014 and March 2024. Patients were
treated with aortic-covered stent grafts from Medtronic,
Inc. (Endurant, Medtronic Inc). The inclusion criteria
were endovascular repair of AAAs and regular

postoperative follow-up with enhanced computed
tomography (CT). The exclusion criteria included
motion artefacts on scans (3 patients), small aneurysm
sacs (5 patients), ruptured AAAs (5 patients), incom-
plete scan fields (18 patients), single follow-up CT (97
patients), and follow-up CT beyond the prescribed
follow-up intervals (145 patients). The prescribed
follow-up intervals were as follows: the first follow-up
was scheduled 3–6 months after surgery, and the second
follow-up was scheduled 9–12 months after the first
follow-up. Figure 1 depicts the inclusion and exclusion
criteria for patients. We retrieved clinical data from the
electronic medical record system, including age, sex,
history of cancer, hypertension, hyperlipidaemia, dia-
betes, coronary artery disease, peripheral artery disease,
cerebral arteriopathy, smoking, drinking, low-density
lipoprotein (LDL), high-density lipoprotein (HDL), tri-
glycerides (TG), total cholesterol (TC), and glucose
(GLU).

Image segmentation
Using the 3D Slicer software (version 5.0.3, https://www.
slicer.org), two experienced radiologists, who have 5 years
and 10 years of experience, respectively, manually created
regions of interest (ROIs) on contrast-enhanced CT images
to segment the three-dimensional AAA and calculate their
volumes. The segmentation ranged from the lower renal
artery level to the abdominal aorta bifurcation. We classi-
fied AAAs into growing and non-growing groups based on
the volume change ratio of AAA. AAA was defined as
growing if its volume increased by over 2% compared with
its volume at the initial follow-up [12–15]. Subsequently,
we utilised the “margin” function of the 3D Slicer software.
This function grows or shrinks the selected segment by the
specified margin. The segmentation of AAA was expanded
outward by 10mm [16, 17], and the original segmentation
of the aneurysm was subtracted to obtain the segmentation
of PVAT. The CT attenuation range was set to −195 to
−45 [18, 19]. Figure 2 shows an example of the segmen-
tation of AAA and its PVAT.

Feature extraction
The radiomic features extracted from the PVAT region
included 14 shape features, 18 histogram features (also
known as first-order features), and 75 texture features.
The histogram features describe the statistical distribution
of CT attenuation within the ROI [20]. Texture features
quantify the relationships between voxel intensities and
their surroundings [21], including grey-level co-occur-
rence matrix (GLCM) features, grey-level dependence
matrix (GLDM) features, grey-level run length matrix
(GLRLM) features, grey-level size zone matrix (GLSZM)
features, and neighbouring grey tone difference matrix

Fig. 1 Patient selection flowchart
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(NGTDM) features. Detailed descriptions of the radiomic
features can be found in supplementary materials and a
separate document by Zwanenburg et al [22]. During
image segmentation and feature extraction, the
researchers were blinded to the patient’s clinical infor-
mation, including group classifications.

Statistical analysis
Statistical analyses were conducted using SPSS (version
27.0; International Business Machines Corporation). Fol-
lowing tests for variance homogeneity and normal dis-
tribution of variables, we conducted univariate analysis of
the variables using independent samples t-test, non-
parametric Mann–Whitney U-test, χ2 test, or Fisher’s
exact test, depending on the type of variable. To address
multicollinearity among variables, we calculated the cor-
relations between them. A correlation coefficient of > 0.8
was considered indicative of collinearity. One of the two
highly correlated variables was removed, while retaining
the one with the highest correlation with the dependent
variable. This approach allowed us to select the most
relevant independent variables for further analysis. Vari-
ables exhibiting statistically significant differences in

group comparisons were included in the binary logistic
regression analysis to identify independent risk factors for
AAA growth. Odds ratios (ORs) and their respective 95%
confidence intervals (CIs) were determined. Receiver
operating characteristic (ROC) curves were constructed to
evaluate the predictive performance of the identified fac-
tors, and the area under the curve (AUC) was calculated.
Differences were considered statistically significant at
p < 0.05 (two-tailed).

Results
The agreement between the two radiologists regarding
AAA growth classification was excellent (Cohen’s kappa
coefficient, 0.97; 95% CI: 0.75–1.19; p < 0.001).

Enrolment of participants
We conducted sample size estimation during the pre-
experiment phase with a significance level (α) of 0.05
(two-tailed) and power (1-β) of 0.90. Consequently, a
sample size of 78 patients was obtained. Between March
2014 and March 2024, 352 consecutive patients under-
went endovascular repair for AAAs and regular post-
operative follow-up enhanced CT. Ultimately, 79 patients

Fig. 2 An example illustration of the segmentations of AAA and its PVAT. A, B A segmentation of AAA. C, D A segmentation of the PVAT of AAA. PVAT,
perivascular adipose tissue; AAA, abdominal aortic aneurysm
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were included in this study. Table 1 summarises the
detailed demographic and clinical characteristics.

Univariate analysis among non-growing and growing AAA
after EVAR
Table 1 presents the statistical data on the clinical char-
acteristics of patients with growing or non-growing AAA
after EVAR. LDL (2.46 vs 3.03, p= 0.01), HDL (0.93 vs
1.08, p= 0.02), and TC (4.10 vs 4.87, p= 0.02) showed
significant differences between the growing or non-
growing AAA groups, whereas no significant differences
were found in the remaining clinical parameters.
Table 2 summarises the statistical data of the radiomics

features of the PVAT surrounding growing or non-
growing AAAs after EVAR. It comprises 1 shape feature
and 13 texture features, including GLCM, GLDM, and
GLRLM features. Significant differences between the two
groups were observed, including surface area-to-volume
ratio (0.63 vs 0.70, p= 0.04), correlation (0.53 vs 0.50,
p= 0.04), an informational measure of correlation 1 (0.14
vs 0.13, p= 0.03), Inverse variance (0.46 vs 0.47, p= 0.04),

maximal correlation coefficient (0.63 vs 0.57, p= 0.04),
Maximum probability (0.22 vs 0.20, p= 0.03), dependence
non-uniformity normalised (0.05 vs 0.06, p= 0.02),
Dependence variance (29.88 vs 26.96, p= 0.01), large
dependence emphasis (141.17 vs 124.55, p= 0.02), long-
run emphasis (4.76 vs 4.20, p= 0.01), run length non-
uniformity normalised (0.50 vs 0.52, p= 0.01), run per-
centage (0.64 vs 0.66, p= 0.01), run variance (1.80 vs 1.50,
p= 0.01), and short-run emphasis (0.72 vs 0.74, p= 0.04).
Regarding histogram features, we did not find any evi-
dence of differences between the two groups. Regarding
texture features, including GLRLM, GLSZM, and
NGTDM features, we also did not find statistically sig-
nificant results. Table 2 shows the detailed results.
Figure 3 illustrates two examples of the texture of PVAT

surrounding growing or non-growing AAAs. Comparing
the GLCM texture heatmaps of PVAT, growing AAAs
exhibited darker regions with lower GLCM values,
whereas non-growing AAAs exhibited brighter regions
with higher GLCM values. The GLDM texture heatmaps
showed that growing AAAs exhibited patterns farther

Table 2 Univariate analysis of radiomics features of PVAT
among non-growing and growing AAA

Variables Non-growing

AAA

Growing AAA p-value

Shape features

Surface area to volume

ratio

0.63 ± 0.14 0.70 ± 0.13 0.04

Grey-level co-occurrence matrix features

Correlation 0.53 ± 0.07 0.50 ± 0.05 0.04

Informational measure of

correlation 1

0.14 ± 0.03 0.13 ± 0.02 0.03

Inverse variance 0.46 ± 0.02 0.47 ± 0.02 0.04

Maximal correlation

coefficient

0.63 ± 0.11 0.57 ± 0.08 0.04

Maximum probability 0.22 ± 0.04 0.20 ± 0.04 0.03

Grey-level dependence matrix features

Dependence non-

uniformity normalised

0.05 ± 0.01 0.06 ± 0.005 0.02

Dependence variance 29.88 ± 4.51 26.96 ± 4.13 0.01

Large dependence

emphasis

141.17 ± 27.97 124.55 ± 22.08 0.02

Grey-level run length matrix features

Long run emphasis 4.76 ± 1.00 4.20 ± 0.78 0.01

Run length non-uniformity

normalised

0.50 ± 0.05 0.52 ± 0.04 0.01

Run percentage 0.64 ± 0.04 0.66 ± 0.03 0.01

Run variance 1.80 ± 0.53 1.50 ± 0.42 0.01

Short run emphasis 0.72 ± 0.04 0.74 ± 0.03 0.04

PVAT perivascular adipose tissue, AAA abdominal aortic aneurysm

Table 1 Demographic and clinical characteristics of participants

Variables Overall, (n= 79) p-value

Non-growing

AAA, (n= 60)

Growing

AAA, (n= 19)

Age, year 68 ± 8 69 ± 11 0.70

Male gender, n (%) 54 (90%) 16 (84%) 0.47

History of tumour, n (%) 10 (17%) 2 (11%) 0.72

History of hypertension,

n (%)

38 (63%) 9 (47%) 0.22

History of hyperlipemia,

n (%)

16 (27%) 5 (26%) 0.98

History of diabetes, n (%) 10 (17%) 0 (0%) 0.11

History of coronary artery

disease, n (%)

14 (23%) 5 (26%) 0.77

History of peripheral

arterial disease, n (%)

11 (18%) 3 (16%) > 0.99

History of cerebral

arteriopathy, n (%)

10 (17%) 1 (5%) 0.28

History of smoking, n (%) 36 (60%) 9 (47%) 0.33

History of drinking, n (%) 18 (30%) 4 (21%) 0.56

LDL, mmol/L 2.46 ± 0.72 3.03 ± 1.17 0.01

HDL, mmol/L 0.93 ± 0.18 1.08 ± 0.35 0.02

TG, mmol/L 1.54 ± 0.78 1.57 ± 0.85 0.89

TC, mmol/L 4.10 ± 0.82 4.87 ± 1.32 < 0.01

GLU, mmol/L 5.53 ± 1.14 5.38 ± 1.04 0.61

The data were presented as mean ± standard deviation or as numbers
(percentages)
AAA abdominal aortic aneurysm, LDL low-density lipoprotein, HDL high-density
lipoprotein, TG triglycerides, TC total cholesterol, GLU glucose
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from the diagonal lines. In Fig. 3, differences in the texture
of PVAT were visually observed between the two groups.

Binary logistic regression analysis among non-growing and
growing AAA after EVAR
Among the 79 patients, 19 (24%) had non-growing AAA.
The variables included in the binary logistic regression
model were determined using univariate analysis
(p= 0.05). The dependence variances of PVAT and TC
were included in the binary logistic regression model.
The ORs for these two features are 0.84 (95% CI:

0.72–0.98, p= 0.03) and 2.24 (95% CI 1.20–4.17,
p= 0.01), respectively. The AUC of this model was 0.78
(95% CI: 0.65–0.91, p < 0.01), with a sensitivity of 68% and
specificity of 87%. Additionally, by comparing the model
combining radiomic and clinical features with models
using only radiomic features or clinical features

separately, their AUCs were 0.69 (95% CI: 0.55–0.83,
p= 0.02) and 0.69 (95% CI: 0.54–0.84, p= 0.02), respec-
tively. Table 3 lists the evaluation indices of the three
models. All three models showed statistical significance
(Omnibus test, p < 0.01) and had good goodness-of-fit
(Hosmer–Lemeshow test, p > 0.05). We found that the
clinico-radiological integrated model outperformed the
individual models. Figure 4 shows the ROC curves of the
three models.

Discussion
In this study, we analysed the radiomic features of PVAT
on follow-up enhanced CT after EVAR and the clinical
characteristics of patients to explore the association
between PVAT and AAA growth status. The clinical-
radiological integrated model achieved the best perfor-
mance, with an AUC of 0.78. Our finding holds significant

Table 3 Evaluation of logistic regression model for AAA growth

Evaluation index Radiomic model Clinical model Clinico-radiological integrated model

The p-value of omnibus test 0.01 < 0.01 < 0.01

The p-value of Hosmer–Lemeshow test 0.98 0.24 0.47

Percentage accuracy in classification (%) 75% 79% 80%

AUC (95% CI) 0.69 (0.55–0.83) 0.69 (0.54–0.84) 0.78 (0.65–0.91)

The p-value of AUC 0.02 0.02 < 0.01

Sensitivity 74% 74% 68%

Specificity 65% 65% 87%

Cutoff value 0.25 0.25 0.31

AAA abdominal aortic aneurysm, AUC area under curve, CI confidence interval

Fig. 3 The visualisation of texture features. A A 68-year-old male in the non-growing AAA group. The first image in the top row displays the arterial
phase enhanced CT slice of the maximum axial plane of the AAA. The second image from the top represents the manual segmentation of PVAT
conducted by radiologists. The third image depicts the extracted PVAT. The fourth and fifth images display the heatmaps of the GLCM and GLDM,
respectively. B A 74-year-old male in the growing AAA group. The image of (B) represents the same meaning as (A). AAA, abdominal aortic aneurysm;
PVAT, perivascular adipose tissue; GLCM, grey level co-occurrence matrix; GLDM, grey level dependence matrix
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clinical value for the long-term follow-up of patients after
EVAR.
The results of the univariate analysis indicated that

PVAT surrounding growing AAA after EVAR had a
higher surface area-to-volume ratio, which aligns with the
theory of fat adhering closely to blood vessels and
potentially facilitating the infiltration or secretion of
PVAT [4, 23]. Regarding texture features, previous studies
have shown that texture analysis of aneurysms and
thrombi can effectively predict aneurysm expansion
[12, 24]. In our study, both GLCM and GLDM results
indicated that PVAT surrounding growing AAA exhibited
low dependence and high dispersion. The heatmaps of
GLCM and GLDM for growing and non-growing AAAs
illustrate texture differences between the two, suggesting
that the internal composition of PVAT in growing AAAs
is more heterogeneous [22]. This discovery may motivate
researchers to investigate the use of PVAT texture fea-
tures in classifying AAA growth.
Dependence variance describes the texture and struc-

ture of images and measures the variability of the grey-
scale differences between pairs of pixels across the entire
image. The calculation is done using GLCM, where the
variance of greyscale differences in GLCM yields depen-
dence variance [20, 21]. Our results indicate that a lower
variability in greyscale differences of PVAT, indicating
more uniform greyscale differences, may correspond to a
higher risk of AAA growth after EVAR. Serum TC mea-
surement includes various types of cholesterol particles
present in the blood. Studies have shown a positive cor-
relation between serum TC levels and AAA growth
[25, 26], which is consistent with previous findings.
No significant difference was found in CT attenuation

between the two PVAT groups (−81.80 vs −80.06,
p= 0.28), with a single-factor logistic analysis yielding an
AUC value of 0.596 (95% CI: 0.448–0.744, p= 0.21),

which was significantly lower than that of the other
models in this study. This may benefit future research in
identifying the relevant features for predicting AAA
expansion, especially in post-EVAR studies.
Long-term follow-up is required to monitor evolutions

after EVAR [2]. Some researchers have focused on mon-
itoring postoperative complications, such as persistent
type 2 endoleaks, and radiomics features have been used
to establish machine learning algorithms for predicting
aggressive type 2 endoleaks after EVAR [27]. Researchers
have also developed radiomics models for AAA to predict
the outcomes of various postoperative complications after
EVAR [28, 29]. Rapid growth in volume or diameter
typically indicates unfavourable evolution, and monitor-
ing these parameters may facilitate the early detection of
AAA evolutions. For instance, efforts have been made to
identify the post-EVAR shrinkage of AAA [30] or to
classify post-EVAR AAA evolutions using radiomics tex-
ture analysis [31]. This study monitored changes in AAA
volume and demonstrated that differences in PVAT may
lead to variations in AAA volume.
PVAT has been extensively studied for its pathophy-

siological effects on blood vessels [4, 23, 32]. Due to its
significant impact on blood vessels, researchers have
attempted to integrate PVAT with traditional predictive
features in previous studies. For example, adding PVAT
radiomics to the CT-derived fractional flow reserve model
enhanced the diagnostic performance for detecting hae-
modynamically significant coronary artery stenosis [33].
Extracting the radiomics features of PVAT and carotid
plaques improved the model’s capability to identify
symptomatic carotid plaques [34]. Current research on
PVAT of AAA has often focused on the attenuation of
adipose tissue around the aorta [10, 16, 35], highlighting
its association with AAA growth. Additionally, studies
have shown that PVAT density around the aneurysm sac

Fig. 4 ROC curves of radiomic signature in predicting AAA growth classification in different models. A Clinico-radiological integrated model. B Radiomic
model. C Clinical model. AAA, abdominal aortic aneurysm; AUC, area under the curve
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exceeds that in healthy vessels [11]. Our study expands
the scope of the application of PVAT in predicting AAA
growth by demonstrating the relationship between the
radiomics features of PVAT and post-EVAR AAA evo-
lution. Integrating these features into predictive models,
alongside traditional clinical features, improves the
model’s predictive performance. Multivariate Cox
regression analysis revealed that the baseline maximum
diameter and high PVAT attenuation were independent
predictors of AAA progression [10]. Furthermore, one
study found that the average CT attenuation of PVAT
predicted AAA growth with an AUC of 0.688, which
increased to 0.797 when combined with the baseline AAA
diameter [16]. Our model demonstrated a similar per-
formance to theirs. Furthermore, the model achieved a
specificity of 87%, indicating its ability to effectively
exclude false positives and minimise the misclassification
of non-growing AAA cases as growth cases. In future
research, we plan to establish a comprehensive model that
incorporates the aneurysm sac, intraluminal thrombus,
clinical features, and PVAT to evaluate the predictive
value of PVAT and the predictive ability of the model.
This study has several limitations. Due to the need for

relatively stable conclusions, strict follow-up intervals
were set, resulting in a smaller final sample size. We
calculated the estimated sample size for the overall study
in the pre-experiment to minimise the impact of the small
sample size. In the future, we will increase the sample size
to further explore the relationship between PVAT and
AAA. This retrospective study highlighted the necessity
for prospective and long-term follow-up studies. There
were also limitations related to the development of
image segmentation techniques, necessitating manual
intervention for three-dimensional aneurysm segmenta-
tion. Currently, complete automation through software
programmes remains unattainable.
In conclusion, the PVAT of growing AAA after EVAR

exhibits a higher surface area-to-volume ratio and more
heterogeneous texture. The radiomic features of PVAT
exhibit significant differences between patients with
growing or non-growing AAA and can help categorise the
AAA growth status after EVAR with high specificity.
Integrating PVAT-related features into predictive models
alongside traditional clinical features can improve the
model’s predictive performance.
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