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Abstract

Objective We aimed to develop a standardized method to investigate the relationship between estimated brain age
and regional morphometric features, meeting the criteria for simplicity, generalization, and intuitive interpretability.

Methods We utilized T1-weighted magnetic resonance imaging (MRI) data from the Cambridge Centre for Ageing and
Neuroscience project (N= 609) and employed a support vector regression method to train a brain age model. The pre-
trained brain age model was applied to the dataset of the brain development project (N= 547). Kraskov (KSG) estimator
was used to compute the mutual information (MI) value between brain age and regional morphometric features, including
gray matter volume (GMV), white matter volume (WMV), cerebrospinal fluid (CSF) volume, and cortical thickness (CT).

Results Among four types of brain features, GMV had the highest MI value (8.71), peaking in the pre-central gyrus (0.69).
CSF volume was ranked second (7.76), with the highest MI value in the cingulate (0.87). CT was ranked third (6.22), with the
highest MI value in superior temporal gyrus (0.53). WMV had the lowest MI value (4.59), with the insula showing the highest
MI value (0.53). For brain parenchyma, the volume of the superior frontal gyrus exhibited the highest MI value (0.80).

Conclusion This is the first demonstration that MI value between estimated brain age and morphometric features may
serve as a benchmark for assessing the regional contributions to estimated brain age. Our findings highlighted that both
GMV and CSF are the key features that determined the estimated brain age, which may add value to existing
computational models of brain age.

Critical relevance statement Mutual information (MI) analysis reveals gray matter volume (GMV) and cerebrospinal fluid
(CSF) volume as pivotal in computing individuals’ brain age.

Key Points
● Mutual information (MI) interprets estimated brain age with morphometric features.
● Gray matter volume in the pre-central gyrus has the highest MI value for estimated brain age.
● Cerebrospinal fluid volume in the cingulate has the highest MI value.
● Regarding brain parenchymal volume, the superior frontal gyrus has the highest MI value.
● The value of mutual information underscores the key brain regions related to brain age.
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Graphical Abstract

WWe employed mutual information (MI) as a benchmark to investigate the relationship 
between estimated brain age and brain morphometric features, aiming to enhance the 
interpretability of brain age modes.
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Introduction
Aging, as an inevitable and irreversible process, manifests
uniquely in each individual and is influenced by a complex
interplay of genetic predisposition [1, 2], environmental
determinants [3], lifestyle choices [1], and neural plasticity
[2]. As individuals progress through the chronological
trajectory of life, their brains undergo a series of intricate
changes. These brain changes encompass a wide spectrum
of physiological and pathological processes, ranging from
subtle modifications in cortical layers to region-specific
volumetric variations [3, 4], culminating in distinctive
patterns of age-related brain morphometry. The struc-
tural changes in the brain manifest in a multidimensional
manner, impacting both volumetric and surface-based
features [5].
With the development of quantitative approaches in

neuroimaging, the concept of brain age has been devel-
oped for thoroughly estimating an individual’s chron-
ological age at individual level [6]. Structural magnetic
resonance imaging (sMRI) plays a pivotal role in captur-
ing the subtle yet crucial changes in brain morphometry
that unfold over an individual’s lifespan. The utilization of
sMRI combined with advanced computational techniques,
such as machine learning algorithms, empowers neu-
roscientists to develop predictive models linking brain

structures with chronological age [7]. Estimated brain age
has the potential to identify deviations from the norms,
shedding light on understanding accelerated or deceler-
ated brain aging trajectories [8]. The difference between
predicted brain age and chronological age is referred to as
the score of brain-PAD (brain-predicted age difference)
[9]. For example, when considering an individual with a
chronological age of 60 years and a predicted brain of 65
years, the score of brain-PAD is +5 years, indicating that
the individual’s brain is undergoing an accelerated aging
process of +5 years.
The brain age model has shown promising utilities in

clinical populations. For example, brain age prediction
can be used to identify abnormal aging-related deviations
in individuals with psychiatric and neurological disorders,
such as schizophrenia and Alzheimer’s disease [10–14].
Of note, these deviations from normal aging trajectory
can be detected before clinical symptoms appear, allowing
for earlier intervention and potentially improving
clinical outcomes [7, 13–15]. The estimated brain age may
also serve as a biomarker of an individual’s brain
health during aging [7]. By estimating an individual’s brain
age, clinicians can gain insights into their cognitive health
and the risk of developing age-related conditions
[12, 15, 16].
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Despite the promise of brain age, it encounters chal-
lenges, notably two ‘black boxes’. First, the value of brain
age is overly a ‘black box’ [7]. Brain age, estimated from
structural brain scans, aggregates the complexities
underlying multidimensional alteration patterns of brain
aging into one value [16]. Age-related alterations in the
brain are subtle, nonlinear, and spatially distributed
[17–19]. Although brain age has been widely studied in
psychiatric and neurological disorders, the specific fea-
tures used to predict brain age remain unclear, which may
result in disregarding important neuroscientific informa-
tion [7]. This is of particular concern for researchers to
extend the utilities of brain age to conditions whose
pathoanatomical deviations from typical aging may fea-
ture both global and regional changes. Second, brain age
is estimated by utilizing various statistical models,
including classical statistical models (e.g., multivariate and
univariate regression, general linear models), machine
learning models (ML) (e.g., random forest regression,
elastic net regression, relevance vector regression), and
deep learning techniques (DL) (e.g., convolutional neural
networks) [20–25]. It should be noted that most ML and
DL techniques are ‘black boxes’ [26]. Unlike traditional
statistical methods, where the parameters and assump-
tions of the models are explicitly defined, the models
computed by ML and DL algorithms are operated by
optimizing parameters through iterative processes,
resulting in complex decision boundaries that are very
challenging to interpret. The specific features or patterns
identified by the ML and DL models may not be readily
interpretable and understood. The ‘black box’ nature of
ML and DL models raises concerns about their reliability
and accountability when applied to brain age prediction.
The lack of interpretability in these models may limit the
applications of brain age in clinical populations.
To address these concerns, we employed mutual

information (MI) value as a standardized metric to
quantify the distinct contributions of morphometric fea-
tures to estimated brain age. MI is a fundamental notion
in information theory, quantifying the extent to which one
random variable holds information about another, which
is widely employed to gauge the statistical relatedness of
any relationship between variables [27]. This property
allows MI value to reliably measure the statistical
dependency between variables without being affected by
transformations, thereby providing a robust and con-
sistent measure of the relationship between estimated
brain age and morphometric features across different
representations or coordinate systems. The MI value of
individual’s variables also remains invariant under any
invertible transformations [28]. Thus, using MI value to
gauge the impact of input morphometric features on brain
age has three-fold advantages: (1) simplicity in

computation, avoiding resource-intensive procedures,
especially when dealing with complex models and large
datasets; (2) generalizability well across different types of
statistical models by capturing the feature patterns in any
model; (3) intuitive interpretability, providing under-
standable insights with minimal needs for statistical
assumptions or domain-specific expertise. In this study,
we initially employed volumetric- and surface-based brain
regional features as training features to develop a brain
age model. Subsequently, we utilized the nearest-neighbor
method to compute the MI values between each input
feature and the estimated brain age [27, 29]. This
approach aimed to bridge the gap in the interpretability of
brain age models and facilitate the validation of model
predictions, thereby enhancing the credibility of brain age
estimation. Furthermore, it may advance our under-
standing of the relationship between brain aging and
macroscopic structural changes in aging populations.

Materials and methods
Participants
The training set (N= 609, aged from 18 to 88 years)
comprising T1-weighted structural MRI scans was
obtained from the Cambridge Centre for Aging and Neu-
roscience (Cam-CAN) study (https://www.cam-can.org)
[30]. The testing set (N= 547, aged from 20 to 86 years)
comprised T1-weighted sMRI data from the Brain devel-
opment project (IXI) (https://brain-development.org). The
demographic characteristics of the participants in the two
datasets, along with the MRI acquisition parameters, are
listed in Table 1. As per local study protocols [30], all
participants underwent screening to ensure cognitive
health and exclude major psychiatric conditions. The
testing set served for both validation of the brain age pre-
diction model and quantification of individual feature
contributions to the estimated brain age.

Table 1 The detailed information of Cam-CAN and Brain
development project

Cam-CAN Brain development

project (IXI)

Number of subjects 609 547

Males/females 305/304 243/304

Age mean (SD) 53.2 (18.3) 48.6 (16.5)

Age range 18–88 19.98–86.32

TR (ms) 2250 9.6/9.8

TE (ms) 2.99 4.6/4.6

TI (ms) 900 \

FOV 256 × 240 × 192 \

Cam-CAN Cambridge Centre for Aging and Neuroscience, TR repetition time,
TE echo time, TI inversion time, FOV field of view, SD Standard deviation
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Pre-processing of sMRI scans
Cortical reconstructions and surface-based morphometry
analysis of T1-weighted MRI scans were conducted using
BrainSuite 21a (https://brainsuite.org/) [31]. BrainSuite is a
semi-automatic cortical surface identification integrated
package, widely employed in aging research [32, 33]. The
pre-processing pipeline encompassed the following steps:
(1) cortical surface extraction involves several steps: skull-
stripping, tissue classification, gross labeling of brain
structures, and modeling the inner and outer boundaries of
the cerebral cortex. Notably, image enhancement and pre-
processing techniques are applied before the skull-stripping
process. An anisotropic diffusion filter is applied to smooth
contiguous tissue regions while respecting the edge
boundaries between them, enhancing the boundary
between the brain and other tissues [34]. A three-
dimensional Marr Hildreth edge detector and morpholo-
gical erosion processing are then utilized to remove the
skull and scalp from the image [35, 36]. Image non-
uniformities are corrected in the stripped brain, using a
parametric tissue measurement model [31]; (2) cortical
thickness estimation based on partial volume estimates and
anisotropic diffusion equation; (3) surface-constrained
volumetric registration to create a mapping to a labeled
reference atlas (BCI-DNI) [37] and assign labels to the
cortical surface and brain volume; (4) alignment of cortical
thickness estimates to atlas space; (5) computation of
subject-level features, including gray matter volume (GMV),
white matter volume (WMV), cerebrospinal fluid (CSF)
volume, and cortical thickness in the pre-defined regions of
interest. Visual inspections were performed, and any seg-
mentation errors were manually corrected.

Regional cortical features
We utilized four types of regional morphometric features,
including GMV, WMV, CSF volume, and cortical thick-
ness, in total 66, as input features for the brain age model.
Given the anatomical asymmetry of the brain, we extracted
regional morphometric features from both left and right
brain hemispheres [38–40]. A total of 66 cortical regions,
covering both hemispheres, were chosen according to the
BCI-DNI atlas. To systematically explore the impact of
regional morphometric features on estimated brain age, we
investigated the combinations of different morphometric
features for each cortical region, including 66 regional
brain parenchyma volume features, merging the GMV and
WMV of each cortical region; and 66 regional intracranial
volume features, incorporating the GMV, WMV, and CSF
volumes of each cortical region.

Support vector regression model
We utilized support vector regression (SVR), a robust
regression model implemented with the scikit-learn library

in Python, widely used for estimating brain age [20, 41–46].
SVR seeks to identify a hyperplane that minimizes deviation
from training data, skin to linear regression [47]. Unlike
linear regression, SVR could compute errors solely from
data points beyond a ‘margin of tolerance’ set by the
hyperparameter epsilon (ϵ), known as support vectors,
which dictate the hyperplane’s placement. The regulariza-
tion hyperparameter ‘C’ plays a vital role in striking a bal-
ance between hyperplane complexity and training errors,
effectively preventing overfitting. We utilized the radial
basis function (RBF) kernel to facilitate mapping nonlinear
data into higher dimensions through the ‘kernel trick’. We
applied a nested 10-fold cross-validation scheme and
GridSearchCV function with the ‘neg_mean_absolute_-
error’ scoring parameter to determine the optimal regular-
ization hyperparameters for SVR. We then used the
‘best_params_ ‘attribute to obtain the value of the regular-
ization hyperparameter ‘C’, resulting in C= 1.

Age-bias correction
In the estimation of brain age, a common phenomenon
is age-related bias, with younger individuals often
having overestimated brain ages and older individuals
having underestimated brain ages due to general statis-
tical features of the regression analysis [41, 48, 49].
To address this age-related bias, we employed a statistical
age-bias correction method. This method involves fitting
the estimated brain age into a regression function:

^corrected agei ¼ ^agei þ ½agei � α ´ agei þ β
� ��

In this equation, ^corrected agei represents the corrected
brain age for subject i, ^agei is the first estimated brain age,
and agei is the chronological age of subject i. The cor-
rection coefficients α and β are estimated through a fit in
the training set and subsequently applied to correct esti-
mations in the testing set [50].

Decoding the contributions of brain regions
Mutual information (MI) gauges the interdependence of
variables, first defined and analyzed by Shannon in 1948
[51]. MI is based on the concept of entropy, which mea-
sures the uncertainty or randomness of a random variable.
The calculation of entropy is based on the probability
function of the random variable, where higher entropy
indicates greater uncertainty and information. For a ran-
dom variable, x, its entropy, denoted by H xð Þ, represents
the uncertainty associated with x: The entropy of x is:

H xð Þ ¼ �
Xn
i¼1

pðx ið Þ � logðx ið ÞÞ

x ið Þ) represents each possible outcome of the random
variable x: Pðx ið ÞÞ is the marginal probability of x ið Þ). For
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two variables, x and y, their MI: I x; yð Þ quantifies the
reduction in uncertainty about one variable when the
other variable is known. Mathematically, MI can be
expressed as the difference between the joint entropy of x
and y, and the sum of their individual entropies:

I x; yð Þ ¼ H xð Þ þ H yð Þ � Hðx; yÞ

I x; yð Þ ¼
Xn
i¼1

Xn
j¼1

p x ið Þ; y jð Þð Þ p x ið Þ; y jð Þð Þ
p x ið Þð Þ � p y jð Þð Þ

� �

MI is non-negative (I x; yð Þ � 0) and symmetric
(I x; yð Þ ¼ I y; xð Þ). A MI value of zero indicates that the
two variables are independent, meaning the knowledge of
one variable does not provide any information about the
other variable. A higher MI value signifies stronger
dependencies between variables. In this study, we applied
the KSG estimator proposed by Kraskov, Stögbauer, and
Grassberger for computing the MI [27]. The KSG method
involves an adaptive non-parametric approach that esti-
mates MI without making assumptions about the
underlying probability distributions. It utilizes a k-nearest
neighbor to estimate local densities and adaptive bin the
data. The KSG method offers advantages such as
robustness to noise and adaptiveness to data structure.
Below is the equation:

I X;Yð Þ ¼ ψ kð Þ � ψ nx þ 1ð Þ þ ψ ny þ 1
� �� �þ ψ Nð Þ

N is the number of data points in the joint space.
k is the number of nearest neighbors.
ψ is the digamma function.
nx and ny are neighbor counts within X and Y marginal
spaces.

Results
Model performance
The brain age model was trained using 264 training
features, encompassing mean cortical thickness, regional
volumes of GMV, WMV, and CSF. Three commonly
used metrics of model performance were included in this
study: (1) root-mean-square error (RMSE) [52], (2) mean
absolute error (MAE) [52], and (3) coefficient of deter-
mination (R2) [53]. The age-bias correction coefficients
(α= 0.885, β= 5.658) were derived from a fit in
the training set and applied to correct predictions in
the independent testing set. On the training set, the
model reached an accuracy of MAE= 5.32 years,
RMSE= 6.64 years, and R2 = 0.87. After age-bias cor-
rection, the performance of the brain age model was
improved accordingly (MAE= 5.15 years, RMSE= 6.27
years and R2 = 0.88).
In the independent testing set, the relationship between

chronological age and estimated brain age, as well as

chronological age and estimated brain age after age-bias
correction, were illustrated in Fig. 1. The performance of
the brain age model in the testing set had a
slight decrease, resulting in MAE= 7.79 years, RMSE=
9.80 years, and R2 = 0.66. However, after age-bias
correction, an improvement in the model’s prediction
accuracy was observed: MAE= 6.65 years, RMSE= 8.53
years, and R2 = 0.74.

Fig. 1 The relationship between estimated brain age and chronological
age in the testing set. Prediction bands and 95% confidence bands are
presented. a presents the relationship between estimated brain age and
chronological age. The red line is a regression line fitted when estimated
brain age equals chronological age. The blue line is a regression line fitted
between estimated brain age and chronological age. b displays the
relationship between the estimated brain age after age-bias correction.
The red line is a regression line fitted when the age-bias-corrected
estimated brain age equals chronological age. The green line is a
regression line fitted between the estimated brain age after age-bias
correction and chronological age
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Contributions of different brain features
The MI values between the estimated brain age and each
input brain feature were computed separately. Further-
more, to explore associations between regional brain
parenchyma volumes and estimated brain age, we aggre-
gated the MI values of GMV and WMV within the same
brain region. To investigate the relationship between
regional intracranial volumes and estimated brain age, we
aggregated the MI values of GMV, WMV, and CSF
volume within each brain region. Geometric asymmetry
between brain hemispheres was considered, with input
features from both hemispheres included for each brain
region. To focus on the overall morphometric character-
istics of brain regions. MI values for the same brain region
across the hemispheres were merged. The MI values for
the 33 cortical brain regions, shown in Figs. 2–4, with the
top ten ranked visualized as heatmaps in Fig. 5.
Notably, although the total MI value (27.28) between

age-corrected brain age and all features was lower than
the total MI value (28.21) between estimated brain age
and all features, there were no significant differences in
the MI values between age-corrected brain age, estimated
brain age, and the features of each brain region. Given
that age-bias correction is a commonly employed step in
brain age estimations, we discussed the results obtained
from the age-corrected brain age to dissect the specific
contributions of brain region features. Among the four
types of brain features, GMV exhibited the highest total
MI value (8.71), with the pre-central gyrus having the
highest MI score (0.69) (Fig. 5a). The second-highest total
MI value was associated with CSF volume (7.76), with the
cingulate having the highest MI score (0.87) (Fig. 5b). The
third-highest total MI value corresponded to mean CT
(6.22), with the superior temporal gyrus showing the
highest MI value (0.53) (Fig. 5c). WMV had the lowest
total MI value (4.59), with the highest MI value observed
in the insula (0.35) (Fig. 5d). Regarding the brain par-
enchymal volume (the combination of GMV and WMV),
the superior frontal gyrus exhibited the highest total MI
value (0.80) (Fig. 5e). In the case of intracranial total
volume (the combination of GMV, WMV, and CSF
volume), the cingulate showed the highest total MI value
(1.18) (Fig. 5f).

MI in gender-specific testing subgroups
We divided the IXI dataset into female subgroup (sample
size: 304; age range: 19.98–86.32 years), and male sub-
group (sample size: 243; age range: 20.07–86.20 years).
The brain age prediction model performance on the male
subgroup is R2= 0.68, MAE= 7.74 years, and RMSE =
9.61 years. After age-bias correction, the model perfor-
mance on the male subgroup is slightly improved:
R2= 0.75, MAE= 6.67 years, and RMSE= 8.37 years. The

brain age prediction model on the female subgroup is
R2= 0.64, MAE= 7.84 years, and RMSE= 9.96 years,
which is less accurate than on the male subgroup. After
age-bias correction, the model performance on the female
subgroup is slightly improved: R2= 0.72, MAE= 6.65
years, and RMSE= 8.66 years. We computed the MI
between estimated brain age after age-bias correction and
all features in male and female subgroups. The total MI in
the male subgroup is 32.65, which is higher than the total
MI in the female subgroup (28.58). In the male subgroup,
CSF volume exhibited the highest MI (11.62) among the
four types of brain features, while GMV exhibited the
second-highest MI (8.95). In the female subgroup, GMV
exhibited the highest MI (9.78) among the four types of
brain features, while CSF volume exhibited the second-
highest MI (7.80). We calculated the Spearman ranking
correlation coefficient and p-value to assess the statistical
significance of MI in brain regions between male and
female subgroups, and the whole testing dataset. A sig-
nificance level of 0.05 was set. The results suggested that
there was no significant difference in the MI value rank-
ings of each brain region between the female subgroup,
the male subgroup, and the overall testing dataset.

Discussion
In this study, we used four types of morphometric features
to train the brain age model. Subsequently, we applied
and validated this model to an independent testing dataset
to calculate the estimated brain age. Through a com-
parative analysis of mutual information (MI) values
between each input feature, the combinations of input
features (brain parenchyma and intracranial total
volume), and estimated brain age, we observed several
interesting findings. These findings underscore the critical
significance of specific MRI-based morphometric features
in determining individuals’ brain age and providing new
insights into the processes of brain aging through com-
putational models. We used gender-specific subgroups to
validate our findings, and the results showed that there
were no significant differences in the MI value rankings of
each brain region among the gender-specific subgroups.
First and foremost, cortical gray matter volume showed

the strongest relatedness with estimated brain age. This
observation highlights the superior prediction accuracy of
brain age models utilizing gray matter as an input feature
compared to other types of morphometric features [54,
55], as evidenced by its widespread applications in the
research field of brain age [6, 13, 56–61]. Previous MRI
studies have shown age-related anatomical changes in
gray matter, including a linear decrease in global gray
matter volume (GMV) and regional GMV during aging
[62]. As a result, using GMV as an input feature for
estimating brain age not only presents its biological
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Fig. 2 Detailed ranking of mutual information (MI) value between estimated brain age after age-bias correction and four brain morphometric features
(GMV, CSF volume, CT, and WMV) across 33 brain regions. Brain regions are classified into three groups based on MI values: the highest one-third, the
middle one-third, and the lowest one-third depicted by varying color intensities. A red reference line is provided, indicating an MI value of 0.35, which is
the MI between WMV in the insula and estimated brain age after age-bias correction. GMV, gray matter volume; CSF, cerebrospinal fluid; CT, cortical
thickness; WMV, white matter volume
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plausibility but also makes a substantial contribution to
model performance. Additionally, another volumetric
feature related to CSF volume exhibited the second-
highest correlation coefficient with estimated brain age,
following GMV. In line with a previous study [63], this
finding also highlights the potential of CSF volume as a
valuable feature for brain age estimation. Changes in CSF
volume encapsulate information pertinent to brain age.
However, it is important to note that the application of
CSF-specific features in current studies of brain age
remains limited. Second, among the features of brain
parenchymal volume, the superior frontal gyrus (SFG)
exhibited the strongest association with estimated brain
age. From a perspective of neuroanatomy, the SFG is a
prominent ridge located on the neocortex, constituting
roughly one-third of the frontal lobe. From a perspective
of neuropsychology, the core cognitive abilities thought to
be dependent on the frontal cortex, such as task-switch-
ing, executive functions, verbal fluency, complex atten-
tion, and performance monitoring, are particularly

vulnerable to the aging process [64–67]. The linkage
between neuroanatomy and cognitive functions may offer
another unique perspective to understand the feature-
specific brain age model. For instance, in 1997, Hannien
et al discovered a positive correlation between category
verbal fluency test (CVFT) scores and the volume of the
frontal lobe [68]. Subsequently, Lu and her colleagues
found that neurocognitive impairment (NCD) patients
showing older brain age performed significantly worse on
CVFT compared to normal aging controls [69]. Thus, our
findings might confirm the significance of frontal volume
in brain age estimation. When considering brain par-
enchymal and CSF volume, the total intracranial volume
of the cingulate had the highest MI value with brain age,
which may highlight the significance of the cingulate
gyrus in age-related brain changes. In Alzheimer’s disease
(AD), MRI studies consistently report reduced volumes of
the cingulate gyrus compared to normal controls [70, 71],
with voxel-based morphometric analysis indicating
decreased gray matter density, particularly in the posterior
regions [72–74]. Reduced metabolic changes (i.e.,

Fig. 4 Detailed ranking of mutual information (MI) between estimated
brain age after age-bias correction and total intracranial volume (GMV
combined with WMV and CSF volume) features across 33 brain regions.
These brain regions are classified into three groups based on MI values:
the highest one-third, the middle one-third, and the lowest one-third,
visually represented by differences in color intensity

Fig. 3 Detailed ranking of mutual information (MI) values between
estimated brain age after age-bias correction and brain parenchymal
(GMV combined with WMV) features across 33 brain regions. The brain
regions are classified into three groups based on MI values: the highest
one-third, the middle one-third, and the lowest one-third depicted by
varying color intensities
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hypometabolism) in the posterior cingulate gyrus have
also been observed in AD patients using magnetic reso-
nance spectroscopy [75] and and positron emission
tomography [76–78]. Understanding the changes in the
cingulate might help to address cognitive decline in aging
and neurodegenerative diseases and further tailor the
preventive measures for brain health.
The findings of this study mark a significant and prac-

tical advancement for several reasons. First, we

incorporated four distinct morphometric features into the
brain age model simultaneously, taking a whole-brain
perspective. In the field of brain age research, raw MRI
scans are commonly used as input features due to their
inherent multidimensional morphometric information
[54, 79–81]. We improved the interpretability of brain age
models by extracting regional morphometric information
from MRI scans through quantitative pre-processing,
which was utilized as input features. Second, this study

Fig. 5 This figure illustrates brain heatmaps showcasing the top ten brain regions in the BCI-DNI atlas, ranked by mutual information (MI) values. a shows
the top ten regions in gray matter volume (GMV). The pre-central gyrus demonstrates the highest MI value (0.69). b illustrates the top ten regions in
cerebrospinal fluid (CSF) volume. The cingulate exhibits the highest MI value (0.87). c displays the top ten regions in cortical thickness. The superior
temporal gyrus exhibits the highest MI value (0.53). d presents the top ten regions in white matter volume (WMV). The insula shows the highest MI value
(0.35). e depicts the top ten regions in brain parenchyma volume (combining GMV and WMV). The superior frontal gyrus displays the highest MI value
(0.80) among brain regions. f shows the top ten regions in intracranial total volume (the combination of GMV, WMV, and CSF volume). The cingulate
showed the highest total MI value (1.18)
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explored a novel use of MI as a standardized method to
interpret brain age models. MI is an ideal statistic for
quantifying the degree of relationship between variables in
multiple ways [82]. The rates of brain atrophy vary non-
linearly with age, as observed in the temporal lobe [83]
while showing a linear pattern in regions such as the
hippocampus and frontal lobe [84, 85]. MI could equally
quantify the correlation between each brain region feature
and brain age at the individual level. Besides, the non-
linear nature of the relationship between regional mor-
phometric features and brain age may explain why
multivariate linear regression models often lack optimal
performance in brain age studies. In contrast, support
vector machine (SVM), as a commonly used computa-
tional model, can effectively capture both linear and
nonlinear relationships [45, 86]. Besides, MI provides a
straightforward interpretation by measuring the shared
information between morphometric features and esti-
mated brain age, grounded on the well-established theo-
retical framework of information theory. With an
advantage of independence, MI is insensitive to the size of
the datasets and thus, can converge with tight error
bounds to a measure of relatedness [29].
Although our model showed slight overfitting in the testing

set, we deliberately avoided using the techniques of dimen-
sionality reduction, such as principal component analysis, or
independent component analysis for pre-processing. We
retained all the input features during training and testing to
maintain the interpretability of brain age estimation and
avoid the obfuscation introduced by the techniques of
dimensionality reduction. Our objective was to evaluate the
interpretability of regional-level features for brain age pre-
dictions in an independent testing set rather than pursuing
lower MAE. Still, our model’s accuracy is comparable to that
of other brain age studies [8, 21].

Conclusion
Using the mutual information between morphometric
features and estimated brain age is a promising way to
assess the regional contributions to brain age. The sig-
nificant roles of frontal gray matter volume and limbic CSF
volume highlight that regional gray matter and CSF are key
features that determine the estimated brain age, which may
add value to existing computational models of brain age.

Limitations and future directions
The findings of this study have to be interpreted in the
context of limitations. First, we used two databases as the
training and testing sets, which may limit the generalizability
of our results. In future studies, our goal is to incorporate
broader demographic databases with larger sample sizes to
enhance the robustness of our findings. Second, our brain
age model exhibited mild overfitting. We will improve the

prediction accuracy and generalization of the pre-trained
model while retaining the dimensionality of input features,
by increasing the data amount and exploring diverse
regression models. Third, our analysis of brain morpho-
metric features was limited to cortical regions. Additionally,
we only utilized morphometric features extracted from a
single modality of MRI (i.e., structure MRI) as training fea-
tures in the brain age model. Incorporating multimodal age-
related neuroimaging features, such as DTI-based (diffusion
tensor imaging) metrics, white matter hyperintensities on
T2-weighted MRI, as well as the presence and volume of
metals on susceptibility-weighted imaging scans, could
provide important supplementary information to the brain
age prediction model, thereby enhancing the prediction
efficiency of the trained algorithm. Lastly, fine-grained
regional brain parcellation is essential for precision tar-
geted therapy. We intend to refine brain parcellation, which
will contribute to a more comprehensive analysis and
interpretation of brain age in various neurological disorders.
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