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Abstract

Objective Investigate the feasibility of detecting early treatment-induced tumor tissue changes in patients with
advanced lung adenocarcinoma using diffusion-weighted MRI-derived radiomics features.

Methods This prospective observational study included 144 patients receiving either tyrosine kinase inhibitors (TKI,
n= 64) or platinum-based chemotherapy (PBC, n= 80) for the treatment of pulmonary adenocarcinoma. Patients
underwent diffusion-weighted MRI the day prior to therapy (baseline, all patients), as well as either + 1 (PBC) or + 7
and + 14 (TKI) days after treatment initiation. One hundred ninety-seven radiomics features were extracted from
manually delineated tumor volumes. Feature changes over time were analyzed for correlation with treatment
response (TR) according to CT-derived RECIST after 2 months and progression-free survival (PFS).

Results Out of 14 selected delta-radiomics features, 6 showed significant correlations with PFS or TR. Most significant
correlations were found after 14 days. Features quantifying ROI heterogeneity, such as short-run emphasis
(p= 0.04(pfs)/0.005(tr)), gradient short-run emphasis (p= 0.06(pfs)/0.01(tr)), and zone percentage (p= 0.02(pfs)/0.01(tr))
increased in patients with overall better TR whereas patients with worse overall response showed an increase in
features quantifying ROI homogeneity, such as normalized inverse difference (p= 0.01(pfs)/0.04(tr)). Clustering of these
features allows stratification of patients into groups of longer and shorter survival.

Conclusion Two weeks after initiation of treatment, diffusion MRI of lung adenocarcinoma reveals quantifiable tissue-
level insights that correlate well with future treatment (non-)response. Diffusion MRI-derived radiomics thus shows
promise as an early, radiation-free decision-support to predict efficacy and potentially alter the treatment course early.

Critical relevance statement Delta-Radiomics texture features derived from diffusion-weighted MRI of lung
adenocarcinoma, acquired as early as 2 weeks after initiation of treatment, are significantly correlated with RECIST TR
and PFS as obtained through later morphological imaging.

Key Points
● Morphological imaging takes time to detect TR in lung cancer, diffusion-weighted MRI might identify response earlier.
● Several radiomics features are significantly correlated with TR and PFS.
● Radiomics of diffusion-weighted MRI may facilitate patient stratification and management.
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Graphical Abstract

DDelta-Radiomics texture features derived from diffusion-weighted MRI of lung
adenocarcinoma, acquired as early as two weeks after initiation of treatment, are
significantly correlated with RECIST treatment response and progression-free survival.

Delta-radiomics features of ADC maps as early
predictors of treatment response in lung cancer
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Introduction
Lung cancer ranks third in cancer diagnoses for both
sexes, following prostate and breast cancer [1]. It is also
the most common cause of cancer-related death world-
wide. Early-stage lung cancers often remain asymptomatic
and, by the time symptomatic cases are diagnosed, the
disease has often progressed to a locoregionally advanced
stage, resulting in poor prognosis and limited treatment
options [2].
Non-small cell lung cancer (NSCLC) constitutes the

majority of all lung cancer diagnoses [2]. Once NSCLC
advances beyond surgical resectability, treatment options
include chemotherapy, radiotherapy, as well as targeted
treatments with tyrosine kinase inhibitors (TKI) or
immune checkpoint inhibitors [3]. Each of these treat-
ment options carries the risk of significant side effects for
the patient [4], it is therefore important to select the
regimen with the highest chance of success while mon-
itoring patients for treatment response (TR).
Currently, TR is usually assessed in intervals of several

months on follow-up CT imaging according to response
evaluation criteria in solid tumors (RECIST), a guideline
that stems from visual inspection of target lesions [5].
Especially in the lung, this method faces several chal-
lenges: it is impeded by co-findings such as retention

pneumonia, atelectasis, or pleural effusions hiding the
underlying tumor mass [6]. Focusing only on tumor axis
changes discounts other factors that might indicate TR.
Additionally, the long intervals of the CT follow-up
schedule are not conducive to assessing a possible TR
early on in a treatment regimen. Earlier detection of non-
responders would allow termination of ineffective treat-
ment courses ahead of time, reducing the burden on
patients and potentially allowing adjustment to a different
treatment plan [7]. On the other hand, symptomatic
treatment of potential side effects may be strengthened
upon prediction of TR.
Radiomics is an approach that quantifies imaging data

into features that can then be analyzed for clinical cor-
relations [8, 9]. Recently, imaging biomarker analysis with
radiomics has been proposed as an automated way of
analyzing tissue changes beyond the morphology [10].
Assessing the development of these imaging features
throughout a treatment regimen is known as delta-
radiomics analysis and has been shown to be predictive
of TR in several studies [11, 12]. Although frequently
used in chest CT imaging, delta-radiomics applied to
functional imaging remains understudied. Previously,
functional imaging, such as perfusion-MR [13] or
diffusion-weighted MR imaging (DWI), has shown earlier
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detection of tissue changes compared to morphological
imaging [14].
The purpose of this study is to analyze the feasibility of

extracting radiomic features from DWI of the lung early
on in the course of a treatment regimen and using Delta-
Radiomics analysis to evaluate their bearing on TR.

Materials and methods
Patient data
For this prospective observational early response trial, a
cohort of 144 patients with primary adenocarcinoma of
the lung were recruited. The median patient age was
64 years (range 41–86 years). Treatment was administered
according to guidelines, therefore patients with a con-
firmed epidermal growth factor receptor mutation
(n= 64) received treatment with TKIs, while EGFR-
negative patients (n= 80) were treated with platinum-
based chemotherapy (PBC). Due to a change in treatment
guidelines, a small number (n= 17) of patients under-
going PBC also received Pembrolizumab. Patients with
metal implants close to the tumor were excluded. This
study was performed in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee of
the Heidelberg Medical Faculty—approval: S-445/2015.
All adult participants provided written informed consent
to participate in this study.

Image acquisition protocol
For each patient, both a chest CT, as well as a diffusion-
weighted MRI with the generation of apparent diffusion
coefficient (ADC) maps of the primary tumor was per-
formed at baseline (BL) (day 0) before treatment initia-
tion. Follow-up diffusion-weighted MRI was performed in

the TKI cohort on days 7 (follow-up 1 (FU1)) and 14
(follow-up 2 (FU2)) after treatment initiation and in the
PBC cohort on day 1 due to regulations in the German
DRG system. Patients undergoing PBC with Pem-
brolizumab were available for a second DWI follow-up
after 7 days. Each MRI appointment further included the
acquisition of T1 VIBE and T2 HASTE sequences, how-
ever, the focus of this study rests on assessing the early
changes in functional DWI.
TR was assessed based on CT imaging according to

RECIST 1.1 [5], with classifications of complete response
(CR), partial response (PR), stable disease (SD), and pro-
gressive disease (PD). The first respective follow-up CTs
were performed 2 months after initiation of treatment and
were used as TR for this study. Further follow-up CTs
were performed in 3–6-month intervals.
All diffusion imaging was performed on a Siemens Aera

1.5-T scanner using a 2D diffusion sequence, the details of
which can be found in Table 1. CT imaging was per-
formed on a Siemens Somatom Definition AS scanner.
The primary tumor regions of interest (ROIs) for

extraction of radiomic features from ADC maps were
manually segmented on the ADC map by a thoracic
radiologist with 29 years of experience while simulta-
neously consulting the CT and B1000 DWI sequence.
Segmentation was carried out using MINT Lesion 3.7.3,
excluding extratumoral signal sources such as pleural
effusions or atelectasis. RECIST measurements on CT
imaging were also carried out by an expert thoracic
radiologist using MINT Lesion 3.7.3.

Feature extraction
Feature extraction has been performed using the PyR-
adiomics library v3.0.1 [15]. Before feature extraction, the
ADC maps were discretized using a fixed bin size of 50.
The following features were extracted from the ROIs,
parentheses indicating their image biomarker standardi-
zation initiative (IBSI)-defined abbreviations: shape
(MORPH), first-order features (IS, IH, and IVH), gray-
level co-occurrence matrix (GLCM), gray-level run-length
matrix (GLRLM), gray-level size-zone matrix (GLSZM),
gray-level distance-zone matrix, neighborhood gray-level
difference matrix [16]. These features were extracted both
from the original images, as well as the gradient magni-
tude images, for a total of 197 features.
For analysis of the feature implications at given time

points, the features of that time point were used. For
longitudinal analysis of the implications of delta-
radiomics features (DRFs), the DRFs were calculated as
follows, where ti denotes time point i and f denotes the
value of a given feature at that time point: Δf ti ¼

f ti�f t0
f t0

.
Given the highly different numerical ranges of different
radiomic features, features were normalized using Z-score

Table 1 Protocol used for the DWI acquisition

Device Siemens Aera 1.5 T

Sequence EPI

Columns × rows [pixel] 104 × 136

FOV [mm] 344 × 450

Parallelization factor 2

Slices 25

Slice thickness [mm] 5

Spacing [mm] 6

TR [ms] 3800

TE [ms] 65

Averages 4

Flip angle [°] 90

Bandwidth [Hz/pixel] 1225

B-values [s/mm2] 0, 50, 150, 500, 1000

Total acquisition time [min] 3:37 min

FOV field of view, TR repetition time, TE echo time
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normalization. To reduce the number of features before
analysis, feature selection has been performed with
progression-free survival (PFS) as the target variable.
Features with a Pearson correlation of rp < 0.2 were
eliminated. In the resulting feature sets, multicollinearity
between features has been assessed and features with a
correlation coefficient rp > 0.85 have been removed.

Statistics
Exploratory clustering, to identify similarly expressed
clusters of patients in the cohort, has been performed
using Ward’s minimum variance method.
Unless otherwise stated, the significance of the resulting

features with regard to the target variable has been
assessed by performing t-tests, with a p-value of < 0.05
being considered significant. Correction for multiple
testing was performed according to Holm’s method.
Survival estimates have been calculated using

Kaplan–Meier estimators and evaluated using log-
rank tests.

Results
In total, 130 patients were included in the study (Fig. 1).
PFS was recorded for 124 patients. After treatment
initiation, the median PFS was 231 days (interquartile
range (IQR): 121–419 days). The overall survival (OS) was
recorded for 91 patients, with a median OS of 309 days
(IQR: 162–579 days). Response classification using
RECIST on the first follow-up CT at 8 weeks yielded 40
patients with PR, 80 patients with SD, and 10 patients
with PD. Specifics for the two treatment subgroups can be
found in Table 2. Of the PBC group, only those patients
receiving PBC together with Pembrolizumab were avail-
able for a second follow-up MRI after 7 days.

Selected DRFs
After eliminating features with a low correlation to PFS, as
well as features containing redundant information, a set of
14 DRFs was obtained. The selected features are specified
in Table 3. This feature set was evaluated across all time
points and patient groups to ensure consistency.

Fig. 1 Flowchart of the study. TKI, tyrosine-kinase inhibitors; PBC, platinum-based chemotherapy
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Clustering and survival analysis
Exploratory clustering of the normalized DRFs showed a
visible distinction between patient groups. Figure 2 shows
a clustered heatmap of DRF expression, with each row of
the heatmap corresponding to one patient and each col-
umn to one feature. We found two distinct clusters.
Cluster 1 consisted of 40% of patients with decreased
expression in the first six features (left to right), while the
remaining features had an increase in expression com-
pared to BL. Cluster 2 exhibited a reversed pattern with
60% of the patients showing an increase in the first 6
features and a decrease in the remaining.

The color coding next to the heatmap on the left
encodes the RECIST evaluation for each patient at the
first follow-up CT after 6 weeks, with green bars denoting
PR, blue bars denoting SD, and red bars denoting PD.
Visibly, cluster 1 contains a lower concentration of cases
with PR and contains 9 out of 10 cases with
confirmed PD.
These differentially expressed clusters of DRFs after

14 days of treatment could be shown to correlate to
clinical outcomes. We performed a Kaplan–Meier esti-
mator of PFS and OS for both clusters. We found cluster 2
to have a significantly longer PFS (p= 0.01) compared to
cluster 1 (Fig. 3a) and a tendency (p= 0.06) to be pro-
longed in OS (Fig. 3b).

Feature analysis
The change in feature expression has been evaluated for
both treatment subgroups and for both follow-up DWI
time points. Regarding PFS, the data for the t-tests was
separated into two groups: patients with a PFS > 365 days
and patients with a PFS ≤ 365 days. Regarding TR, the
data was separated into two groups: patients with PD
according to the RECIST evaluation of the first follow-up
CT at 8 weeks and patients with SD or PR.
Based on the t-test results, 6 out of the 14 selected DRFs

were significantly correlated to either PFS or TR (Table 4).
Most significant correlations for both outcomes were
found for the FU2 difference in feature expressions
compared to BL. Earlier time points, namely evaluations
after one day for patients receiving PBC or after seven
days for patients receiving TKI, showed fewer significantly
correlated features. No statistical differences were found
between PR and SD expressions for any timeframe or
treatment group.
A comparison of differential DRF expression between

groups can be found in Fig. 4, depicting the differential
expression of four DRFs at different follow-ups. It can be
seen that in the group with PR and SD features such as
SRE and ZP show an increase when compared to their
expression at treatment initiation. Simultaneously, other
features such as G_IDN are decreased compared to the BL.
To visualize these changes, we overlayed patient feature

maps and ADC maps (Fig. 5). As a representative exam-
ple, we displayed the SRE feature as it correlated with
both PFS and TR. The overlayed maps depict the apparent
rise in PR and SD from BL to FU2 (Fig. 5a, c), and the
decrease in PD cases (Fig. 5b, d).

Discussion
In this study, we investigated the applicability of DWI-
derived DRFs for early TR assessment in NSCLC. To the
best of our knowledge, this is the first study that investi-
gates DWI-derived DRFs in lung imaging.

Table 2 Subgroup-specific information about the study cohort

TKI PBC

Day 0 Δ7 d Δ14 d 0 Δ1 d Δ7 d

Amount [n] 64 64 60 66 66 17

Median age [yrs]

(range)

65 (41–85) 64 (45–86)

Sex (f | m) 42 | 22 29 | 37

RECIST: PR 32 8

RECIST: SD 27 53

RECIST: PD 5 5

Median PFS [d] (IQR) 363 (157–507) 180 (94–294)

Median OS [d] (IQR) 441 (189–721) 281 (161–460)

RECIST response classification was carried out on the first follow-up CT after 8
weeks
TKI tyrosine-kinase inhibitors, PBC platinum-based chemotherapy

Table 3 Overview of the final set of DRFs considered in the
evaluation

Image

aspect

Feature

family

Feature (IBSI)

Original Shape SurfaceVolumeRatio (2PR5)

MinorAxisLength (P9VJ)

Intensity Kurtosis (IPH6)

GLSZM ZonePercentage (P30P)

ZoneEntropy (GU8N)

SmallAreaLowGrayLevelEmphasis (5RAI)

GLRLM ShortRunEmphasis (22OV)

GLCM InverseVariance (E8JP)

InformationalMeasureOfCorrelation1 (R8DG)

InverseDifferenceNormalized (IDN) (NDRX)

Gradient Intensity Kurtosis (IPH6)

GRLRM ShortRunEmphasis (22OV)

RunEntropy (HJ9O)

GLCM InverseDifferenceNormalized (NDRX)

Enclosed in parentheses are the unique permanent identifiers for each feature as
proposed by the IBSI
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Diffusion-weighted imaging is commonly employed in
clinical practice as a way to detect functional tissue changes
before any morphological changes can be seen in MR or CT
imaging [14]. Regarding the applicability of DWI and
radiomics to assess TR in NSCLC, our findings partially
support this premise. Notably, in DWI performed 14 days
after the initiation of TKI treatment, several DRFs, particu-
larly texture features, show a significant correlation with
longer PFS. Similar effects have been reported in other
tumor types, such as prostate cancer [17]. To better
understand the correlation of the selected DRFs to TR or
PFS, it is important to consider what these features measure.

Feature interpretation
When considering the differences in DRF expression, our
results showed two patient clusters (Fig. 2). Cluster 2, the
cluster with significantly longer PFS, showed an increase
in six features, five of which quantify heterogeneity within

a ROI (gradient SRE, ZP, SRE, small area low gray level
emphasis, Imc1). An increase in these features therefore
indicates a less homogenous presentation of ADCs in the
image, with shorter run lengths and finer textures. The
sixth feature quantifies the surface-to-volume ratio, which
rises as tumor volume decreases. As tumor volume is
typically assessed through CT RECIST examination and
DWI is a primarily functional, not morphological, imaging
sequence, this feature should be interpreted with caution.
In contrast, the features that are decreased in this

cluster quantify homogeneity or tumor growth. For
example. a decrease in Kurtosis or gradient_glcm_Idn
suggests a more heterogenous presentation of ADC values
and a decrease in original_shape_MinorAxisLength indi-
cates shrinkage of the tumor’s short axis.
The inverse expression of these features within the

cluster, the cluster associated with shorter PFS, therefore
indicates a link between a stagnant or increasingly

Fig. 2 Hierarchical clustering heatmap of changes in feature expression at FU2. Rows signify patients, columns signify features. The color coding next to
the heatmap indicates RECIST classification at the first follow-up CT (red: PD, blue: SD, and green: PR). Well visible are two distinct groups of patients, one
with decreased expression of the first 6 features and an increase of the remaining, the second with the reversed pattern. The horizontal black bar defines
the separation between cluster 1 (top) and cluster 2 (bottom)
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homogenous presentation of ADC values within the
tumor ROI and less favorable outcomes. These findings
are consistent with known properties of tumor tissue in

diffusion imaging [18], where increased cellular density
restricts diffusion, leading to a darker, more homogeneous
presentation of ADC values.

Fig. 3 Kaplan–Meier estimators illustrating (a) PFS functions, (b) OS functions between the identified patient clusters from Fig. 2. Cluster 2 shows
prolonged survival for both metrics as opposed to cluster 1, with PFS being significantly prolonged at p= 0.01 and OS showing a similar tendency at
p= 0.06 after applying log-rank test. The OS function contains right-censored data of 22 patients lost to follow-up

Table 4 Mean feature expression change and corresponding p-values of all features significantly correlated with either TR or PFS

FU1 FU2

TR

PBC TKI PBC TKI All

Feature µ (PR

and SD)

µ (PD) p µ (PR

and SD)

µ (PD) p µ (PR

and SD)

µ (PD) p µ (PR

and SD)

µ (PD) p µ (PR

and SD)

µ (PD) p

ZP 0.04 − 0.03 0.99 0.18 − 0.06 0.71 0.01 − 0.20 0.90 0.25 − 0.10 0.04 0.20 − 0.14 0.01

SRE 0.00 0.00 0.99 0.01 − 0.01 0.62 0.00 − 0.01 0.93 0.01 − 0.01 0.01 0.01 − 0.01 0.005

Kurtosis 0.10 0.02 0.99 − 0.06 0.56 0.05 0.09 0.40 0.96 − 0.12 0.08 0.65 − 0.08 0.19 0.45

G_SRE 0.01 − 0.02 0.99 0.08 0.00 0.82 0.03 − 0.11 0.86 0.08 − 0.02 0.10 0.07 − 0.05 0.01

G_IDN 0.00 0.00 0.99 − 0.03 0.01 0.82 0.01 0.05 0.92 − 0.03 0.01 0.19 − 0.03 0.02 0.04

PFS

PBC TKI PBC TKI All

Feature µ (> 1 y) (µ ≤ 1 y) p µ (> 1 y) µ (≤ 1 y) p µ (> 1 y) µ (≤ 1 y) p µ (> 1 y) µ (≤ 1 y) p µ (> 1 y) µ (≤ 1 y) p

ZP − 0.23 0.07 0.10 0.17 0.13 1.00 0.13 − 0.05 0.99 0.30 0.12 0.21 0.29 0.06 0.02

SRE − 0.02 0.00 0.03 0.01 0.01 0.98 0.00 0.00 0.99 0.02 0.00 0.10 0.02 0.00 0.04

Inverse

difference

normalized

0.02 0.00 0.81 − 0.02 0.00 0.90 − 0.02 0.02 0.99 − 0.03 − 0.01 0.09 − 0.03 0.00 0.01

G_IDN 0.02 0.00 0.82 − 0.03 − 0.02 0.99 − 0.02 0.02 0.99 − 0.04 − 0.02 0.19 − 0.04 0.00 0.01

Bold font indicates statistically significant results (p < 0.05)
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We speculate that in cases with more favorable out-
comes, such as a PR or longer PFS, the tumor’s more
heterogeneous ADC values reflect a decline in cellular
density in response to the treatment. With some cell
death resulting from the early stages of treatment, the
physical sparsification of cells would explain a patchwise
localized increase in diffusivity within previously
diffusion-restricted tissue. This effect can be detected
through radiomic features such as SRE or ZP. Conversely,
stagnant or rising features of homogeneity in DWI can be
explained by a high cellular density within the tumor
tissue, restricting diffusion uniformly over a larger area.
These findings and their correlation with PFS are con-
sistent with histopathological findings of NSCLC, where
higher cellular density is negatively correlated with
PFS [19].
Uniquely, in the first follow-up of the PBC group, a

significant correlation is observed between a decrease in
SRE and a PFS greater than 365 days, which contrasts
with findings in later follow-ups. This initial decrease may
be caused by cell swelling during the uptake of platinum,
before cell death occurs, leading to locally more restricted
diffusion.

The main finding of this study is thus, that diffusion-
weighted imaging of the lung can provide insights into TR
in patients with NSCLC as early as 14 days after treatment
initiation. Earlier follow-up imaging, such as after 1 (PBC)
or 7 (TKI) days, while also showing correlations with PFS
or TR, does not yet reliably capture this link, as is visible
in the respective columns of Table 4.
This discrepancy can be explained in part by the nature

of treatment administration. PBC is administered intra-
venously and quickly reaches an effective concentration
within well-perfused tissues. In contrast, TKIs are admi-
nistered orally and may take much longer to reach a
sufficient concentration to induce cell death. Prior
research has observed that orally administered TKIs take
effect after about 8 days [20], which may explain the more
pronounced and significant change in DRFs at 14-day
follow-ups compared to 7-day follow-ups.

Contextualization with previous work
Prior studies have found increased mean ADC indicative
of TR in several tumor entities, such as prostate, breast,
and rectal cancer [14, 21]. This increase is typically
attributed to tissue sparsification following necrosis

Fig. 4 Expression changes between BL and follow-up imaging per group. G_IDN, gradient inverse difference normalized; SRE, short-run emphasis;
G_SRE, gradient SRE; ZP, zone percentage; FU1, follow-up 1; FU2, follow-up 2. *p < 0.05, **p < 0.01
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and supports our findings of an initial increase in
heterogeneity.
In contrast to our findings, a radiomics-based study by

Lee et al reports increased mean ADC with a decrease in
heterogeneity features after 6 weeks of prostate cancer
treatment [22]. It is possible that over this longer follow-
up period, necrosis has pervaded the tissue enough to lead
to homogenization, whereas, in our short-term observa-
tion, necrosis is only occurring locally.
In lung imaging, DWI is not widely applied on a large

scale, however, several smaller pilot studies have explored
its potential for TR assessment, mostly in radio-
chemotherapy (RCT). Jagoda et al have found that in DWI
follow-up imaging of 12 patients at 3 months, 6 months,
and 12 months after the initiation of RCT, patients with PR
consistently showed higher mean ADC values than those

with PD [23]. In a longitudinal DWI study of 25 patients,
Sorgun et al reported that increased ADC values after a full
course of RCT had a significant inverse correlation with
tumor size change, indicative of response [24]. Similarly,
Carlin et al evaluated ADC changes in 14 patients under-
going neoadjuvant chemotherapy and found that respon-
ders presented with significantly increased median ADC
after 14 days, a timeframe comparable to ours [25].
While DRFs quantifying mean/median ADC change did

not meet statistical significance in our observation, we
observed a similar tendency as these studies, with higher
ADC values in PR and SD cases and lower values in PD
cases. This might again be due to differences in follow-up
periods, as well as cohort sizes, as significant increases in
median ADC following tissue sparsification may take
longer to appear than our 14-day follow-up period.

Fig. 5 ADC maps and feature maps showing differential expression of feature “ShortRunEmphasis” (SRE) on BL and FU2 imaging (brighter colors mean
higher expression). a Patient with SD, TKI group (progression: 1039 days). Visible is an increase in SRE as a brightening especially in the center of the ROI; a
similar effect is visible in (c) patient with PR, TKI (progression: 419 days). Opposed are (b) patient with PD, TKI group (progression: 56 days) with a visible
decrease in SRE and (d) patient with PD, PBC group (progression: 40 days)
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Limitations
A limitation of this study lies within our follow-up sche-
dule. Due to German DRG regulations, patients receiving
PBC had to be followed up within 1 day, and only a small
group of these patients could be re-imaged after 7 days.
Longer follow-up diffusion imaging could provide clearer
insights into future responses to both PBC and TKIs, as
suggested by several pilot studies [23, 24].
In addition to the follow-up timeframe, the exact timing

of measurements also appears to be an elementary factor
to consider in DWI studies. Tumors that respond well to
intervention typically show an increase in ADC values, but
cases of an initial decrease followed by an increase in ADC
values have also been observed [14]. This dynamic is
explained by initial cell swelling preceding cell death.
Analyzing such changes in NSCLC would potentially
benefit from more frequent measurements during the first
two weeks than were performed in this study.
The manual segmentation of tumor ROIs does present a

potential source of bias, as no inter-reader consensus was
established.
Furthermore, it is worth noting that the correlations

with TR as reported in Table 4 are based on a compara-
tively small absolute number of only ten patients with
confirmed PD (n(TKI)= 5, n(PBC)= 5). Although a longer-
term correlation with PFS yielded similar results in terms
of significantly correlated DRFs for all patients, the study’s
overall cohort size remains a limiting factor. For this
reason, the analysis is also confined to descriptive statis-
tics. A larger cohort could provide additional insights into
the early presentation of various RECIST response groups
and allow for predictive modeling.

Conclusion
This study has investigated the link between changes in
radiomic features of ADC maps over time and early TR in
patients with NSCLC, aiming to evaluate the viability of
DWI for response assessment in lung cancer. We have
demonstrated that several DRFs quantifying intratumoral
heterogeneity of ADC values and tumor shrinkage sig-
nificantly correlate with TR and PFS of patients, parti-
cularly after 14 days of treatment.
Repeated DWI shows promise for assessing TR and

potentially altering treatment courses much earlier than
CT imaging. The study suggests further research avenues,
such as investigating changes in DWI over a longer time
course or the efficacy of DWI-derived DRFs for predictive
modeling with machine or deep learning approaches.
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