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Abstract

Objectives To develop a deep learning model combining CT scans and clinical information to predict overall survival
in advanced hepatocellular carcinoma (HCC).

Methods This retrospective study included immunotherapy-treated advanced HCC patients from 52 multi-national in-house
centers between 2018 and 2022. A multi-modal prognostic model using baseline and the first follow-up CT images and 7
clinical variables was proposed. A convolutional-recurrent neural network (CRNN) was developed to extract spatial-temporal
information from automatically selected representative 2D CT slices to provide a radiological score, then fused with a Cox-
based clinical score to provide the survival risk. Themodel’s effectiveness was assessed using a time-dependent area under the
receiver operating curve (AUC), and risk group stratification using the log-rank test. Prognostic performances of multi-modal
inputs were compared to models of missing modality, and the size-based RECIST criteria.

Results Two-hundred seven patients (mean age, 61 years ± 12 [SD], 180 men) were included. The multi-modal CRNN model
reached the AUC of 0.777 and 0.704 of 1-year overall survival predictions in the validation and test sets. The model achieved
significant risk stratification in validation (hazard ratio [HR]= 3.330, p= 0.008), and test sets (HR= 2.024, p= 0.047) based on
the median risk score of the training set. Models with missing modalities (the single-modal imaging-based model and the
model incorporating only baseline scans) can still achieve favorable risk stratification performance (all p< 0.05, except for one,
p= 0.053). Moreover, results proved the superiority of the deep learning-based model to the RECIST criteria.

Conclusion Deep learning analysis of CT scans and clinical data can offer significant prognostic insights for patients with
advanced HCC.

Critical relevance statement The establishedmodel can helpmonitor patients’ disease statuses and identify those with poor
prognosis at the time of first follow-up, helping clinicians make informed treatment decisions, as well as early and timely
interventions.

Key Points
● An AI-based prognostic model was developed for advanced HCC using multi-national patients.
● The model extracts spatial-temporal information from CT scans and integrates it with clinical variables to prognosticate.
● The model demonstrated superior prognostic ability compared to the conventional size-based RECIST method.
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Graphical Abstract

TThe model demonstrated superior prognostic ability compared to the conventional size-
based method, which can aid clinicians with more informed treatment decisions.
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Introduction
Hepatocellular carcinoma (HCC), the predominant his-
tologic type of liver cancer, represents aggressive malig-
nancy and high lethality [1], and is the third leading cause
of cancer-related death [2]. Patients with advanced HCC
are often assessed as unsuitable for surgery. Such patients
usually underwent palliative operations or were treated
with nonsurgical systemic approaches, including che-
motherapy, radiation, targeted therapy, and immu-
notherapy [3, 4]. Unfortunately, these treatments offer a
poor prognosis, with a median overall survival (OS) of
approximately 1-year [5, 6]. Monitoring a patient’s disease
status and identifying those with poor prognoses can aid
clinicians in making informed treatment decisions and
timely interventions.
Response evaluation criteria in solid tumors (RECIST)

serves as a standardized method for evaluating oncologic
treatment responses in clinical practices [7, 8]. It provides
guidelines for measuring changes in tumor size on long-
itudinal radiographic imaging, and categorizes the treat-
ment outcomes into four classes: complete response,
partial response, stable disease, or progressive disease [9].

While disease progression is commonly associated with a
poorer prognosis, it has not been definitively established
that there is a strictly positive correlation between the two
[10]. Therefore, the traditional guideline does not provide
a reliable prediction of the OS of HCC patients in clinical
practice.
Currently, the rising popularity of artificial intelligence

has led to the widespread use of convolutional neural
networks (CNN) to extract features from clinical images
automatically and provide insight into disease prognosis
[11, 12]. Many deep learning models exist to predict
survival outcomes in HCC patients using pathological
images, primarily Hematoxylin and Eosin slides [13–15].
Additionally, gene sequencing has been utilized to dif-
ferentiate survival subpopulations of HCC patients [16].
These quantitative imaging studies all achieved favorable
performances in forecasting the prognostic risk. However,
single time-point biomarkers may be less effective in
advanced stages, due to the lack of pathological and
genetic data in some patients. Serial CT scans offer a non-
invasive and informative approach to capturing tumor
dynamics. However, to the best of our knowledge, there is
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currently no prognostic prediction model available that
utilizes serial CT scans for advanced HCC.
Therefore, we aimed to develop a deep-learning model

to predict survival outcomes for advanced HCC patients.
The study data comprises a multi-center clinical trial
cohort with patients previously treated with conventional
therapies before participating in the immunotherapy trial.
We collected the longitudinal CT imaging and a few
clinical variables to construct the multi-modal prognostic
model. The designed model utilized a convolutional-
recurrent neural network (CRNN) structure to decode
spatial information from CT images and extract temporal
information of tumor changes between the baseline and
the follow-up. Various prediction models with different
input modalities were compared. To evaluate the added
benefit provided by the proposed model, risk stratification
ability was compared between the deep learning approach
and the traditional RECIST criteria.

Materials and methods
Data collection
All data passed ethics review (application no. I2021173I)
and were approved by the Human Genetic Resource
Administration of China (approval no. [2021] GH5565),
with all participants providing informed consent.
This retrospective, multi-centered study includes patients
with unresectable HCC treated with anti-PD-1 monoclonal
antibodies (clinicaltrials.gov number: NCT03419897) from
April 9, 2018 to July 6, 2022. Patients’ CT scans and clinical
information were collected. Exclusion criteria were: (1) lack
of complete abdominal CT scans on the venous phase and
(2) loss to follow-up. After the sample selection, 207
patients from 52 multi-national centers (sites located in
China, France, Germany, Italy, Poland, Spain, and the
United Kingdom) were used to train and validate the model.
Patients were randomly assigned by center for model
development (comprising 161 patients from 37 centers) and
evaluation (comprising 46 patients from 15 centers). The
dataset for model development was further randomly divi-
ded into training and validation sets in an 8:2 ratio (Fig. 1).

CT imaging and clinical information acquisition
Patients were required to take oral or intravenous contrast
before enhanced CT scans. Enhanced abdominal imaging
was mandatory for all participants, and chest imaging was
strongly recommended. The imaging methodology was
kept consistent across visits for a patient (i.e., acquisition
time for each phase, contrast agent, scan mode, and
parameters). Venous-phase CT images were acquired
using various scanners and then resampled and linearly
interpolated to 5-mm section thickness. The abdomen

scans were normalized to window width (WW) 400,
window level (WL) 0, and chest scans were normalized to
WW 1200, WL −600.
To reduce computational load while keeping the most

informative parts of whole CT scans, three liver slices and
three lung slices from each 3D CT scan were auto-
matically selected as the input for the model. The selec-
tion process for representative slices of the liver and lung
is as follows: If a tumor is present, three 2D slices with the
top three largest tumor sizes in the axial view were chosen
from the 3D scans. If there are fewer than three slices
containing tumors, slices with tumors were first selected,
then the remaining slices were selected based on the
largest organ size (either liver or lung) to present the
overall state of that specific organ. If there is no tumor
present, all representative slices were selected based on
the largest organ size (Fig. 2a). To achieve this, four pre-
trained automated models were utilized to segment the
boundaries of the lung, lung tumors, liver, and liver
tumors. These pretrained segmentation models are based
on nnU-Net architecture [17], which is a self-adaptive
framework that can automatically adjust model hyper-
parameters based on dataset characteristics to achieve
optimal performance. It has achieved state-of-the-art
(SOTA) results in multiple organ and tumor segmenta-
tion tasks including liver and lung [18]. These selected 2D
CT images were reshaped to 224 × 224 and standardized

Fig. 1 Workflow of the patient selection process
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to the mean of zero and variance of one to serve as the
input for the deep learning model. The training images
were randomly flipped with a probability of 0.5 for data
augmentation.
The clinical data comprised of seven variables:

tumor histological differentiation type, presence of non-
alcoholic steatohepatitis (NASH) or non-alcoholic fatty
liver disease (NAFLD), prior surgical history, presence of
partial or complete portal vein tumor thrombosis (PVTT),
treatment of external beam radiation therapy (EBRT),
transarterial embolization (TAE)/transarterial che-
moembolization (TACE), and radiofrequency ablation
(RFA)/microwave ablation (MWA).
The study label, i.e., the OS, was retrieved from the

clinical recorded form (CRF). For censored patients, censor
time was defined as the maximum value between the time
recorded in the CRF and the time of the latest CT scan.

Model development
Figure 2b presents the workflow of the deep learning
model (‘Rad-D’ in the subsequent content) to process
radiological images. The model inputs consist of the
baseline and first follow-up scan. Every patient has the
baseline and the follow-up abdominal scan as part of
the inclusion criteria and imaging acquisition protocols.
Whereas, if follow-up chest images are unavailable, the
baseline image would be replicated and used as a sub-
stitute for the follow-up, which is a common practice
referred to as the last observation carried forward (LOCF)
strategy [19] in longitudinal data analysis. LOCF is a
method for imputing missing data in a dataset, which
involves replacing any missing values with the last known,
non-missing value for that data point. LOCF can increase
the utilization of data without increasing the complexity
of the model.

Fig. 2 Image selection and model illustration. a The process of representative CT image selection, from 3D scans to selected 2D liver and lung scans.
b The flowchart for the deep learning model. Feature dimensions are marked. M, taking the average
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A total of 12 images, with three images for each organ at
each time point, were fed into EfficientNet-b0 [20] with
weights pretrained on ImageNet to extract features.
EfficientNet-b0 is a lightweight CNN backbone that
adopted compound scaling to enhance performance. The
extracted features of the three representative images from
both baseline and follow-up were averaged and then fed
into the long short-term memory (LSTM) module [21] to
capture the temporal information. LSTM is a type of
recurrent neural network (RNN) that leverages memory
cells and gating mechanisms to effectively capture and
process sequential data. Then, the liver and lung features
were concatenated, and linear layers were utilized to
predict the risk score.
Brief descriptions of models with different input mod-

alities are listed here:
CLN: a multivariate Cox proportional hazard model

performs risk regression using seven clinical variables
(Fig. S1a).
Rad-S: a deep learning model without follow-up scans

and the RNN layers. It only used EfficientNet-b0 to
extract features from baseline images (Fig. S1b).
RadCLN-S: a multi-modal model that combines the risk

score from CLN and Rad-S and then uses a bivariate Cox
model to calculate to predict the prognostic risk (Fig. S1c).
Rad-D: the above-mentioned deep learning model that

assessed both baseline and follow-up CT scans using
CRNN structure.
RadCLN-D: a multi-modal model that combines the

clinical risk score from CLN and the radiological score
from the output of Rad-D by using a bivariate Cox model
to predict the prognostic risk (Fig. S1d).
The deep learning model’s gradient optimization pro-

cess adopted the loss function of partial likelihood, which
is an unbiased and efficient way to estimate the para-
meters of the Cox proportional hazards model.
The model was trained 200 epochs using 1 × NVIDIA

A100 (40G), with the CRNN implemented in PyTorch
1.11.0 and MONAI 0.9.1, utilizing a batch size of 16, and the
Adam optimizer with a learning rate of 5 × 10−5. The code is
available at https://github.com/EstelleXIA/ProgHCC.

Evaluation metrics and statistical analyses
Model performance was evaluated using Harrell’s con-
cordance index (C-index) [22] and the time-dependent
area under the receiver operating characteristic curves
(AUCs) at different time points [23]. C-index quantifies
the model’s capability to correctly rank the relative risks of
pairs of individuals. Survival estimates were calculated
using the Kaplan–Meier method for low and high-risk
groups, which were stratified based on the median pre-
diction score of the training set. Hazard ratios (HR) were
further computed and the significance was measured

using the log-rank test. For the RadCLN-D model, Cox
regression coefficients were used to generate a nomo-
gram. Calibration curves were utilized to show con-
cordance between actual and predicted outcomes
determined by the nomogram.
Statistical tests were performed with survival, survcomp,

survminer, timeROC, and rms packages in R4.2.2. A two-
sided p < 0.05 indicated statistical significance. Model
interpretation used Gradient-weighted Class Activation
Mapping (Grad-CAM) [24] and was visualized by
pytorch-gradcam 0.2.1.

Results
Patient characteristics
Characteristics of the 207 patients (mean age, 61 years ± 12
[SD], 180 male) can be found in Table 1. Among all patients,
the median interval between baseline and follow-up CTs is
55 days. The median survival time is 475 days, in which
138 patients (66.7%) have deceased. There was no significant
difference in survival status among the training, validation,
and test datasets (Fig. S2, train vs validation, HR, 1.051, 95%
confidence interval [CI]: 0.662–1.669, p= 0.833; train vs test,
HR, 1.032, 95% CI: 0.686–1.552, p= 0.880; validation vs test,
HR, 1.039, 95% CI: 0.604–1.790, p= 0.889). For histological
types, out of 207 patients, 29 (14%) were highly differentiated,
154 (74%) were moderately differentiated, 23 (11%) were low
differentiated, and 1 (< 1%) was undifferentiated. For the
baseline symptoms, 35 (17%) had NASH/NAFLD and 36
(17%) had PVTT. For the additional treatments, 109 (53%)
had undergone surgery, 10 (5%) received EBRT, 121 (58%)
received TAE/TACE, and 58 (28%) received RFA/WMA.
Multivariable Cox regression calculated a risk score based on
the seven variables using the formula: Score ¼ 0:3747 ´
Differentiationþ 0:1593 ´NASHjNAFLD�0:1801 ´ Surgery
þ0:6732 ´PVTT� 0:8235 ´ EBRTþ 0:6482 ´TAEjTACE
�0:4497 ´RFAjMWA (Fig. S3, C-index= 0.630, p= 0.018).

Comparisons of different models on the survival prediction
Prediction performances were compared among CLN,
Rad-S, RadCLN-S, Rad-D, and RadCLN-D on both the
validation and independent test sets (Tables 2 and 3
and Fig. S4). Clinical variables displayed unfavorable
prediction performances, with a C-index of 0.537 (95%
CI: 0.406–0.668) on the validation set and 0.622 (95%
CI: 0.500–0.744) on the test set. Using the baseline radi-
ological image achieved the C-index of 0.692 (95% CI:
0.569–0.815) on the validation set and 0.608 (95% CI:
0.504–0.712). By incorporating the first follow-up image,
performance demonstrated significant improvement,
reaching 0.748 (95% CI: 0.664–0.832) and 0.681 (95%
CI: 0.573–0.789) on the validation and test sets, respec-
tively. Multi-modal inputs (RadCLN-S and RadCLN-D)
outperformed the uni-modal (CLN, Rad-S, and Rad-D).
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RadCLN-S reached the C-index of 0.697 (95% CI:
0.574–0.820) on the validation set, and 0.638 (95% CI:
0.536–0.740) on the test set. RadCLN-D attained 0.752
(95% CI: 0.660–0.844) on the validation set, and 0.695
(95% CI: 0.581–0.809) on the test set. Time-dependent
ROCs showed a similar pattern in survival prediction
performances (Figs. S4b and S4c).

To further demonstrate the prognostic predictive ability
of the model, the models’ capability for risk stratification
was assessed. RadCLN-S, Rad-D, and RadCLN-D effec-
tively stratified patients into high-risk and low-risk groups
(Figs. 3 right, S5, and S6), demonstrating the models’
ability to identify survival risk using clinical information
and baseline CT scans or solely baseline and first follow-
up scans. Among all, RadCLN-D exhibited the highest
predictive performance, as it included the most compre-
hensive information.

RadCLN-D accurately predicts the OS
Performances of RadCLN-D were further detailly illu-
strated. RadCLN-D combines the radiological score from
the output of the CRNN structure and the clinical score
with the formula Score ¼ 9:8834 ´Radiologyscore þ
0:5300 ´Clinicalscore, the two modalities all significantly
contributed to the OS prediction (Fig. 4b, radiological,
p < 0.001; clinical, p= 0.0056; Wald Test). For 1-year OS
predictions, the AUC is 0.966 in the training set, 0.777 in
the validation set, and 0.704 in the test set. For 2-year OS
predictions, the AUC is 0.983 in the training set, 0.839 in
the validation set, and 0.652 in the test set (Fig. 3, middle).
Patients with lower multi-modal scores tend to be cen-
sored or with a relatively longer survival time, while most
patients with higher scores suffered early decease (Fig. 3,
left). The median score from the training data was used to
apply a cutoff for stratifying patients into high-risk and
low-risk groups, i.e., ‘score > 0.66’ signifies high-risk, and
‘score ≤ 0.66’ signifies low-risk. To examine the general-
izability, the risk score calculation, and cutoff stratifica-
tion used in the validation and test sets were consistent
with those of the training set. The multi-modal score
displayed reliable predictive accuracies. It made sig-
nificant risk stratifications in all the training (HR, 24.173,
95% CI: 12.181–47.971, p < 0.001), validation (HR, 3.330,
95% CI: 1.369–8.102, p= 0.008), and test sets (HR, 2.024,
95% CI: 1.009–4.064, p= 0.047).
A nomogram was developed based on the RadCLN-D

prediction model to determine the OS for individual
patients (Fig. 4a). It allows clinicians to estimate the
1-year and 2-year survival probabilities in a clear and
concise manner. Calibration plots indicated favorable
comparability between the nomogram and an ideal model
across the training, validation, and test datasets (Fig. 4c).
Moreover, to assess the robustness of the model, the

patients in the validation set and test set were grouped
according to the manufacturers used. Among the 78
patients, the main manufacturers were Siemens (37
patients) and General Electric (33 patients). Due to the
small sample sizes of other manufacturers such as Philips,
TOSHIBA, and Hitachi Medical, these patients were not

Table 1 Patient characteristics

Variables Train,

(n= 129)

Validation,

(n= 32)

Test,

(n= 46)

Sex

Male 111 (86) 29 (91) 40 (87)

Female 18 (14) 3 (9) 6 (13)

Age, year 61 ± 12 61 ± 14 62 ± 10

Median interval

between two scans,

day

53 52 56.5

Status

Deceased 83 (64) 23 (72) 32 (70)

Censored 46 (36) 9 (28) 14 (30)

Median survival time,

day

467 475 488

Differentiation type

Highly differentiated 18 (14) 4 (13) 7 (15)

Moderately

differentiated

100 (78) 20 (63) 34 (74)

Low differentiated 10 (8) 8 (25) 5 (11)

Undifferentiated 1 (1) 0 (0) 0 (0)

NASH/NAFLD

Yes 26 (20) 3 (9) 6 (13)

No 103 (80) 29 (91) 40 (87)

Surgery

Yes 67 (52) 17 (53) 25 (54)

No 62 (48) 15 (47) 21 (46)

PVTT

Yes 24 (19) 5 (16) 7 (15)

No 105 (81) 27 (84) 39 (85)

EBRT

Yes 6 (5) 2 (6) 2 (4)

No 123 (95) 30 (94) 44 (96)

TAE/TACE

Yes 74 (57) 20 (63) 27 (59)

No 55 (43) 12 (38) 19 (41)

RFA/WMA

Yes 38 (29) 8 (25) 12 (26)

No 91 (71) 24 (75) 34 (74)

NASH non-alcoholic steatohepatitis, NAFLD non-alcoholic fatty liver disease, PVTT
partial or complete portal vein tumor thrombosis, EBRT external beam radiation
therapy, TAE transarterial embolization, TACE transarterial chemoembolization,
RFA radiofrequency ablation, MWA microwave ablation
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included in the analysis. The prognostic performance of
patients with two major manufacturers was compared,
with a C-index of 0.728 for the Siemens group and 0.707
for the general electric group.

Interpretation of the deep learning model
To demonstrate the explainability of the deep learning
model, four patients from the test set, including two pre-
dicted high-risk and two predicted low-risk by Rad-D, were
presented to interpret the constructed CRNN architecture.
Heatmaps highlighted the regions of the image that con-
tribute most to the network’s decision-making process. The
prognostic model focused particularly on the tumor
regions (Fig. 5a, b, liver scans, the hottest region on the
tumor), which is consistent with common medical knowl-
edge that regions with high malignancy correlate strongly
with prognosis. Non-liver-malignancies in two low-risk
patients resulted in hot regions of the whole liver detected
by the model (Fig. 5c, d, liver scans). Similar heatmap
patterns predicted by the deep learning model can be
observed in lung scans, i.e., the model focused more on
suspicious lesion areas.

Incremental value of RadCLN-D to traditional size-
based method
RECIST outcomes assessed by an independent review
committee were adopted and patients with a progression

status were assigned to the high-risk group. Risk stratifi-
cation performances of RadCLN-D and the conventional
RECIST criteria were compared (Fig. 6). RECIST out-
comes showed acceptable risk prediction performance as
the response status significantly stratified the high-risk
group and the low-risk group (HR, 1.992, 95% CI:
1.119–3.545, p= 0.019). Whereas, RadCLN-D exhibited
stronger categorization capability (HR, 2.450, 95% CI:
1.424–4.214, p= 0.001), suggesting an improvement of
the deep learning-based method over the conventional
size-based method.

Discussion
In this study, we developed and validated a deep learning
model that decodes spatial-temporal information from
radiological imaging and clinical variables to predict the
prognostic outcome of advanced HCC patients. Our
multimodal approach combines the baseline and first
follow-up scans with clinical information, reaching a
1-year AUC of 0.777 in the validation set and 0.704 in the
independent test set. Additionally, models with missing
modalities, i.e., the single-modal imaging-based model
(Rad-D) and the model incorporating only baseline scans
(RadCLN-S), can still achieve favorable risk stratification
performance (with all p < 0.05, except for RadCLN-S on
the test set, p= 0.053). Compared to conventional
RECIST criteria, the deep learning model exhibits

Table 2 Concordance index of the prognostic prediction models

Validation Test Combined

C-index p-value C-index p-value C-index p-value

CLN 0.537 (0.406, 0.668) 0.400 0.622 (0.500, 0.744) 0.020 0.585 0.002

Rad-S 0.692 (0.569, 0.815) 0.010 0.608 (0.504, 0.712) 0.050 0.645 0.013

RadCLN-S 0.697 (0.574, 0.820) < 0.001 0.638 (0.536, 0.740) < 0.001 0.662 0.075

Rad-D 0.748 (0.664, 0.832) 0.002 0.681 (0.573, 0.789) 0.020 0.729 0.310

RadCLN-D 0.752 (0.660, 0.844) < 0.001 0.695 (0.581, 0.809) 0.004 0.734 –

Combined C-index is the weighted score calculated from the validation and the test set using the survcomp package in R
p-values of validation and test C-index indicate the significance of prognostic prediction (the log-rank test)
Combined p-value indicates the significance of the difference between the certain model and RadCLN-D (the student t-test)

Table 3 Time-dependent AUCs of the prognostic prediction models

Validation Test

0.5-year 1-year 1.5-year 2-year 0.5-year 1-year 1.5-year 2-year

CLN 0.531 0.616 0.469 0.517 0.681 0.625 0.611 0.640

Rad-S 0.839 0.768 0.765 0.740 0.741 0.673 0.594 0.581

RadCLN-S 0.831 0.782 0.761 0.755 0.788 0.709 0.617 0.632

Rad-D 0.877 0.759 0.891 0.849 0.865 0.685 0.605 0.630

RadCLN-D 0.900 0.777 0.870 0.839 0.888 0.704 0.622 0.652
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superior prognostic prediction ability (RECIST, HR, 1.992,
p= 0.019; RadCLN-D, HR, 2.450, p= 0.001). This study
shows that deep learning analysis of CT scans can yield
valuable prognostic information to guide surveillance of
immunotherapy-treated advanced HCC patients.
Prognostic prediction for HCC can help doctors for-

mulate more targeted treatment plans and then maximize
the treatment effect for patients. With the development of
radiomics and deep learning techniques, there are several
prognostic prediction models for HCC. He et al [25]
developed a survival model for macrotrabecular-massive

HCC patients using radiomics extracted from enhanced
abdominal CT scans. Meng et al [26] adopted a deep
learning model that utilized CNN to analyze MRI images
for early recurrence prediction after hepatectomy. Xu et al
[27] proposed a deep prediction network that utilizes
information on both full liver and tumor masks from CT
images to predict early recurrence. Zhang et al [28] used
pretrained CNN models to extract features from CT
scans, then employed machine learning methods to pro-
vide OS predictions in unresectable patients treated with
sorafenib. Wei et al [29] proposed a deep learning model

Fig. 3 Performances of RadCLN-D. Left, the distributions of risk scores based on the multi-modal predictions are presented. Heatmaps are displayed to
illustrate the distribution levels of the two modalities (radiological and clinical). Middle, time-dependent ROC curves at 1-year and 2-year. Right,
Kaplan–Meier survival estimates for the OS, were stratified into low-risk and high-risk groups according to the median risk score in the training set. AUC,
area under the curve; HR, hazard ratio
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that utilized automated segmentation-based MRI radio-
mic signature to estimate the postsurgical early recur-
rence risk. However, these prognostic models have
not been specifically developed for advanced HCC
patients receiving immunotherapy. HCC patients treated
with immunotherapy usually undergo multiple imaging

follow-ups to aid in observing the efficacy of the drugs.
Therefore, these models that only utilize data from a
single time point, can fail to capture the dynamic growth
characteristics of the tumor. Besides, the lung is the most
common site of metastasis for advanced liver cancer.
Therefore, evaluation of the chest condition is important

Fig. 4 Establish and validate the nomogram of RadCLN-D. a For the radiological score and the clinical score, locate the corresponding value on the scale
provided on the nomogram, then add up to get the total points. A vertical line from the total points value is to the predicted probability of the 1-year
and 2-year survival probability. b Importance of the radiological score and the clinical score. c Calibration of the nomogram in terms of the agreement
between predicted and observed 1-year survival outcomes
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for prognosis prediction. A direct application of existing
methods to advanced HCC can affect the performance of
the model, as they solely focus on the liver and neglect
the lung.
In our developed model, we used both liver and lung

images at baseline and follow-up, with a CRNN structure,
to make prognostic predictions. CNNs can proficiently
extract prognostically relevant features from radiological
images. Integrated with clinical information, RadCLN-S
enables precise survival predictions. Moreover, the RNN
architecture efficiently captures tumor changes between
baseline and follow-up measurements. The integration of
temporal and spatial information results in improved risk
stratification outcomes.
The validation results of the model performance from

multiple perspectives (i.e., time-dependent AUC, risk
stratification capability, and overall C-index) on multi-
center data illustrate the practicability and superiority of
the deep learning model. The comparative results of
models under various input settings indicate that the
model can still yield reasonably accurate predictive out-
comes despite the absence of certain modalities. Fur-
thermore, the comparison with the RECIST criteria
demonstrated that, compared to the manual assessment
of the growth trend of the whole-body lesions, deep
learning encapsulates additional information beyond the
size, adding incremental information for prognostic

predictions. Our model has the potential to be effectively
utilized for prognostic prediction in advanced HCC
patients and aid clinicians with adaptive treatment plan-
ning to improve patient outcomes.
Our proposed prognostic model is interpretable. Heat-

maps can provide a coarse location of regions relevant to
prognosis, which demonstrates the interpretability of the
radiological input. For heatmaps of the liver, although we
did not explicitly input the liver or liver tumor region as
auxiliary information in the model, the heatmaps con-
sistently reveal highlighted areas within the liver. Specifi-
cally, in the two high-risk patients, the core areas colored
the deepest red were localized to the tumor region, sug-
gesting a strong association between the presence of the
tumor and the unfavorable prognosis predicted by the
model. Moreover, the model’s focus on the tumor area
allows for a more comprehensive capture of tumor char-
acteristics, such as size and morphology. These tumor-
related features are closely associated with prognosis.
Besides, the chosen clinical variables in this study are

also explainable. It comprises frequently used treatments
for HCC, such as surgical resection and local non-surgical
interventions, as well as previously established and
reported prognostic variables. The results of the clinical
Cox regression model (CLN model, Fig. S3) align with
previous studies’ evidence. The German Cancer Research
Center [30] reported that immunotherapy fails to provide

Fig. 5 Interpretation of the deep learning model. Grad-CAM computes the gradients of the target class’s score (i.e., the risk score) with respect to the
feature maps in the last convolutional layer of the network. These gradients are then weighted by the average pooling of the gradients to obtain the
importance weights of the feature maps then normalized to [0,1] (with the blue color close to zero and the red color close to one) and linearly combined
with the original feature maps. The four demonstrated cases are selected from the independent test set. a, b Two patients with model-predicted
high-risk. c, d Two patients with model-predicted low-risk
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a survival benefit in patients with NASH/NAFLD, owing
to an accumulation of abnormal CD8+ /PD-1+T cells
within the liver. PVTT is considered a sign of advanced-
stage disease, with untreated cases only having a median
OS of 2.7–4.0 months [31]. Histological differentiation
type is a recognized prognostic factor, with higher dif-
ferentiation types typically indicating a better prognosis
[32, 33]. As for treatments, patients previously treated
with RFA/MWA, EBRT, or surgical resection all
exhibited positive prognostic effects. There was an
inverse relationship between TAE/TACE therapy and
prognosis, which may be due to the higher frequency of
TAE/TACE intervention in patients with more severe
conditions.

Our proposed model is efficient in processing radi-
ological imaging. The representative 2D scans were
automatically selected from the original whole-body CT
scans using pretrained SOTA segmentation models. Most
previous works manually delineate certain tumor regions
to generate the inputs [34, 35], which is labor-intensive
and impracticable for advanced HCC due to the presence
of multifocal hepatic lesions. Furthermore, the inclusion
of the tumor and its surrounding tissue within the model
inputs can provide additional indications for survival
predictions. Some studies [36, 37] have employed semi-
automatic seed growing to create the region of interest,
but it still needs lots of human efforts in lesion identifi-
cations. Deep learning-based segmentation models can

Fig. 6 Risk stratification by the deep learning model and the conventional RECIST criteria. Results were made on the combination of the validation set
and the test set. a Risk stratification by the deep learning model RadCLN-D, the high-risk group is defined as a score > 0.66, and the low-risk group is
defined as a score ≤ 0.66. b Risk stratification by the RECIST criteria, the high-risk group is defined as disease progression at the first follow-up, and the
low-risk is defined as no progression observed at the first follow-up. HR, hazard ratio; RECIST, response evaluation criteria in solid tumors
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achieve considerable performance in automatically
depicting tumor and tissue regions of the lung and liver
[17, 38, 39]. Therefore, we incorporated the SOTA model
to assist with the representative slice selection, which
ultimately makes the model more user-friendly.
Our study data come from multiple centers, and the

diversity of the data enables the model to be adaptive to
different vendors, making it more robust and transferable
across various imaging settings. Experimental results
demonstrate that our model performs similarly across
different devices, demonstrating the generalizability of
our model.
Our study has limitations. First, some advanced liver

cancer patients may have other metastatic lesions apart
from the lung, such as the brain, lymph nodes, and
adrenal glands. Though it has been reported that distant
organ metastases, excluding pulmonary metastases, typi-
cally do not have a detrimental effect on the prognosis
[40], future works can consider more metastatic organs
for potential improvement of the prediction performance.
Second, the study data were retrospectively collected,
which can introduce various biases. Prospective studies
with larger sample sizes should be conducted to further
validate the practicability of the proposed model.
In conclusion, deep learning analysis of CT scans using

the multi-modal CRNN model can provide valuable
prognostic information, enabling the effective surveillance
of patients with advanced HCC. The proposed approach
could empower clinicians to make informed decisions
regarding patient management and follow-up strategies
based on the identified risk stratification patterns derived
from the CT scans and the clinical information.
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