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Abstract
The objective of this review is to survey radiomics signatures for detecting pathological extracapsular extension (pECE)
on magnetic resonance imaging (MRI) in patients with prostate cancer (PCa) who underwent prostatectomy.
Scientific Literature databases were used to search studies published from January 2007 to October 2023.
All studies related to PCa MRI staging and using radiomics signatures to detect pECE after prostatectomy were
included.
Systematic review was performed according to Preferred Reporting Items for Systematic Review and Meta-analyses
(PRISMA). The risk of bias and certainty of the evidence was assessed using QUADAS-2 and the radiomics quality score.
From 1247 article titles screened, 16 reports were assessed for eligibility, and 11 studies were included in this
systematic review. All used a retrospective study design and most of them used 3 T MRI. Only two studies were
performed in more than one institution. The highest AUC of a model using only radiomics features was 0.85, for the
test validation. The AUC for best model performance (radiomics associated with clinical/semantic features) varied from
0.72–0.92 and 0.69–0.89 for the training and validation group, respectively. Combined models performed better than
radiomics signatures alone for detecting ECE. Most of the studies showed a low to medium risk of bias.
After thorough analysis, we found no strong evidence supporting the clinical use of radiomics signatures for
identifying extracapsular extension (ECE) in pre-surgery PCa patients. Future studies should adopt prospective
multicentre approaches using large public datasets and combined models for detecting ECE.

Critical relevant statement The use of radiomics algorithms, with clinical and AI integration, in predicting
extracapsular extension, could lead to the development of more accurate predictive models, which could help
improve surgical planning and lead to better outcomes for prostate cancer patients.

Protocol of systematic review registration PROSPERO CRD42021272088. Published: https://doi.org/10.1136/
bmjopen-2021-052342.

Key Points
● Radiomics can extract diagnostic features from MRI to enhance prostate cancer diagnosis performance.
● The combined models performed better than radiomics signatures alone for detecting extracapsular extension.
● Radiomics are not yet reliable for extracapsular detection in PCa patients.
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Graphical Abstract

TThe use of radiomics algorithms in predicting extra-capsular extension could potentially lead to the 
development of more accurate predictive models, which in turn could help to improve surgical 
planning and ultimately lead to better outcomes for prostate cancer patients.

Prediction of extra-capsular extension of 
prostate cancer by MRI radiomic signature: 
a systematic review

Insights Imaging (2024) Guerra A, Wang H, Orton MR et al. 
DOI: 10.1186/s13244-024-01776-8

Background
Prostate cancer (PCa) is a common cancer in Europe and
all over the world, with around 6600 new cases diagnosed
each year [1]. Radical prostatectomy is widely recognised
as the standard surgical treatment for early-stage PCa.
The detection of extracapsular extension (ECE) is fun-
damental for planning the surgical approach because it
can lead to high rates of positive surgical margins,
recurrence, and decreased survival [2–7]. Nomograms,
such as D’Amico or CAPRA, are often used to predict the
risk of advanced disease [8, 9]. Magnetic resonance ima-
ging (MRI) has been shown to improve accuracy in pre-
dicting ECE, but there is high inter-reader variability
related to the semantic features interpretation on MRI
which is not consensual among the authors [10–12]. The
high-quality MRI acquisition protocol and the high
experience of the readers could help to improve the
accuracy of MRI [10–12].
Radiomics can help extract different features from medical

images using data-characterisation algorithms, improving
diagnostic performance in PCa, as well as the reproducibility
of the MRI examinations. Artificial intelligence (AI) and
machine learning (ML) can help apply radiomics in everyday
practice. However, clinically accepted and validated algo-
rithms have not been established [13–15].

This systematic review aims to summarise evidence on
using radiomics algorithms to predict pathological
extracapsular extension (pECE) in PCa patients to aid
surgical planning and improve outcomes.

Methods
This systematic review follows the guidelines for Preferred
Reporting Items for Systematic Reviews and Meta-analyses
and the protocol was registered with PROSPERO
(CRD42020215671) and published in BMJ Open [16].

Eligibility criteria
This article reviewed manuscripts involving adult PCa
patients who had a presurgical prostate biopsy indicating
a Gleason score equal to or greater than 6 and underwent
MRI before their surgery. Only studies using 1.5-T or 3-T
MRI scanners and no prior treatment were included.
The primary outcome was pathologic local staging after

surgery, with the goal of identifying imaging and clinical
predictors of extracapsular extension on pathology spe-
cimens (pECE). The eligible studies were required to be
retrospective or prospective cohort studies or randomised
controlled trials that included prognostic factor analysis.
Furthermore, these studies needed to have been published
in peer-reviewed journals.
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Studies were included if:
– Information regarding PCa MRI staging and

pathological PCa staging was available in the
published report.

– MRI images and radiomics signatures were used to
detect pECE after prostatectomy.

Studies were excluded if:
– The AI/ML predictive models were built with

another main predictive endpoint, such as
localisation, segmentation, recurrence, prognosis, or
lymph node metastasis, and characterisation of PCa
without reference to the pathologic PCa staging
endpoint. The paper was included in the analysis if
the authors built different models with different
endpoints but included the pathologic PCa staging
endpoint.

– Studies with only MRI image characteristics,
interpretative MRI semantic features, or combine
feature for any signature without combining the
radiomics feature extraction signature, were
excluded.

– Cross-sectional studies, case series, case reports,
case-control studies, systematic reviews, conference
proceedings, and master’s or PhD theses were
excluded.

Search strategy
We conducted a comprehensive search across six electro-
nic databases, namely CINAHL, EMBASE, CENTRAL
(Cochrane Central Register of Controlled Trials via Wiley
Online Library), PubMed, Web of Science Core Collection,
and for grey literature, OpenGrey and Grey Literature
Network Service. Furthermore, we manually searched
through the reference lists of all included studies and pre-
viously published systematic reviews of MRI staging of PCa.
The search strategy was developed by a medical librar-

ian with expertise in systematic reviews. The search terms
were customised to the specific requirements of each
database. Keywords (“Prostate neoplasm”, “Machine
learning”, “Artificial intelligence” “Radiomics”, “Deep
Learning”, “Staging” and “Magnetic Resonance Imaging”)
or subject headings specific to each database (e.g., MeSH)
were used along with Boolean operators ‘OR’ and ‘AND’
to combine the search terms effectively. The search
strategy is detailed in the published protocol [16].

Study selection
There were no restrictions applied, and only studies published
in the English language were included. The search was con-
ducted in each database from January 2007 to October 2023.
Following title/abstract screening, the full texts of

potentially relevant studies were evaluated. In cases where

a consensus was not reached between the two reviewers
(A.G. and H.W.), a third reviewer (M.K.) was consulted.
Additionally, the reference lists of the studies chosen for
inclusion were examined for any other relevant studies.
The data collection process is illustrated in Fig. 1.

Data collection process
Data extraction: Two reviewers (A.G. and M.K.) indepen-
dently extracted the following data from the included studies.
In cases of disagreement between the two reviewers, a con-
sensus was reached through discussion. If necessary, two
additional expert reviewers (M.O. and H.W.) were consulted.
The extracted data were broadly categorised into patient and
study characteristics, radiologist details, type of feature
extraction (agnostic if extracted by computation algorithms),
semantic (interpreted by a radiologist), model characteristics,
and predictive performance. Sensitivity, specificity, and area
under the receiver operating characteristic curve (AUC) were
extracted in the training and validation groups, with 95%
confidence intervals where available. The radiomics and

Records identified through 
database searching
CENTRAL: 25+18

EMBASE: 541 + 368
Pubmed: 968 + 424

Web of Science: 491 + 297
TOTAL: 3132

Articles titles screened after 
duplicates removed

1247

Full text reviewed
41

Reports assessed for eligibility
Total:
GG:14
MK:14

Final included studies
11

Identification of studies via databases and registers

Reports assessed for eligibility
16

Duplicate records removed
780: 460 + 496 automatically 

and 320 manually

Articles excluded after title and 
abstract screening:

GG (n=1215) 
MK (n=1236)

Articles excluded after full text 
reviewed 

23

Match list by GG and MK: 13
From not matching studies: (1 

MK and 4 GG):
2 were excluded and 3 added

by consensus with MO and HW

Reports excluded: 5
Reason 1 small cohort:(n=15)

(n=39) patients. 
Reason 2: 1 not referred the 

radiomics model building.
Reason 3: no mention the 

radiomics signature pipeline for 
pECE end point. 

Fig. 1 PRISMA flow diagram of the study selection
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integrated models were compared, and the best predictive
performances were registered.

Risk of bias applicability
The risk of bias in individual studies was assessed by three
reviewers (A.G., H.W., and M.K.). Since we included diverse
types of studies, we used different tools to assess the risk of
bias depending on the characteristics of the studies. Data
from these studies were extracted, tabulated, and then
reviewed for risk of bias and applicability using the Quality
Assessment of Diagnosis Accuracy Studies version 2
(QUADAS-2) tool [17]. This tool covers four sources of bias:
(1) patient selection, (2) index test, (3) standard domain, and
(4) flow and timing bias. For each one, the risk of bias was
assessed as high risk, unclear risk, or low risk, depending on
the information offered by the study. The review authors
used the signalling QUADAS-2 question information to
judge the risk of bias. If all signalling questions for a domain
were answered ‘yes’ then the risk of bias was considered
‘low’. If any signalling question was answered ‘no’ this flagged
the potential for bias. The ‘unclear’ category was used only
when insufficient data were reported to permit a judgement.
Because QUADAS-2 sometimes does not accommodate

the niche of terminology encountered in AI studies, we also
added a radiomics quality score (RQS) proposed by Lambin
et al to this systematic review [17, 18]. Studies with a high
risk of bias and low applicability were excluded. A narrative
synthesis was conducted, acknowledging the risk of bias
and the strength and consistency of significant associations.

Synthesis of results
Due to differences in AI system applications, study
designs, algorithms, patient cohorts, evaluation strategies,
and performance metrics, narrative synthesis was chosen
instead of meta-analysis. Meta-analysis could be not
recommended for studies of diagnostic test accuracy that
have significant differences in patient cohorts and test
settings, as it would produce biased results.

Results
Studies characteristics (Table 1)
The eleven final included studies (corresponding to 0.009%
from a total of 1247 screened papers), were published between
2019 and 2023, used a retrospective study design and were
mainly (8) from China, two from Italy, and one from Norway.
All the studies described a model based on radiomics
extracted features, either alone [19–22], combined with clin-
ical features [23–27], or in combination (integrated model
with semantic interpretative features, plus agnostic radiomics
features associated with clinical features to predict ECE in
histopathological specimen analysis [28, 29]. All but three
studies used a 3 T field strength and the total number of
patients included in the models ranged between 62 to 284.

Only two studies [23, 30]were performed in more than one
institution. The lesion segmentation and feature interpreta-
tion were undertaken by more than one radiologist, and the
inter-agreement ratio was evaluated in all studies, except
Losnegård et al [28]. A recent study [29] compared three
individual models: radiomics, clinical and the assessment of
ECE on MRI done by four radiologists: semantic model) and
compared them to a combined model with all relevant fea-
tures from the three models. Three studies also referred to
other endpoints, such as the positivity of surgical margins
[24, 26], lymph node metastases and tumour aggressivity
[19, 26]. One study also built a radiomics model to predict
PCa prognostic biological biomarkers [24].

Radiomics characteristics (Table 2 and Table-S1)
Model performance
All studies reviewed focus on developing radiomics models
based on agnostic features extracted from T2WI (T2-
weighted imaging) and ADC (apparent diffusion coeffi-
cient) of the manual segmented tumoural region. DCE
images were also used in four publications [20, 21, 24, 28].
They compared different signatures composed by IFs
(imaging features) extracted from T2WI and ADC maps
independently and from the two modalities, and they tested
them for prediction presence vs. absence of pECE.
For each MRI sequence, shape features (size and

sphericity) and texture features (GLCM, GLRLM, GLSZM,
NGLDM) were the most common features with dis-
criminative importance and in the majority of cases were
for those extracted from T2WI. The exception was Fan et
al [24], where the most relevant feature was extracted from
DCE. The radiomics features derived from histograms were
not so relevant as the features previously mentioned. The
coefficients for the calculation of the selected radiomics
features were different between the studies and the authors
did not find a common stable radiomics feature which
could be the dominant impact factor for pECE across them.
The image processing and feature selection methods were
very heterogenous between the studies. Matlab, original
Pyradiomics and Laplacian of Gaussian (LoG) and wavelet-
filters were used for images extraction. Most researchers
compared radiomics with clinical and combined models
(radiomics+ clinical features). In these cases, the combined
models achieved the best performance (AUC: 0.92) [25],
0.72 [26], 0.95 [24], 0.72 [23], 0.76 [27] and 0.89 [29].
The highest AUC of a model using only radiomics features

(tumoural region) to predict ECE was 0.93 for the training
group and 0.85, for the test validation [24]. This was followed
by Xu et al [25] (AUC 0.91), Yang et al [29] (AUC 0.86) and
Cuocolo et al [22] (AUC 0.83 and 0.80/0.73, in training set and
two external validation sets, respectively).
Ma et al [20, 21] built a radiomics signature in the peri-

tumoural region (capsule and periprostatic fat) and
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compared it with the radiologist’s interpretation. Pairwise
comparisons showed that the radiomics signature was more
accurate than the radiologist’s interpretation. The accura-
cies (90% and 88%, respectively, in the training and valida-
tion groups) were much higher than that achieved directly
by the radiologists (AUCs 0.685–0.755 in the training
cohort and 0.600–0.697 in the validation cohort). This study
is aligned with Yang et al study [29], where the radiomics
signature is superior to radiologist interpretation (AUC 0.88
and 0.835, training and validations groups vs. AUC 0.746
and 0.774 training and validations groups) respectively.
Bai et al compare intra and peri-tumoural (PT) single

radiomics signatures and achieve the best predictive value
AUC: 0.70., in the PT region extracted from the ADC
map. In this study the PT were automatically derived
through 3D dilatation and was extracted from ADC map.
Only two authors [28, 29] built a combined model with

clinical and semantic interpretative MRI features using
Mehralivand’s proposed EPE-grade criteria [31]. They
compared the radiologist’s interpretation and the Memorial
Sloan Kettering Cancer Center (MSKCC) nomogram with
the radiomics signature and the combined models. The
AUC of the radiologist’s interpretative model was similar in
both studies in the training group (AUC of 0.74) [28, 29]
and 0.77 in the validation group in the study of Yang et al
[29]. In relation to radiomics model, the AUC was in both
studies, AUC 0.75 [28] and 0.88 [29], respectively.
The combination of radiomics, radiology plus clinical

interpretation performed statistically better (AUC 0.89;
p < 0.05) than clinical model (AUC 0.74) and semantic
model (AUC 0.77) but not statistically significantly (p-value
0.167) than the radiomics alone (AUC 0.835) [29].

Risk of bias assessment (Table 3)
The review authors used the QUADAS-2 and RQS
methods to judge the risk of bias.
QUADAS-2
Patient selection: Only Damascelli et al [19] study was

deemed to have a high risk of bias as the case selection
process was unclear due to insufficient description.
The cases of Cuocolo et al [22], Losnegård et al [28] and

Yang Liu [27] were considered unclear because they did
not mention whether they excluded patients with any type
of treatment before radical prostatectomy.
Index test (MRI Images): All patients underwent ade-

quate and identical institutional MRI protocol. Manual
segmentation of the lesions was reproducible in all the
studies except one [28], in which only one radiologist
undertook the lesions’ segmentation, and one study [26]
did not exclude poor-quality images.
Reference standard: The risk of bias for the reference

standard (presence of ECE in the specimen) was low in all
of the included studies.

Flow and timing: Except for four studies [19, 23, 24, 27],
which did not mention the time between MRI and pros-
tatectomy, all the included studies were consistent in
using appropriate reference standards, for patients and
maintaining appropriate intervals between MRI and
obtaining histopathology.

Radiomics quality score
Cuocolo et al [22] study had the maximum RQS of 20
points, and Damascelli et al [19], Losnegård et al [28] and
Yang Liu had the lowest scores of 10, 9 and 8 points,
respectively. The main reason for this was the absence of
model validation. No study was prospective or presented a
phantom study on all scanners or imaging analyses at
multiple time points. Only one study demonstrated open
science data [22]. A cost-effectiveness analysis or biolo-
gical correlation was not performed in all the studies.

Discussion
This systematic review found ten studies that aimed to predict
pECE in PCa patients using radiomics signatures. Most of
these studies had limited sample sizes and used data from a
single centre, and four used a single MR scanner, which
restricts the generalisability of their models. All the models
utilised textural feature extraction, but the most significant
textural features varied among the studies. The majority of
the significant features were extracted from T2WI.
The Damascelli et al study being referred to here has a

high risk of bias, did not perform external validation, and
its patient sample size of only 62 patients was not con-
sidered adequate for robust conclusions [19]. Cuocolo et al
achieved an accuracy of 83% in the training group using
only ROIs of intraprostatic lesions to predict pECE [22].
Ma et al did two complementary studies comparing the

radiomics model built from the first study [20] with a
semantic interpretative model MRI EPE grade, in the sec-
ond study [21]. They found that the radiomics model
achieved higher accuracy compared to the performance of
radiologists as described in the results. The low accuracy of
the radiologists may be due to the difficulty in determining
macroscopic ECE involvement using limited visual inter-
pretive findings. The radiomics model has a low risk of
bias, as assessed by the QUADAS tool and RQS scale, but
its MATLAB feature generation approach is not open-
source and uses non-standard techniques, making it diffi-
cult to replicate. The study performed an internal training
and validation split of 2:1 but, did not specify which dataset
was used for feature selection, which may have affected the
results. The model has not been independently evaluated at
another institution, and further studies are needed to
validate its performance. Nevertheless, this study suggests
that it is possible to use peri-tumoural regions to create
radiomics signatures for predicting ECE [21].
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In relation to the remaining studies [23–27], clinical
features were used to construct combined models in
addition to the radiomics features. The dominant clinical
predictors were the serum PSA and Gleason Score (GS) of
the biopsy. They reported better results in combined
models with clinical and radiomics variables compared
with models using radiomics features alone, with values
that varied between 72% and 95% and with moderate risk
of bias in the QUADAS-2 evaluation and RQS between 16
and 18 points. From these, Fan et al [24] study had the
best accuracy, and the textural extraction features were
derived from the ROI drawn on DWI. However, it is a
single institution study using two different scanners with
an internal validation dataset.
Two studies [28, 29], created a combined model that

associated semantic features from the radiologist’s inter-
pretation with the radiomics model and clinical features. In
the study [28] the AUC of radiomics model is almost the
same than sematic interpretative model (AUC 0.75 vs.
AUC 0.74, respectively). However, the model was executed
in a limited way, without a validation group, and the risk of
bias was very high (high in QUADAS and only 9 in RQS).
In the other [29], more recent research, the authors proved
that a combined model achieved the best AUC in the
validation group compared to the other models. However,
this study should be conducted to utilise external cohorts
(form different institutions) to validate the robustness of
radiomics and combined models to detect ECE.
While all the studies used one or more feature selection

strategies, in order to reduce the overfitting. In addition,
the use of different feature sets in different studies led to a
lack of consistency in the features present in the final
models, as previously mentioned, precluding any attempt
to synergistically analyse the relevant radiomics features
for predicting pECE across studies.
Future radiomics studies must ensure high-quality data

collection and standardisation of radiomics features across
different institutions and imaging protocols. The IBSI
(Image Biomarker Standardisation Initiative) seeks to
provide image biomarker nomenclature and definitions,
benchmark datasets, and benchmark values to verify image
processing and image biomarker calculations, as well as
reporting guidelines, for high-throughput image analysis.
By addressing these concerns, future radiomics studies can

enhance the reliability and clinical utility of radiomics sig-
natures in detecting ECE in patients with PCa before surgery.
This review had certain limitations. Firstly, although our

search strategy was comprehensive, there could be studies
that were published between our search period and the
publication of this review. Secondly, this systematic
review only focused on radiomics signatures and did not
analyse other AI methods, semantic interpretative scores
or nomograms to detect ECE.

Finally, this review would have benefited from a quan-
titative synthesis or metanalysis of the analysed articles,
but unfortunately was not possible as key statistical data
and the dominant features were not reported for this
small sample of studies.

Conclusion
Non-imaging biomarkers such as PSA and GS have
shown promise in predicting ECE in PCa. When com-
bined with MRI data, Radiomics signatures could
enhance accuracy in predicting ECE. However, current
evidence lacks robustness to support the clinical use of
radiomics signatures for ECE detection pre-surgery.
Future radiomics studies need prospective testing in
multicentre settings with large datasets, including
external validation cohorts, to enhance reliability and
clinical utility in detecting ECE.
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