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Abstract

Objectives To explore the predictive performance of tumor and multiple peritumoral regions on dynamic contrast-
enhanced magnetic resonance imaging (MRI), to identify optimal regions of interest for developing a preoperative
predictive model for the grade of microvascular invasion (MVI).

Methods A total of 147 patients who were surgically diagnosed with hepatocellular carcinoma, and had a maximum
tumor diameter ≤ 5 cm were recruited and subsequently divided into a training set (n= 117) and a testing set (n= 30)
based on the date of surgery. We utilized a pre-trained AlexNet to extract deep learning features from seven different
regions of the maximum transverse cross-section of tumors in various MRI sequence images. Subsequently, an
extreme gradient boosting (XGBoost) classifier was employed to construct the MVI grade prediction model, with
evaluation based on the area under the curve (AUC).

Results The XGBoost classifier trained with data from the 20-mm peritumoral region showed superior AUC compared
to the tumor region alone. AUC values consistently increased when utilizing data from 5-mm, 10-mm, and 20-mm
peritumoral regions. Combining arterial and delayed-phase data yielded the highest predictive performance, with
micro- and macro-average AUCs of 0.78 and 0.74, respectively. Integration of clinical data further improved AUCs
values to 0.83 and 0.80.

Conclusion Compared with those of the tumor region, the deep learning features of the peritumoral region provide
more important information for predicting the grade of MVI. Combining the tumor region and the 20-mm peritumoral
region resulted in a relatively ideal and accurate region within which the grade of MVI can be predicted.

Clinical relevance statement The 20-mm peritumoral region holds more significance than the tumor region in
predicting MVI grade. Deep learning features can indirectly predict MVI by extracting information from the tumor
region and directly capturing MVI information from the peritumoral region.

Key Points
● We investigated tumor and different peritumoral regions, as well as their fusion.
● MVI predominantly occurs in the peritumoral region, a superior predictor compared to the tumor region.
● The peritumoral 20 mm region is reasonable for accurately predicting the three-grade MVI.

Keywords Hepatocellular carcinoma, Microvascular invasion, Deep learning, Dynamic contrast-enhanced magnetic
resonance imaging, Peritumoral region
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Graphical Abstract

TThe peritumoral 20mm region holds more significance than the tumor region in 
predicting three-grade microvascular invasion (MVI; M0, M1, M2). Deep learning features 
can both indirectly predict MVI by extracting information from the tumor region and 
directly capture MVI information from the peritumoral region.

Preoperative prediction of microvascular 
invasion risk in hepatocellular carcinoma with 
MRI: peritumoral versus tumor region
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Introduction
Hepatocellular carcinoma (HCC) is a prevalent malignant
tumor, ranking third in cancer-related mortality world-
wide [1]. The prognosis for HCC patients remains unfa-
vorable mainly due to the high recurrence rate of the
tumor [2]. Microvascular invasion (MVI) refers to the
microscopic infiltration of tumor cells into small hepatic
vessels, including the microvessels of the portal vein or
hepatic artery, and small lymphatic vessels [3], which can
only be observed under a microscope and are primarily
located in peritumoral or nontumor liver tissue. MVI is
considered a crucial pathological factor, as it significantly
contributes to increased recurrence rates and reduced
survival in patients with liver cancer [4, 5], and has a
reported incidence ranging from 15% to 57.1% in HCC
patients [6]. The risk of MVI in HCC can be classified into
one of three grades [7]: M0 refers to the absence of MVI,
M1 (the low-risk category) indicates ≤ 5 sites of MVI, all
in the peritumoral hepatic tissue (≤ 1 cm), and M2 (the
high-risk category) refers to > 5 sites of MVI or MVI
occurring in the distant peritumoral hepatic tissue
(> 1 cm). Generally, the overall survival (OS) and
recurrence-free survival (RFS) rates in the M1 and M0
groups are higher than those in the M2 group. Compared
with nonanatomical liver resection, anatomical liver

resection within the M2 group is associated with better
OS and RFS rates [8]. Expanding the resection range
during hepatectomy can significantly increase the survival
rate by eradicating micrometastases [9]. Patients in the
M2 group demonstrate increased tumor invasiveness and
a greater risk of poor prognosis, and thus surgical resec-
tion may not be the optimal choice for these patients;
instead, a comprehensive approach involving alternative
treatment methods, including liver transplantation,
radiotherapy, chemotherapy, targeted therapy, and
immunotherapy, should be considered. Therefore, asses-
sing the extent of micrometastasis and distinguishing
between M1 and M2 populations before treatment would
be beneficial for guiding personalized therapy and
improving patient prognosis. However, MVI can only be
confirmed through time-consuming postoperative
pathological examination. Biopsies are limited by their
lack of sensitivity in assessing MVI, tumor heterogeneity,
sampling errors, and potential complications. Certain
radiological features, such as tumor size [10–12], irregular
tumor margins [13–16], the absence of or an incomplete
radiological capsule [11, 17], and peritumoral enhance-
ment observed on dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) [18], regarded as pre-
dictors of MVI, and classifications based on “semantic”
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features are often more easily interpreted and accepted by
radiologists. However, this approach is subjective and has
poor repeatability. Recently, substantial progress has been
made in the field of medical image analysis by utilizing
data mining technology, leading to a relatively new field
known as radiomics [19]. The gradual application of
radiomics in the preoperative prediction of MVI in HCC
patients has shown promising results [14, 20, 21]; how-
ever, some issues remain. First, most models for predict-
ing MVI primarily focus on tumor-related features and
fail to incorporate information from the peritumoral
region, where MVI typically manifests and which may
provide crucial information [22, 23]. Several studies have
also explored the use of tumor and peritumoral radiomic
signals for the prediction of preoperative MVI
[17, 20, 24, 25], However, the absence of a clear contrast
among the various peritumoral regions and the tumor
region raises questions about the significance of peritu-
moral information at different ranges compared to tumor
information alone in predicting MVI. Moreover, most
studies tend to focus on the qualitative assessment of MVI
by determining its presence or absence, and there is a
notable scarcity of research exploring the severity of MVI
in cases where it is present [26, 27]. AlexNet has revolu-
tionized deep learning and computer vision with its
groundbreaking convolutional neural network (CNN)-
based architecture. The deep learning features, extracted
from a variety of pre-trained CNNs, can be used in the
subsequently screened for relevancy and construct a
predictive model. This approach employs machine
learning techniques to preoperatively predict the MVI
status [23]. However, little research has been conducted
on the relationship between deep learning features from
the different peritumoral regions of HCCs ≤ 5 cm and the
three risk grades (M0, M1, M2) of MVI.
Therefore, we applied a pre-trained AlexNet to extract

deep learning features from different regions including
the tumor and peritumoral regions (5 mm, 10 mm, and
20 mm), and combinations of the tumor and the differ-
ent peritumoral regions. Our aim was to identify an
optimal peritumoral range for the preoperative predic-
tion of the risk grade MVI and to demonstrate that
radiomics can potentially not only indirectly predict
pathology but also directly capture pathological changes
in HCC.

Materials and methods
Study design and patient population characteristics
This retrospective study (IRB 2021-048-01) at Mengchao
Hepatobiliary Hospital, Fujian Medical University, between
April 2015 and January 2022, included 563 patients who
underwent surgical resection for HCC, diagnosed per
World Health Organization criteria. Ethical approval was

obtained, and written consent was waived. Inclusion cri-
teria: single HCC lesion ≤ 5 cm post-surgery with complete
MVI info and preoperative DCE-MRI within 15 days.
Exclusion criteria: (1) recurrent or multifocal HCC, or
combined intrahepatic cholangiocarcinoma; (2) antitumor
treatment before the enhanced MR scan; (3) radiologically
evident invasion of major vessels; and (4) poor imaging data
unsuitable for delineating regions of interest (ROIs). After
excluding 416 patients, the final analysis comprised 147
patients (28 females, 119 males; mean age 55.71 ± 11.67
years), split into training (n= 117) and testing sets (n= 30)
based on surgery dates (Fig. 1).

Clinicopathologic factors and MVI
Demographic data (including sex and age), blood bio-
chemistry results (such as neutrophil count (NC) and
alpha-fetoprotein (AFP) level, and pathological findings
(for example, maximum tumor diameter (MTD)), were
obtained from the electronic health records system;
Table 1 shows all clinical parameters obtained for the
patients. Missing values were imputed by using the
mean for continuous variables and the median for
categorical variables. MVI in HCC was categorized as
M0, M1, or M2, following a standardized pathological
framework [7].

DCE-MRI acquisition
MRI was conducted on a 3.0 T scanner (Magnetom Verio,
Siemens Healthineers). Dynamic T1-weighted images
were acquired using a three-dimensional volume inter-
polated breath-hold examination fat suppression
sequence (t1_vibe_fs_tra_caipi3_bh_pre, FS: 3, TR: 4.5 ms,
TE: 2 ms, matrix: 256 × 256, slice thickness: 3 mm).
Gadopentetic acid was administered intravenously at a
rate of 2 mL/s at a dose of 0.1 mmol/kg. Four routine
abdominal DCE-MRI sequences were employed, consist-
ing of the precontrast phase, arterial phase (20–30 s),
portal venous phase (approximately 60 s), and delayed-
phase sequences (3 min).

Radiomics analysis
The radiomics workflow involved five steps, including
manual tumor segmentation, feature extraction and
selection, fusion of diverse sequences and ROIs, and
model development and assessment (Fig. 2).

Data standardization and ROI delineation
Image preprocessing involved the following steps: (1)
application of the N4 bias field correction algorithm to all
MR imaging data for normalizing the gray level, and (2)
nearest-neighbor interpolation for resampling the images
to a voxel size of 1 × 1 × 1mm³. In the process of image
segmentation, a radiologist (P.F.) with 10 years of
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professional experience manually delineated the complete
tumor contour layer by layer using ITK-SNAP (version
3.8) across the precontrast phase, arterial phase, portal
venous phase, and delayed phase images. The delineated
tumor boundaries were independently verified by another
radiologist (T.M.W.) with 15 years of professional
experience. In cases where there were inconsistent opi-
nions, the two experts collaborated to reach a consensus.
The resulting tumor masks were then expanded along the
tumor border by 5mm, 10mm, and 20 mm, taking care to
avoid or manually remove nonliver regions (Fig. 2a). Our
study utilized 2D ROIs by precisely selecting the cross-
section that portrayed the tumor’s maximum transverse
diameter. This specific section typically indicates the
region with the most rapid tumor growth and greatest
invasiveness, rendering it the most indicative of the
tumor’s characteristics. Subsequently, the images were
cropped to the masks of the tumor’s maximum transverse
diameter and surrounding peritumoral regions (Fig. 2b).

Radiomics feature extraction
The cropped images were imported into the version of the
AlexNet model pre-trained on ImageNet (https://www.
image-net.org). The feature extraction process focused on
classifier.6 in the AlexNet model (Fig. 2b), resulting in the
extraction of 999 deep learning features. Subsequently,
these features were dimensionally reduced to 147 using
principal component analysis. Finally, separate and fused
modeling was performed using these 147 features
(Fig. 2c).

Fusion of multiple sequences and ROIs
The concept of “fusion” of different sequences involves
integrating radiomic features extracted from various MRI
sequences. We analyzed four MRI sequences, namely
precontrast phase (T1), arterial phase (A), portal venous
phase (P), and delayed phase (D) sequences. Each
sequence encompassed seven distinct ROIs: the tumor
region (Tumor), the 5 mm (Peri5 mm), 10 mm (Peri10
mm), and 20mm peritumoral regions (Peri20 mm), and
the combinations of the tumor region with the three
peritumoral regions (Tumor+ Peri5 mm, Tumor+
Peri10 mm, and Tumor+ Peri20 mm) (Fig. 2b).
We also investigated the effects of fusing the sequences

two (T1+A; T1+ P; T1+D; A+ P; A+D; P+D) and
three at a time (T1+A+ P; T1+A+D; T1+ P+D;
A+ P+D) and of fusing all four at once (T1+A+ P+
D) (Fig. 2c).

Radiomics model development and validation
Initially, we created a training set and a testing set
according to the chronological order of the patient’s
surgical procedures. we performed z score normalization
to normalize the imaging features; for each feature, we
subtracted the average value and divided the difference by
the standard deviation. Next, we evaluated the Pearson
correlation coefficients of all the features. For feature pairs
exhibiting a correlation coefficient higher than 0.90, we
randomly removed one feature. The remaining features
were then subjected to feature selection using the least
absolute shrinkage and selection operator (LASSO) and

Fig. 1 Flow chart of patients’ recruitment for the study. MVI, microvascular invasion. M0, no MVI detected; M1 (low-hazard category), ≤ 5 MVIs all
occurring in the peritumoral liver tissue (≤ 1 cm); M2 (high-hazard category), > 5 MVIs or MVI occurring in the distant peritumoral liver tissue (> 1 cm)
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ranked based on their importance in predicting the
results. Features with higher coefficients according to
LASSO regression were finally used as the training data
(Fig. 2d). After performing 10-fold cross-validation, a
stable and robust model was obtained. Finally, we eval-
uated the extreme gradient boosting (XGBoost) radiomics
model using 10-fold cross-validation in the testing set and
assessed the prediction performance of the three-grade
MVI classifier using the area under the receiver operating
characteristic (ROC) curve (AUC) (Fig. 2e).

Statistical analysis
Continuous variables are typically represented as the
mean ± standard deviation, and comparisons among
groups were conducted using the Z test. Categorical

variables are presented as numbers with corresponding
percentages, and significant differences between the two
groups were evaluated using the chi-square test. We
assessed the predictive performance of the radiomics and
clinicopathological features by employing AUC. The sta-
tistical analyses were conducted using Python (Anacon-
da3.exe). A statistically significant difference was defined
if the two-sided p-value was < 0.05.

Results
Performance of deep learning features from a single
sequence
Table 2 and Fig. 3 present the AUC for each ROI in the
single sequence analysis. Notably, the Peri5mm, Peri10
mm, and Peri20mm XGBoost classifiers constructed from

Table 1 Clinicopathologic characteristics of the patients

Variables Training cohort (n= 117) Validation cohort (n= 30) p-value

Female 27 (23.08%) 1 (3.33%) 4.21

Male 90 (76.92%) 29 (96.67%) 3.66

Age (years) 55.08 ± 11.98 58.20 (9.97) 0.51

BMI (kg/m2) 23.50 ± 3.07 23.57 (2.85) 0.98

TMD (cm) 2.82 ± 1.00 3.32 ± 0.99 0.72

γ-GT (μmol/L) 59.71 ± 62.57 60.07 ± 55.83 0.97

IBIL (μmol/L) 12.71 ± 5.97 10.95 ± 4.32 0.58

ALP (U/L) 90.58 ± 31.52 87.47 ± 25.83 0.68

AST (U/L) 33.51 ± 15.54 33.87 ± 15.56 0.95

ALB (g/L) 39.89 ± 4.67 40.97 ± 4.29 0.72

AST /ALT 1.14 ± 0.45 1.05 ± 0.37 0.92

DBIL (μmol/L) 3.67 ± 2.49 2.53 ± 1.06 0.55

ALT (U/L) 34.21 ± 21.33 35.83 ± 22.10 0.81

MONO (*109/L) 0.35 ± 0.14 0.37 ± 0.11 0.97

EOS 2.82 ± 2.92 2.94 ± 2.50 0.96

WBC (*109/L) 5.19 ± 1.76 5.97 ± 1.69 0.67

HGB (g/L) 140.79 ± 17.96 143.23 ± 14.26 0.67

RBC (*1012/L) 4.58 ± 0.64 4.61 ± 0.60 0.98

NC 3.00 ± 1.30 3.66 ± 1.56 0.7

APTT (seconds) 36.81 ± 3.96 36.03 ± 3.63 0.78

PT (seconds) 13.48 ± 1.16 13.12 ± 1.11 0.81

Glu (mmol/L) 5.63 ± 0.37 6.00 ± 1.70 0.83

TG (mmol/L) 1.26 ± 0.80 1.34 ± 0.78 0.95

TC (mmol/L) 4.29 ± 1.07 4.56 ± 0.68 0.84

HDL (mmol/L) 1.23 ± 0.34 1.12 ± 0.29 0.89

LDL (mmol/L) 2.31 ± 0.68 3.06 ± 0.73 0.53

CK (mmol/L) 93.74 ± 46.01 141.1 ± 246.47 0.006

AFP (ng/mL) 412.79 ± 981.76 341.23 ± 691.02 0.08

PaO2 94.24 ± 12.08 94.07 ± 11.03 0.97

PCO2 42.81 ± 3.71 44.60 ± 3.03 0.49

BMI body mass index, MTD maximum tumor diameter, γ-GT γ-glutamyl transpeptidase, IBIL indirect bilirubin, ALP alkaline phosphatase, ALT alanine aminotransferase,
ALB albumin, AST aspartate transaminase, DBIL direct bilirubin, MONO monocyte count, EOS eosinophil, WBC white blood cell, HGB hemoglobin, RBC red blood cell, NC
neutrophil count, APTT activated partial thromboplastin time, PT prothrombin time, Glu glucose, TG triglyceride, TC total cholesterol, HDL high-density lipoprotein, LDL
low-density lipoprotein, CK creatine kinase, AFP alpha-fetoprotein, PaO2 Oxygen partial pressure, PCO2 partial pressure of carbon dioxide
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the arterial-phase data yielded continuous increases in the
AUC; specifically, the Peri20mm model achieved greater
predictive performance than the model constructed from
the data from the tumor region alone. Furthermore, among
models constructed from the portal venous phase data, the
predictive performance was better for the Peri20mmmodel
than for the tumor region alone-based model.

Performance of deep learning features via the fusion of
multiple sequences
Table 3 presents the AUC of each ROI in the sequence
fusion.
Among the models constructed from fusing two

sequences, the AUCs of the P+D models in predicting
MVI grade increased as they incorporated larger peritu-
moral areas; that is, the model constructed with Tumor
+ Peri5mm features yielded the lowest AUC, followed by
that constructed from Tumor+ Peri10mm features and
that constructed from Tumor+ Peri20mm features.
Moreover, for the A+ P, A+D, and P+D fusion
sequences, the AUC of the Peri20mm model surpasses that
of the tumor region alone (Tumor) model.
Among the models constructed from the fusion of three

sequences, the A+ P+D models showed increasing AUCs
in predicting MVI grade when constructed from Peri5mm,
Peri10mm, and Peri20mm features in that order. For
fusion models, A+ P+D, T1+A+D, T1+A+ P, and
T1+ P+D, the AUC of the Peri20mm-based model sur-
passed that of the tumor region alone (Tumor) model.
The AUCs of the models constructed from fusing all

four sequences (T1+A+ P+D) in predicting MVI grade

increased as the models incorporated features from larger
peritumoral areas (i.e., Tumor+ Peri5 mm yielded the
lowest AUC, followed by Tumor+ Peri10 mm and
Tumor+ Peri20 mm). Moreover, the AUC of the
Peri20 mm model surpassed that of the tumor region
alone (Tumor) model.
Table 4 illustrates the optimal prediction performance

of models constructed from both individual sequences
and their fused counterparts. Notably, the models con-
structed from the fusion of two sequences (T1+D)
exhibited the highest predictive performance when
incorporating the tumor and Peri20 mm regions, with a
micro-average AUC of 0.78 and a macro-average AUC of
0.74.

Visualization of deep learning features
To further elucidate the remarkable and promising find-
ings of this study, we visualized the deep learning features
extracted from images labeled as having grades M0, M1,
and M2 MVI using the pre-trained AlexNet model
(Fig. 4). In the heatmap produced with Grad-CAM, dif-
ferent colors typically indicate different activation
strengths: warmer colors signify greater importance for
the model’s predictions in the corresponding regions,
while cooler tones indicate lower activation strength,
suggesting that the model pays relatively less attention to
those regions.

Performance of radiomics and clinicopathologic features
No statistically significant differences were observed in
the baseline characteristics among the subgroups. The

Fig. 2 Flow chart of radiomics analysis. a Image segmentation: Red represents the tumor area, while green represents the peritumoral area. b Deep
learning feature extraction (AlexNet pre-trained on MedicalNet). c ROI feature fusion d feature selection. d Feature selection. e Medel construction and
evaluation. Tumor, tumor region, Peri5, peritumoral region 5 mm; Peri10, peritumoral region 10 mm; Peri20, peritumoral region 20 mm; ROI, region of
interest; A, arterial phase; P, portal venous phase; ROC, receiver operating characteristic curve; AUC, area under the curve
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overall prevalence of M1 MVI in the cohort was 49.7%,
while the overall prevalence of M2 MVI was 17.7%. To
further improve the predictive performance of the models,
we integrated clinical information with deep learning

features. LASSO regression was used to select the final set
of deep learning and clinicopathologic features, including
the serum AFP level, NC, and TMD. Interestingly, a
fusion of the T1+D_Tumor+Peri20 radiomic features
and clinical features achieved a confusion matrix (Fig. 5a)
and the highest AUC (0.83, 0.80) across all sequences and
regions (Fig. 5b).

Discussion
This study represents the first attempt, to our knowledge,
to employ a pre-trained AlexNet to extract deep learning
features from various DCE-MRI sequences depicting
tumors and the corresponding 5-, 10-, and 20-mm peri-
tumoral areas and their combinations for predicting the
grade of MVI in patients with HCCs ≤ 5 cm. In addition, it
includes a comparative analysis of distinct MRI sequences
for obtaining the Peri5 mm, Peri10 mm, and Peri20 mm
regions. The results demonstrated that as the peritumoral
region expanded, the AUC increased; notably, the AUCs
of the models constructed from Peri20 mm data region

Fig. 3 Receiver operating characteristic curves (ROC) of XGBoost model for predicting three-grade MVI in the testing cohort. a ROC of the 5 mm
peritumoral region in the arterial phase. b ROC of the 10 mm peritumoral region in the arterial phase. c ROC of the 20 mm peritumoral region in the
arterial phase. d ROC of the tumor region in the arterial phase. e ROC of the tumor region in the portal venous phase. f ROC of the 20 mm peritumoral
region in the portal venous phase

Table 2 Results of single sequence based on difference ROI for
predicting three-grade MVI (M0, M1, M2) in the testing cohort

Sequence

(phase)

ROI micro-average

ROC_AUC

macro-average

ROC_AUC

A Peri5 mm 0.66 0.55

A Peri10 mm 0.72 0.70

A Peri20 mm 0.73 0.70

A Tumor 0.73 0.69

P Tumor 0.48 0.32

P Peri20 mm 0.60 0.54

ROI region of interest, A arterial phase, P portal venous phase, ROC receiver
operating characteristic curve, AUC area under the curve, Tumor tumor region,
Peri5 mm peritumoral 5 mm region, Peri10 mm peritumoral 10 mm region,
Peri20 mm peritumoral 20 mm region
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were greater than those of models constructed from data
from the tumor region. These results as well as corre-
sponding heatmaps suggest that deep learning features
capture more attention-related information about MVI
from the peritumoral region. The Peri20 mm region is
more important than the tumor region for predicting the
grade of MVI, which to our knowledge was first demon-
strated here. This research provides further evidence that
radiomics-based deep learning features are capable of not
only indirectly predicting MVI by extracting relevant

information from the tumor region but also directly
capturing MVI information from the peritumoral region.
There are several possible explanations for this phenom-
enon: (1) MVI primarily occurs in the peritumoral region,
as demonstrated by a study [28] conducted by Kai-Qian
Zhou, which revealed among patients with MVI, MVI
within 0.5 mm of the tumor margin in 68.0%, within
10mm in 83.3%, and within 20 mm of the tumor margin
in 91.7%. (2) Deep neural networks can unveil hierarchical
feature representations, enabling them to derive higher-
level features from lower-level features [29]. (3) CNNs can
adapt to the intrinsic structure of medical images, making
them well-suited for shape recognition [30].
Previous studies on constructing models for predicting

MVI have predominantly concentrated on the tumor
itself, disregarding investigations of the peritumoral
region [31, 32]. While some earlier studies considered
peritumoral information, they did not explore margins up
to 20 mm, as specified in the diagnostic criteria for MVI
[24, 25, 33–36]; moreover, they mainly focused on the
qualitative prediction of MVI. Hu, F. et al reported that
they explored the 20-mm peritumoral region, mainly
utilizing traditional radiomic features without comparing
different peritumoral regions [37]. In contrast to these
studies, we demonstrated that among the single sequence
models, precontrast phase-based models had a superior
prediction performance to models separately based on
arterial phase, portal venous phase, and delayed phase
data. The discrepancy in the results may be attributed to
the fact that previous studies utilized traditional radio-
mics features and logistic regression as the classifier,
while our study employed deep learning features and
XGBoost as the classifier. Our multisequence fusion
analysis revealed that the A+D phase-based models
achieved the greatest predictive performance for MVI
risk grade when constructed from Tumor+ Peri20 mm
features. Both the presence or absence of MVI and its
severity are important prognostic factors. Accurately
identifying the preoperative severity of MVI can help
ensure that patients receive more appropriate treatment.
A study investigating the three grades of MVI in variously
sized peritumoral regions revealed that deep learning
features have the ability to indirectly predict clinical
pathological indicators and directly observe specific
pathological phenomena. Our research, along with rela-
ted work, differs from previous studies conducted by
other teams, as it reveals the potential mapping between
deep learning features in the peritumoral regions of HCC
and their observable histopathological features. The
obtained findings have yielded surprising and enlighten-
ing insights.
This retrospective single-center study has several lim-

itations. First, while the dataset was divided into training

Table 4 Results of the optimal prediction performance of the
single sequence and their fused sequences for predicting Three-
grade MVI (M0, M1, M2) in the testing cohort

Sequence-fusion_ROI Max micro-

average ROC_AUC

Max macro-

average ROC_AUC

T1_Tumor+ Peri20 mm 0.74 0.71

T1+D_Tumor+ Peri20 mm 0.78 0.74

Table 3 Results of sequence fusion based on difference ROI for
predicting three-grade MVI (M0, M1, M2) in the testing cohort

Sequence-fusion_ROI micro-

average

ROC_AUC

macro-

average

ROC_AUC

P+ D_Tumor+ Peri5 mm 0.56 0.45

P+ D_Tumor+ Peri10 mm 0.68 0.65

P+ D_Tumor+ Peri20 mm 0.74 0.64

A+ P_Peri20 mm 0.73 0.67

A+ P_Tumor 0.61 0.5

A+D_Peri20 mm 0.69 0.59

A+D_Tumor 0.62 0.56

P+ D_Peri20 mm 0.58 0.48

P+ D_Tumor 0.56 0.44

A+ P+ D_Peri5 mm 0.62 0.45

A+ P+ D_Peri10 mm 0.64 0.57

A+ P+ D_Peri20 mm 0.67 0.57

A+ P+ D_Tumor 0.54 0.45

T1+ A+D_Peri20 mm 0.7 0.58

T1+ A+D_Tumor 0.62 0.57

T1+ A+ P_Peri20 mm 0.71 0.64

T1+ A+ P_Tumor 0.67 0.49

T1+ P+ D_Peri20 mm 0.56 0.47

T1+ P+ D_Tumor 0.56 0.45

T1+ A+ P+ D_Tumor+ Peri5 mm 0.53 0.39

T1+ A+ P+ D_Tumor+ Peri10 mm 0.6 0.5

T1+ A+ P+ D_Tumor+ Peri20 mm 0.62 0.51

T1+ A+ P+ D_Peri20 mm 0.63 0.47

T1+ A+ P+ D_Tumor 0.52 0.46

T1 precontrast phase, A arterial phase, P portal venous phase, D delayed phase
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and testing sets based on surgical time, the TRIPOD
statement recommends temporal validation over random
grouping [38], To tackle this constraint, the study
endeavored to leverage transfer learning, ensemble

methods, and 10-fold cross-validation to mitigate over-
fitting risks and bolster the model’s efficacy on small-
sample datasets. Therefore, further prospective multi-
center validation in larger cohorts is necessary. Another

Fig. 5 Performance of Clinicopathologic features and deep learning features from the combined region of the tumor and peritumoral 20 mm in two
sequences (T1+ D) fusion in the testing cohort. a Confusion Matrix of Deep learning and clinicopathologic features predicting three-class MVI. b ROC of
Clinicopathologic characteristics predicting three-class MVI. Abbreviations: AFP, alpha-fetoprotein; NC, Neutrophil count; MTD, maximum tumor diameter

Fig. 4 The pre-trained AlexNet model extracts features of Tumor+ Peri2 mm region for the precontrast phase (T1) and delayed phase (D) image.
Representative examples of attention heatmaps were generated by using the gradient-weighted class activation mapping (Grad-CAM) method
Abbreviations: T1, precontrast phase; D, delayed phase; Peri, peritumoral region; Tumor, tumor region

Wei et al. Insights into Imaging          (2024) 15:188 Page 9 of 11



possible limitation in our radiomic study is the use of two-
dimensional (2D) ROIs. Three-dimensional (3D) seg-
mental information provides more informative data,
which we will seek to incorporate in future research.
Finally, we only conducted a preliminary visual analysis of
the features extracted by AlexNet, and our results do not
allow us to establish a correlation between the specific
location of MVI in tumor tissue and the positions of
radiomics features in the peritumoral region. We aim to
explore this aspect in future studies.

Conclusion
In conclusion, our study has yielded promising results in
preoperatively predicting the grade of MVI using DCE-
MRI of the 20-mm peritumoral region. Importantly, the
peritumoral region may provide more direct and impor-
tant information for predicting the grade of MVI.

Abbreviations
AUC Area under curve
CNNs Convolutional neural networks
DCE-MRI Dynamic contrast-enhanced magnetic resonance imaging
HCC Hepatocellular carcinoma
IRB Institutional review board
LASSO Least absolute shrinkage and selection operator
MVI Microvascular invasion
ROC Receiver operating characteristic
ROI Regions of interest
XGBoost The extreme gradient boosting
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