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radiomics signature of coronary plaque
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Abstract

Objectives This study aims to investigate how radiomics analysis can help understand the association between
plaque texture, epicardial adipose tissue (EAT), and cardiovascular risk. Working with a Photon-counting CT, which
exhibits enhanced feature stability, offers the potential to advance radiomics analysis and enable its integration into
clinical routines.

Methods Coronary plaques were manually segmented in this retrospective, single-centre study and radiomic features
were extracted using pyradiomics. The study population was divided into groups according to the presence of high-
risk plaques (HRP), plaques with at least 50% stenosis, plaques with at least 70% stenosis, or triple-vessel disease. A
combined group with patients exhibiting at least one of these risk factors was formed. Random forest feature selection
identified differentiating features for the groups. EAT thickness and density were measured and compared with feature
selection results.

Results A total number of 306 plaques from 61 patients (mean age 61 years+/− 8.85 [standard deviation], 13 female)
were analysed. Plaques of patients with HRP features or relevant stenosis demonstrated a higher presence of texture
heterogeneity through various radiomics features compared to patients with only an intermediate stenosis degree.
While EAT thickness did not significantly differ, affected patients showed significantly higher mean densities in the
50%, HRP, and combined groups, and insignificantly higher densities in the 70% and triple-vessel groups.

Conclusion The combination of a higher EAT density and a more heterogeneous plaque texture might offer an
additional tool in identifying patients with an elevated risk of cardiovascular events.

Clinical relevance statement Cardiovascular disease is the leading cause of mortality globally. Plaque composition
and changes in the EAT are connected to cardiac risk. A better understanding of the interrelation of these risk
indicators can lead to improved cardiac risk prediction.

Key Points
● Cardiac plaque composition and changes in the EAT are connected to cardiac risk.
● Higher EAT density and more heterogeneous plaque texture are related to traditional risk indicators.
● Radiomics texture analysis conducted on PCCT scans can help identify patients with elevated cardiac risk.
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Graphical Abstract

PPlaque composition and
changes in the epicardial
adipose tissue are connected
to cardiac risk. Patients
exhibiting a higher degree of
stenosis, a higher number of
affected vessels, or
traditional high-risk plaque
characteristics presented
with higher EAT density and
more heterogeneous plaque
texture.

Combined conventional factors and the radiomics
signature of coronary plaque texture could improve
cardiac risk prediction
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Introduction
The treatment and prevention of cardiovascular disease
(CVD), the leading cause of morbidity and mortality
globally [1], remains one of modern healthcare’s greatest
challenges. The risk for severe cardiovascular events dif-
fers significantly depending on individual risk factors
including the degree of stenosis caused by the plaques,
special high-risk compositions of plaques, and a high
number of plaques or affected coronary vessels [2, 3].
High-risk plaque (HRP) features include spotty calcifi-

cation, positive remodelling, low attenuation, and the
napkin-ring sign [4]. Plaques with these characteristics
have an elevated risk of causing cardiovascular events
through plaque rupture or erosion [5, 6]. Nevertheless, the
vulnerability of HRP is a fluctuating state influenced by
other factors like biomechanics and inflammatory states
[6]. Therefore, the need emerges to look deeper into HRP
texture and associate it with additional risk-indicating
factors.
Recent studies outlined an interesting connection

between epicardial adipose tissue (EAT) and the patho-
genesis of CVD [7, 8]. In this context, EAT density and
volume have been of particular interest [9]. EAT and the
underlying myocardium share the same microcirculation
and are in immediate bidirectional interaction with each

other [10]. While EAT under physiological conditions can
have a protective effect on the heart [10], it can also
advance the development of CVD through inflammation,
exaggerated immunity response, oxidative stress, and
glucotoxicity [11]. In addition, EAT volume has been
linked to the presence of HRP [12]. Since EAT is
responsive to certain drugs with positive effects on the
occurrence of major adverse cardiovascular events
(MACE) [13, 14], understanding this important tissue can
be extremely beneficial.
Coronary computed tomography angiography (CCTA) is

the diagnostic choice for patients with a moderate pretest
likelihood of CVD [15]. It offers comparable diagnostic
efficacy while minimising procedure-related complications
in contrast to initial invasive coronary angiography [16].
Traditionally, CCTA relies on the subjective assessment of
qualitative visual features, often dependent on the exam-
iner’s expertise. However, significant progress in cardiac
computed tomography (CT) has enabled the evaluation of
tissue texture through radiomics analysis [17], which
involves quantifying pixel intensity patterns within an
image, thereby providing valuable insights into tissue het-
erogeneity, composition, and structural characteristics [18].
Realising the full potential of radiomics texture analysis
requires addressing specific challenges that currently
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hinder its final integration into clinical protocols. Concerns
persist regarding its susceptibility to variations in technical
parameters, such as reconstruction algorithms, contrast,
and layer thickness [19, 20].
In contrast to conventional energy-integrating CT

(EICT) devices, the novel photon-counting CT (PCCT)
technology employs smaller photon-counting detector
elements. These photon-counting detector elements
directly convert every incoming photon hitting the
detector plate into an electrical impulse [21], equipping
PCCT with superior spatial resolution, enhanced signal-
to-noise ratio, and reduced beam hardening artefacts
[21, 22]. It thereby offers improved feature stability, pro-
viding the possibility for advancing radiomics analysis and
addressing several of the limitations [23, 24].
This study aimed to investigate differentiating char-

acteristics in coronary plaque texture in patients pre-
senting with traditional risk factors for a heightened risk
of cardiovascular events and to compare it to traditional
factors and differences in EAT thickness and density to
provide a potential imaging biomarker for cardiovascular
risk assessment.

Methods
Study design
This study followed the Declaration of Helsinki principles
and received approval from the institutional review board
and local ethics committee (ID 2021-659). From April to
July 2022, this retrospective single-centre study included
patients meeting clinical criteria for contrast-enhanced
cardiac CT per European Society of Cardiology guidelines
[25] and who exhibited the detection of at least one cor-
onary plaque in cardiac CT. None of these patients had a
history of ischaemic cardiac disease. Exclusions applied to
those with a prior pacemaker or cardiac stent implanta-
tion or severe image artefacts. Clinical parameters were
retrospectively obtained from an existing traditional
clinical risk factors questionnaire.

Patient collective and plaque distribution
In total, 61 patients (13 female, 48 male, mean age
61 years, range: 40–82 years) were selected according to

inclusion and exclusion criteria. The patients presented
with a total of 306 plaques (265 calcified, 19 non-calcified,
22 mixed). First, all patients who presented with HRP
were identified. HRP was defined as plaques expressing at
least one of the following high-risk features: spotty cal-
cification, positive remodelling, low attenuation, and
napkin-ring sign [4]. Three additional factors associated
with an elevated risk of cardiovascular events were
determined: plaques with at least 50% stenosis, plaques
with at least 70% stenosis, or triple-vessel coronary artery
disease (regardless of the degree of stenosis) [2, 3]. The
patient group was subsequently divided into multiple
subgroups (“HRP”, “50%”, “70%”, and “triple-vessel”
group) based on the presence or absence of these factors.
Furthermore, the patient population was categorised into
two main groups: one consisting of individuals who met at
least one of the elevated risk factor criteria (“combined
group”) and another consisting of patients who did not
exhibit any of these risk factors (Table 1).

Cardiac CT imaging
All 61 patients were examined using a first-generation
whole-body dual-source PCCT system (NAEOTOM
Alpha; Siemens Healthcare GmbH, Forchheim,
Germany). The examination utilised a prospective
electrocardiographic (ECG)-gated sequential mode with a
tube voltage of 120 kV and automatic dose modulation.
The CARE keV BQ setting was configured at 64, and the
gantry rotation time was 0.25 s.
To maintain heart rates below 65 beats per minute,

patients received intravenous β-blockers in the 5–10mg
range, provided there were no contraindications, and the
dosage was adjusted based on individual heart rates.
Following, sublingual nitroglycerin (0.8 mL) was admi-
nistered. A non-enhanced cardiac CT scan was conducted
to evaluate coronary artery calcification. Subsequently, a
contrast-enhanced scan was performed using 80 mL of
iodine contrast (Imeron 400, Bracco Imaging Deutschland
GmbH, Konstanz, Germany), accompanied by a 20 mL
saline chaser (NaCl 0.9%) at a weight-based flow rate of
5–6mL/sec. CCTA was initiated by bolus tracking in the
ascending thoracic aorta.

Table 1 Patient collective overview. Mean and (SD) are given for continuous variables

Patient characteristics Overall 50% Stenosis 70% Stenosis HRP Triple-vessel Combined

n 61 16 5 22 19 32

Age 60.95 (8.85) 61.50 (8.68) 59.40 (4.08) 60.00 (8.83) 62.11 (10.40) 60.84 (8.94)

Sex m/f 48/13 16/0 5/0 21/1 18/1 31/1

Agatston Score 261.70 (618.28) 709.84 (1059.83) 1350.84 (1704.49) 317.10 (109.31) 362.2 (225.33) 422.78 (809.25)

Plaques (calcified, non-calcified, mixed) 306 (265, 19, 22) 171 (151, 5, 15) 77 (64, 5, 8) 165 (136, 11, 18) 175 (155, 5, 15) 253 (219, 14, 20)
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Cardiac CT imaging analysis
Coronary artery calcification assessment involved non-
enhanced axial scans with a slice thickness of 3 mm and
Qr36 kernel, which were processed using dedicated syn-
go.via software (Siemens Healthcare GmbH, Forchheim,
Germany) to estimate the degree of coronary artery cal-
cification using the Agatston score. In addition, axial
contrast-enhanced CCTA images were reconstructed
with a slice thickness of 0.6 mm and an increment of
0.4 mm, employing a soft vascular kernel (Bv40).
Subsequently, the contrast-enhanced images underwent

an anonymisation process and were exported as Digital
Imaging and Communications in Medicine files. They
were then transformed into Neuroimaging Informatics
Technology Initiative format and then imported into 3D
Slicer (Version 4.11), a specialised segmentation tool [26].
The evaluation of coronary arteries in terms of plaque

morphology and the extent of stenosis was carried out by
a senior radiologist possessing over a decade of experience
in cardiothoracic imaging. All 306 coronary plaques were
segmented manually by a medical student with over one
year of experience in image segmentation and validated by
the same senior radiologist.
In addition, the EAT density (reported in Hounsfield

units (HU)) and mean thickness (reported in mm) of every
patient were measured. EAT density was measured using
virtual monoenergetic reconstructions at 70 keV as
recommended in literature with a slice thickness of
0.6 mm, an increment of 0.4 mm, and a soft vascular
kernel (Qr40) [27]. Using Horos PACS (Version 3.3.6), a
region of interest (ROI) was set in the EAT next to the
origin of the right coronary artery on a single slice and the
mean, minimum and maximum density were measured.
The ROI size was chosen as large as possible while
avoiding adjacent structures [28]. EAT thickness was
assessed after reconstruction along the short axis of the
heart by calculating the mean of three distinct measure-
ments from the outer myocardium to the visceral

epicardium at the basal level of the right ventricular
anterior free wall [29]. Figure 1 shows an example seg-
mentation of a coronary plaque and example measure-
ments for EAT density and thickness.

Radiomics feature extraction and statistical analysis
Using pyradiomics (version 3.0.1) [30], radiomics features,
including shape, first-order, Grey Level Co-occurrence
Matrix, Grey Level Dependence Matrix, Grey Level Size
Zone Matrix, Grey Level Run Length Matrix, and
Neighbouring Grey Tone Difference Matrix, were
extracted. The texture features were imported into R
Statistics (Version 4.2.0, R Core Team, Vienna, Austria)
[31] for further analysis, conducted in RStudio (Version
2022.07.1+ 554, Boston, MA) [32]. Mean and standard
deviation (SD) values were computed. All radiomics fea-
tures underwent normalisation using the z-score formula:

z ¼ ððX � μÞÞ=σ

A clustered heatmap, visually representing the distribu-
tion of these extracted features, was generated using the
ComplexHeatmap package for R. A permutation-based
random forest (RF) classification with the Boruta package
for R was conducted for every subset of patients. Boxplots
of the selected features were generated for visualisation.

Combination of radiomics features and EAT density
Two scatter plots were created, mapping the radiomics
features “original_firstorder_Kurtosis” and “origi-
nal_glrlm_RunLengthNonUniformityNormalized” to the
EAT mean density. Within these plots, patients of the
combined group were compared to their counterparts.

Results
Plaque assessment
A total of 306 plaques were segmented in the 61 patients
enroled in this study. Two hundred and sixty-five of these

Fig. 1 a Example segmentation of a coronary plaque (in green) in a 63-year-old male. b Example measurement of EAT thickness in a 69-year-old female.
c Example measurement of EAT density in a 64-year-old male
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plaques were completely calcified, 19 were non-calcified,
and 22 were partially calcified/mixed. On average, patients
presented with five plaques (range: 1–26). The distribu-
tion of the plaques within the patient subsets was as fol-
lows: 171 plaques in 16 patients (average: 10.69) in the
50% group, 77 plaques in five patients (average: 15.40) in
the 70% group, 165 plaques in 22 patients (average: 7.50)
in the HRP group, 175 plaques in 19 patients (average:
9.21) in the triple-vessel group, and 253 plaques in 32
patients (average: 7.91) in the combined group (Table 1).

EAT comparison
EAT thickness and density of all five groups were inves-
tigated and compared to the patients not exhibiting any of
the risk factors (non-combined group). A p-value below
0.05 was considered significant. None of the groups dif-
fered significantly from the non-combined group
regarding EAT thickness (p= 0.222 – p= 0.877).
Regarding EAT density, mainly significant differences
between the groups were found. All groups showed a
higher mean EAT density than non-affected patients:
−97.55 HU for the non-combined group to −87.28 HU
(p= 0.008) for the 50% group, −94.60 HU (p= 0.424) for
the 70% group, −87.92 HU (p= 0.006) for the HRP,
−91.27 HU (p= 0.066) for the triple-vessel, and
−89.35 HU (p= 0.008) for the combined group. Except
for the triple-vessel and the 70% group, these differences
were all significant. The minimum and maximum density
followed the same tendencies. Only the minimum density
of the 70% group was slightly lower compared to the non-
combined group (Table 2). The EAT’s mean densities for
all groups are visualised as boxplots (Fig. 2).

Cluster analysis
The extracted radiomics features of all patients were
subjected to unsupervised k-means clustering. The
resulting heatmap illustrates a separation of patients into
two main clusters (Fig. 3). A deeper investigation revealed

a notable difference exclusively in the Agatston scores.
The 26 patients forming the left cluster presented with a
mean Agatston score of 455.25, while the mean of the 35
patients in the right cluster was 113.69.

Feature selection
Texture features aiding in distinguishing between patient
groups were identified using RF feature selection. This
selection process was carried out for all the subgroups and
the combined group. The features “original_ngtdm_Busy-
ness” and “original_glcm_MaximumProbability” were
found to distinguish between patients with and without at
least 50% stenosis, while patients of the 70% group could be
discriminated by the features “original_glcm_Idmn”, “ori-
ginal_gldm_DependenceEntropy”, and “original_glszm_-
ZoneEntropy”. For identifying the triple-vessel group, the
features “original_glrlm_RunPercentage”, “origi-
nal_glrlm_LongRunEmphasis”, and “original_first-
order_Kurtosis” were selected. Regarding the HRP group,
only the feature “original_glrlm_RunLengthNonUniformi-
tyNormalized” was identified as distinctive. Differentiation
of the combined group was made possible through the
feature “original_firstorder_kurtosis”. (Fig. 4). A summary
of all the selected features and their values in the respective
groups is offered in Table 3 and the most important
selected features from each group are presented as boxplots
(Fig. 5).

Association of heterogeneity, EAT density, and elevated
cardiovascular risk
Two scatter plots were generated, illustrating the relationship
between radiomics features (“original_firstorder_Kurtosis”
and “original_glrlm_RunLengthNonUniformityNormalized”)
and the mean density of EAT. The comparison focused on
patients in the combined group versus their counterparts.
These plots illustrate how patients in the combined group
with an elevated risk for cardiovascular events overall pre-
sented with a higher EAT mean density and more

Table 2 EAT data overview

Overall Non-

combined

50% 70% HRP Triple-vessel Combined

EAT

thickness

10.44 (2.55) 10.51 (2.90) 10.80 (2.54)

[p= 0.730]

11.57 (1.38)

[p= 0.222]

10.14 (2.27)

[p= 0.610]

10.62 (2.00)

[p= 0.877]

10.37 (2.24)

[p= 0.833]

Mean

density

−93.25

(12.23)

−97.55

(12.50)

−87.28 (11.37)

[p= 0.008]

−94.60 (6.04)

[p= 0.424]

−87.92 (11.51)

[p= 0.006]

−91.27 (10.43)

[p= 0.066]

−89.35 (10.73)

[p= 0.008]

Min

density

−165.44

(23.08)

−173.69

(24.90)

−158.69 (19.96)

[p= 0.034]

−174.40 (17.18)

[p= 0.939]

−154.95 (18.20)

[p= 0.003]

−158.68 (19.30)

[p= 0.024]

−157.97 (18.69)

[p= 0.007]

Max

density

−22.31

(16.24)

−27.55

(17.54)

−13.25 (10.13)

[p= 0.001]

−11.20 (4.44)

[p= 0.0002]

−17.18 (13.32)

[p= 0.020]

−20.05 (12.98)

[p= 0.096]

−17.56 (13.55)

[p= 0.015]

Every group is compared to the group of patients that do not exhibit any of the risk factors (non-combined). Mean and (SD) are given for continuous variables
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Fig. 3 Unsupervised clustering heatmap of coronary plaque radiomics features
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heterogeneous plaque texture according to the selected fea-
tures (Fig. 6).

Discussion
This study demonstrates how radiomics feature analysis
of coronary plaque texture can offer a way to detect pla-
ques correlated with an elevated risk for cardiovascular
events. The analysis of EAT thickness did not reveal any
meaningful differences. Investigation of EAT density
produced significant differences for the 50% group, the
HRP group, and the combined group with a higher den-
sity in affected patients. However, for the two groups, no
significant difference could be described, which empha-
sises the uncertainty about the relation between EAT
density and an elevated cardiovascular risk of coronary
artery disease that persists in current literature [33]. This

dissent may be countered by developing and integrating a
radiomics signature of coronary plaque texture into the
risk prediction process.
The radiomics profile outlined a more heterogenous

plaque texture in patients with an elevated risk of cardi-
ovascular events. The HRP group and the combined
group could be best discriminated by a more hetero-
genous plaque texture. In line with these findings, two out
of three relevant discriminating features indicate a more
heterogeneous texture of the plaque in the 70% group. On
the other hand, patients with only intermediate coronary
artery stenosis showed more homogenous plaque struc-
tures and could not be differentiated by heterogeneity.
Hence, this study outlines the correlation of a more het-
erogeneous plaque texture with conventional risk factors
of cardiac plaques. In addition, the combination of EAT
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Fig. 4 Random forest (RF) feature selection for the combined group: features relevant to the differentiation are in green
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density and heterogenous plaque texture might offer an
imaging biomarker for cardiovascular risk prediction in
the future.
Numerous studies investigated the correlation between

EAT thickness, EAT density, and CVD or elevated risk for
cardiovascular events. However, some inconsistencies in
their findings exist.
Goeller et al investigated if CVD, plaque inflammation,

and MACE are connected to EAT density and volume.
Their study involving non-contrast cardiac CT scans of
456 asymptomatic patients found EAT volume to be
higher and EAT density to be lower in individuals pre-
senting with coronary calcium compared to those with-
out. EAT volume was also positively correlated with the
degree of atherosclerosis. In addition, lower EAT density
and higher volume were significantly associated with
MACE [34]. While some studies are in line with these
results [35, 36], others come to different conclusions.
A study by Pracon et al reported an association between

increased EAT density and coronary atherosclerosis
defined as CVD or a positive Agatston score. A total of
164 patients underwent coronary angiography, 36 of
whom presented with CVD. These patients showed sig-
nificantly higher EAT density than subjects without CVD
(−78.99 ± 4.12 vs. −81.57 ± 4.64 HU, p < 0.01). Further-
more, the density was positively correlated with the
patients’ Agatston score (r= 0.23, p < 0.01) [37].
Regarding EAT density, our results mostly agree with

the studies reporting an increased density in subjects with
a higher degree of CVD or elevated cardiovascular risk.
However, the assessment of EAT thickness did not pro-
duce any significant differences. This reflects the incon-
sistency found in the literature and points towards the
possible necessity of expanding the focus and including
coronary plaque texture features in the risk assessment
process.

Furthermore, the coronary plaque texture has been
subject to recent studies. To predict MACE over a median
three-year follow-up, Chen et al developed a radiomic
plaque signature involving 14 textural features and two
shape features. The retrospective study included a radio-
mic signature development set consisting of 225 patients
with 419 plaques. In conclusion, a high radiomic signature
was independently associated with the incidence of
MACE (hazard ratio= 2.01; p= 0.005) [38]. These pro-
mising results should be motivation to further investigate
coronary plaque texture to understand its association with
other available risk predictors and develop a way to
combine the radiomic signature with traditional risk
factors.
A retrospective study by Tobe et al involving 691

patients who underwent percutaneous coronary inter-
vention and carotid ultrasound, aimed to explore the
relationship between carotid artery ultrasound findings
and clinical outcomes. The maximum carotid intima-
media thickness (CIMT) and characteristics of carotid
plaques were assessed visually. Patients with hetero-
geneous carotid plaques (maximum CIMT ≥ 1.5 mm and
heterogeneous texture) were found to be at a higher risk
of MACE, suggesting the need for more aggressive med-
ical therapy and vigilant follow-up in these patients [39].
While this investigation’s results are based on different
diagnostic modalities, the findings are in line with our
study, strengthening the suggestion that a heterogeneous
plaque texture indicates a heightened cardiovascular risk.
Nonetheless, certain limitations persist in this study.

The approach as a single-centre study and the relatively
modest size of the study cohort were due to the very novel
implementation of the PCCT scanner. Consequently, the
reproducibility challenge associated with radiomics ana-
lysis was not thoroughly addressed. Vital steps in trans-
lating our findings into clinical practice involve

Table 3 Selected features of every patient subset

Group Feature Value – group Value – counterpart Value – non-combined

50% ngtdm_Busyness 0.10 (0.10) 0.21 (0.32) 0.23 (0.38)

glcm_MaximumProbability 0.08 (0.12) 0.10 (0.12) 0.11 (0.14)

70% glcm_Idmn 0.94 (0.04) 0.91 (0.04) 0.91 (0.04)

gldm_DependenceEntropy 5.43 (2.45) 4.82 (1.39) 4.60 (1.39)

glszm_ZoneEntropy 5.13 (2.28) 4.61 (1.35) 4.39 (1.37)

HRP glrlm_RunLengthNonUniformityNormalized 0.94 (0.05) 0.93 (0.04) 0.94 (0.04)

Triple-vessel glrlm_RunPercentage 0.97 (0.02) 0.96 (0.03) 0.97 (0.02)

glrlm_LongRunEmphasis 1.09 (0.06) 1.14 (0.14) 1.13 (0.13)

firstorder_Kurtosis 2.64 (0.56) 3.19 (4.99) 2.30 (0.51)

Combined firstorder_Kurtosis 3.67 (5.67) 2.30 (0.51) 2.30 (0.51)

Mean and (SD) are given for continuous variables
GLCM grey level co-occurrence matrix, GLDM grey level dependence matrix, GLRLM grey level run length matrix, GLSZM grey level size zone matrix, NGTDM
neighbouring grey tone difference matrix
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standardising texture analysis methodologies and ensur-
ing reproducibility across various PCCT platforms. Par-
ticularly the 70% group only consisted of five patients,
thereby possibly making it susceptible to overfitting by the
RF feature selection algorithm. Nevertheless, other
inquiries outlined that PCCT offers deeper insights into
texture variations in comparison to EICT [40]. The
enhanced stability of radiomics features observed in the
PCCT context, suggests a promising avenue for improv-
ing comparability through PCCT implementation [23].
Future studies should focus on using a prospective mul-
ticentre approach involving a more extensive study
population with sufficient clinical data to address these
limitations.
In conclusion, structural differences in coronary plaque

texture, mainly a higher heterogeneity, were found in
patients with an elevated risk for cardiovascular events.
EAT density seemed to be higher in patients expressing
these risk factors, while no significant change in EAT
thickness could be detected. Using advanced imaging
techniques and modern computational analysis to inte-
grate a combination of the radiomics plaque texture sig-
nature and EAT attenuation into traditional risk factors
may promise to further improve cardiac risk assessment
and management in the future.
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