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Abstract

Objectives To develop and validate a dual-energy CT (DECT)-based model for noninvasively differentiating between
benign and malignant breast lesions detected on DECT.

Materials and methods This study prospectively enrolled patients with suspected breast cancer who underwent
dual-phase contrast-enhanced DECT from July 2022 to July 2023. Breast lesions were randomly divided into the
training and test cohorts at a ratio of 7:3. Clinical characteristics, DECT-based morphological features, and DECT
quantitative parameters were collected. Univariate analyses and multivariate logistic regression were performed to
determine independent predictors of benign and malignant breast lesions. An individualized model was constructed.
Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic ability of the model,
whose calibration and clinical usefulness were assessed by calibration curve and decision curve analysis.

Results This study included 200 patients (mean age, 49.9 ± 11.9 years; age range, 22–83 years) with 222 breast lesions.
Age, lesion shape, and the effective atomic number (Zeff) in the venous phase were significant independent predictors
of breast lesions (all p < 0.05). The discriminative power of the model incorporating these three factors was high, with
AUCs of 0.844 (95%CI 0.764–0.925) and 0.791 (95% CI 0.647–0.935) in the training and test cohorts, respectively. The
constructed model showed a preferable fitting (all p > 0.05 by the Hosmer-Lemeshow test) and provided enhanced
net benefits than simple default strategies within a wide range of threshold probabilities in both cohorts.

Conclusion The DECT-based model showed a favorable diagnostic performance for noninvasive differentiation
between benign and malignant breast lesions detected on DECT.

Critical relevance statement The combination of clinical and morphological characteristics and DECT-derived
parameter have the potential to identify benign and malignant breast lesions and it may be useful for incidental breast
lesions on DECT to decide if further work-up is needed.

Key Points
● It is important to characterize incidental breast lesions on DECT for patient management.
● DECT-based model can differentiate benign and malignant breast lesions with good performance.
● DECT-based model is a potential tool for distinguishing breast lesions detected on DECT.

Keywords Breast neoplasms, Diagnostic imaging, Dual-energy computed tomography, Logistic models, Quantitative
parameters
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Graphical Abstract

The DECT-based model shows a favorable diagnostic performance, with potential for noninvasive 
differentiation between benign and malignant breast lesions detected on DECT.

Differentiating between benign and malignant 
breast lesions using dual-energy CT-based model: 
development and validation

Insights imaging (2024) Xia H, Chen YY, Cao AY, et al. DOI: 10.1186/s13244-024-01752-2

Introduction
Breast cancer is now the most common cancer and the
leading cause of cancer-related deaths among women [1].
Despite not being a conventional method for assessing
breast lesions, the growing prevalence and utilization of
computed tomography have revealed that incidental
breast lesions are detected in a range of 0.3% to 7.63% of
cases [2–4]. Furthermore, 31.0% to 70.0% of these inci-
dental breast lesions have been found to be malignant
upon pathological findings [5, 6]. Hence, incidental breast
lesions on CT represent a clinical dilemma for the general
radiologist to decide if further work-up is needed.
Dual-energy CT is a technique that collects two sets of

raw data of high and low energies [7]. A wide range of
virtual monoenergetic images (VMIs) and material
decomposition images may be obtained and reconstructed
to increase contrast enhancement between soft tissues
and for material separation. DECT has exhibited potential
clinical applications in tumor imaging [8–12]. Several
studies have used DECT to determine optimal energies
for VMIs to display breast lesions [13–15], differential
diagnosis of benign and malignant breast lesions [16–18],
the assessment of lymph node metastasis [19–21], the
detection of distant metastasis in breast cancer [22, 23],
and the prediction of the status of immunohistochemical

biomarkers of breast cancer [24–26]. Considering that
DECT is now routinely used for clinical examinations and
offers relatively high tissue resolution, it might be helpful
in characterizing multifocal or multicentric breast lesions
during the systemic staging of breast cancers, potentially
reducing the need for MRI. Furthermore, it could be
beneficial to differentiate incidental breast lesions on
DECT to reduce the number of unnecessary referrals to
breast units. Previous reports [16–18, 27] have indicated
that DECT quantitative parameters, including iodine
concentration (IC), effective atomic number (Zeff), and
the slope of the curve (λHU), have good diagnostic values
in discriminating between benign and malignant breast
lesions. However, no studies have considered the clinical
and imaging characteristics for differential diagnosis. It is
well known that patients with benign and malignant
breast lesions have differences in clinical features [28] and
imaging manifestations [5, 6, 29–31], and considering this
information may be helpful in differential diagnosis and
would better align with clinical practice.
We hypothesized that DECT quantitative parameters

combined with clinical and morphological features could
be useful for the characterization of benign and malignant
breast lesions. The aim of this study was to develop and
validate a DECT-based model for differentiating between
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benign and malignant breast lesions detected on DECT to
aid in further work-up.

Materials and methods
This prospective, single-center study was approved by the
ethics committee of our institution, and all individuals
provided signed informed consent.

Patient cohort
Our study consecutively enrolled patients with suspected
breast cancer who underwent chest dual-phase contrast-
enhanced DECT scans before surgeries for evaluation of the
status of mediastinal and axillary lymph nodes or under-
lying lung neoplasms from July 2022 to July 2023 according
to our local protocol. Inclusion criteria were: (1) BI-RADS
4A/4B/4C or 5 breast lesions detected by ultrasound or
mammography; (2) no previous exposure to chemotherapy
or radiotherapy of the breast; (3) no history of iodine allergy
or renal insufficiency (estimated glomerular filtration rate
≤ 30mL/min). Exclusion criteria were: (1) incomplete
pathological information, (2) invisible target lesions on
DECT images, and (3) poor image quality caused by severe

metal artifacts. Eligible breast lesions were included and
randomly divided into training and test cohorts at a ratio of
7:3. A study flowchart is shown in Fig. 1.

Clinical and morphological characteristics
According to previous studies [32, 33], the odds ratio
(OR) for breast cancer increased with increasing FGT and
BPE. Clinical features and morphological characteristics
from DECT images were collected, including age, family
history, menopausal status, symptoms, lesion location,
fibroglandular tissue (FGT), background parenchymal
enhancement (BPE), lesion shape, margin, lesion
enhancement, inner enhancement of lesions, and max-
imum lesion diameter. Two radiologists with two years of
experience in breast imaging who were blinded to
pathological findings evaluated DECT-based morpholo-
gical characteristics in consensus, resolving any dis-
crepancies through consultation with a senior radiologist
with 20 years of experience in breast imaging. The
assessment of imaging morphological features was based
on the MRI-BI-RADS lexicon [34] and a previous study
[30]. On DECT images, breasts with almost entirely fat or

Fig. 1 Study flowchart
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scattered fibroglandular tissue (BI-RADS A or B) were
classified as non-dense FGT, while breasts with hetero-
geneous or extremely dense fibroglandular tissue (BI-
RADS C or D) were classified as dense FGT. Minimal and
mild BPE were categorized as mild, while moderate and
marked BPE were categorized as moderate/marked. Oval
and round masses were considered regular shapes,
otherwise, they were considered irregular in lesion shape.
Irregular or spiculated margins were non-circumscribed.
Non-mass enhancement (NME) included focal, linear,
segmental, regional, multiple regions, and diffuse
enhancement. Rim enhancement for mass enhancement
and clumped or clustered ring enhancement for NME
were classified as inner heterogeneous enhancement.
Histopathological data of all lesions were extracted from
the pathological reports in the electronic medical records
system.

DECT image acquisition
All participants underwent chest contrast-enhanced CT
with a 128-row spectral dual-layer detector CT scanner
(IQon Spectral CT, Philips Health Systems) in the prone
position for proper spreading of breast tissues to facilitate
the visualization of any abnormalities. The detailed DECT
protocol is provided in Appendix Table E1 (electronic
supplementary material). An iodinated contrast agent
(Ultravist 370, Bayer Schering Pharma) at 1.5 mL/kg was
injected via the antecubital vein at 2–3mL/s in each
enrolled subject, followed by administration of 30 mL
saline at the same rate. Arterial phase scanning was
initiated using a bolus-tracking method with a 100
Hounsfield unit (HU) threshold in the descending aorta
and an additional delay of 10 s. The venous phase scan
was started 25 s after the end of the arterial phase scan.
We recorded the CT dose index volume (CTDIvol) and

the dose length product (DLP) for each patient, and by
multiplying the DLP by a conversion factor (k= 0.014
mSv/mGy · cm), the effective radiation dose was deter-
mined [35].

DECT quantitative parameters
DECT images were automatically reconstructed on a
dedicated workstation (IntelliSpace Portal 10.0, Philips
Healthcare). DECT quantitative parameters were mea-
sured by two radiologists with 2 years of experience in
breast imaging in consensus, who were blinded to
pathological findings, and any disagreements were
resolved by consulting a senior radiologist with 20 years of
experience in breast imaging. Circular regions of interest
(ROIs) were placed on axial slices showing the maximum
dimension of each breast lesion. ROIs were adjusted as
large as possible on the lesions while excluding obvious
necrosis, calcifications, and major vessels. Similar-sized

ROIs were also placed on adjacent upper and lower slices,
as well as on normal breast parenchyma and the aorta for
background comparison. An example of ROI placement is
illustrated in Appendix Figure E1. For each lesion, ROIs
were kept consistent on both arterial- and venous-phase
DECT images with the copy-and-paste function in the
workstation. All measurements were performed on three
slices and then averaged.
The DECT quantitative parameters of attenuation (HU)

on conventional images and 40-keV VMIs, IC (mg/mL),
Zeff (absolute numbers), and λHU in the arterial and
venous phase were measured. The IC and Zeff of breast
lesions were normalized by dividing them by the corre-
sponding values for the aorta or normal breast par-
enchyma (nIC and nZeff), respectively. The nIC, nZeff,
and λHU of breast lesions were determined as follows:

nIC ¼ ICbreast lesion mg=mLð Þ
ICaorta=normal glandular tissue mg=mLð Þ

nZeff ¼ Zeff breast lesion
Zeff aorta=normal glandular tissue

λHU ¼ HU40keV � HU70keV

70� 40ð ÞkeV

DECT-based model construction and evaluation
The clinical characteristics, DECT morphological indexes,
and DECT quantitative parameters of breast lesions were
compared by univariable analysis based on pathological
findings in the training cohort. Only parameters with
p < 0.05 in univariate analysis were selected as candidates
for the subsequent multivariate logistic regression to
identify independent predictors. According to the relevant
independent predictors and respective regression coeffi-
cients, a DECT-based model was developed to differ-
entiate between benign and malignant breast lesions
detected on DECT.
The nomogram visualized the model to make it read-

able and operable. The diagnostic performance of the
model was assessed by determining the area under the
ROC curve (AUC) and its corresponding 95% confidence
interval (CI), and the DeLong test was performed to
compare AUCs in the training and test cohorts to assess
the outfitting and robustness of the model. The sensitivity,
specificity, and accuracy of the model in both cohorts
were also determined. The Hosmer-Lemeshow test and
calibration curves were utilized to evaluate the goodness
of fit of the model. Furthermore, decision curve analysis
was performed to determine the clinical utility of the
model in both cohorts.
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Statistical analysis
A data analyst who was unaware of the parameters per-
formed statistical analyses. Data normality was assessed
using the Kolmogorov-Smirnov test. Normally distributed
continuous variables were expressed as mean ± standard
deviation and non-normally distributed variables as median
and quartiles. Categorical variables were expressed as fre-
quency and frequency distribution. In univariate analysis,
both groups were compared by the independent t-test or
Mann-Whitney U test for continuous variables and the chi-
square test or Fisher’s exact test for categorical variables.
Multivariate logistic regression analysis was conducted to

identify independent factors differentiating between benign
and malignant breast lesions. To obtain the optimal model,
the R package function ‘glm()’ was used to select the model
with the smallest Akaike’s Information Criteria and to
remove any nonsignificant variables. The R software (version
4.2.1; R Foundation for Statistical Computing) was used for
data analyses, and p < 0.05 indicated statistical significance.

Results
Clinical and morphology characteristics
This study enrolled 227 patients with suspected breast
cancers. Patients were excluded due to incomplete

Table 1 Clinical and morphological characteristics of benign and malignant breast lesions in the training and test cohorts

Variable Training cohort Test cohort

All (n= 155) Malignant (n= 126) Benign (n= 29) p All (n= 67) Malignant (n= 53) Benign (n= 14) p

Age (y) 50.1 ± 11.6 52.0 ± 9.9 41.9 ± 14.6 0.001 49.3 ± 12.7 51.2 ± 11.3 41.9 ± 15.1 0.046

Family history 0.57 0.69

Present 23 (14.8) 20 (15.9) 3 (10.3) 11 (16.4) 8 (15.1) 3 (21.4)

Absent 132 (85.2) 106 (84.1) 26 (89.7) 56 (83.6) 45 (84.9) 11 (78.6)

Location 0.26 0.56

Left 76 (49.0) 65 (51.6) 11 (37.9) 31 (46.3) 26 (49.1) 5 (35.7)

Right 79 (41.0) 61 (48.4) 18 (62.1) 36 (53.7) 27 (50.9) 9 (64.3)

FGT 0.18 1.00

Dense 116 (74.8) 91 (72.2) 25 (86.2) 55 (82.1) 43 (81.1) 12 (85.7)

Nondense 39 (25.2) 35 (27.8) 4 (13.8) 12 (17.9) 10 (18.9) 2 (14.3)

BPE 0.06 0.79

Mild 101 (65.1) 87 (69.0) 14 (48.3) 38 (56.7) 31 (58.5) 7 (50.0)

Moderate/marked 54 (34.9) 39 (31.0) 15 (51.7) 29 (43.2) 22 (41.5) 7 (50.0)

Menopausal status 0.006 0.09

Premenopausal 85 (54.8) 62 (49.2) 23 (79.3) 30 (44.8) 27 (50.9) 3 (21.4)

Postmenopausal 70 (45.2) 64 (50.8) 6 (20.7) 37 (55.2) 26 (49.1) 11 (78.6)

Symptoms 0.65 0.008

Mass 94 (60.6) 78 (61.9) 16 (55.2) 42 (62.7) 38 (71.7) 4 (28.6)

Others 61 (39.4) 48 (38.1) 13 (44.8) 25 (37.3) 15 (28.3) 10 (71.4)

Shape < 0.001 0.35

Regular 48 (31.0) 30 (23.8) 18 (62.1) 24 (35.8) 17 (32.1) 7 (50.0)

Irregular 107 (69.0) 96 (76.2) 11 (37.9) 43 (64.1) 36 (67.9) 7 (50.0)

Margin 0.006 0.03

Circumscribed 11 (7.1) 5 (4.0) 6 (20.7) 4 (6.0) 1 (1.9) 3 (21.4)

Noncircumscribed 144 (92.9) 121 (96.0) 23 (79.3) 63 (94.0) 52 (98.1) 11 (78.6)

Enhancement 1.00 1.00

Mass 116 (74.8) 94 (74.6) 22 (75.9) 53 (79.1) 42 (79.2) 11 (78.6)

Nonmass 39 (25.1) 32 (25.4) 7 (24.1) 14 (20.9) 11 (20.8) 3 (21.4)

Inner enhancement 0.12 0.15

Homogeneous 68 (43.9) 51 (40.5) 17 (58.6) 34 (50.7) 24 (45.3) 10 (71.4)

Heterogeneous 87 (56.1) 75 (59.5) 12 (41.4) 33 (49.3) 29 (54.7) 4 (28.6)

Max diameter 2.52 ± 1.50 2.56 ± 1.44 2.34 ± 1.75 0.056 2.38 ± 1.17 2.43 ± 1.04 2.18 ± 1.61 0.59

Quantitative variables are mean ± standard deviation. Categorical or qualitative variables were expressed as frequency and frequency distribution. Data in the brackets
indicated the percentage of different clinical and imaging features in different cohorts

Xia et al. Insights into Imaging          (2024) 15:173 Page 5 of 12



Ta
b
le

2
D
EC

T
qu

an
tit
at
iv
e
pa
ra
m
et
er
s
of

be
ni
gn

an
d
m
al
ig
na
nt

br
ea
st

le
si
on

s
in

th
e
tr
ai
ni
ng

an
d
te
st

co
ho

rt
s

V
ar
ia
b
le

Tr
ai
ni
ng

co
ho

rt
Te

st
in
g
co

ho
rt

A
ll
(n

=
15

5)
M
al
ig
na

nt
(n

=
12

6)
B
en

ig
n
(n

=
29

)
p

A
ll
(n

=
67

)
M
al
ig
na

nt
(n

=
53

)
B
en

ig
n
(n

=
14

)
p

C
on

ve
nt
io
na
la
tt
en

ua
tio

n
(H
U
)

In
th
e
ar
te
ria
lp

ha
se

48
.9
±
14
.3

50
.2
±
14
.4

43
.6
±
12
.7

0.
02

48
.4
±
11
.3

49
.8
±
10
.6

43
.2
±
12
.6

0.
09

In
th
e
ve
no

us
ph

as
e

83
.1
±
21
.8

85
.9
±
19
.8

70
.9
±
26
.3

0.
00
7

83
.9
±
19
.4

87
.6
±
17
.6

70
.2
±
20
.3

0.
00
9

40
-k
eV

VM
Is
at
te
nu

at
io
n
(H
U
)

In
th
e
ar
te
ria
lp

ha
se

70
.5
(4
8.
0–
92
.7
)

71
.0
(5
2.
9–
95
.4
)

52
.7
(3
7.
8–
84
.5
)

0.
04

65
.7
(4
8.
4–
87
.1
)

70
.4
(5
4.
3–
87
.9
)

55
.8
(4
2.
4–
61
.5
)

0.
05
1

In
th
e
ve
no

us
ph

as
e

17
0.
9
±
61
.5

17
7.
8
±
56
.2

14
0.
5
±
74
.1

0.
02

17
5.
8
±
50
.4

18
4.
9
±
46
.5

14
1.
3
±
51
.2

0.
00
9

IC
(m

g/
m
L)

In
th
e
ar
te
ria
lp

ha
se

0.
37

(0
.1
2–
0.
65
)

0.
38

(0
.1
4–
0.
65
)

0.
30

(0
.0
5–
0.
62
)

0.
22

0.
32

(0
.1
3–
0.
52
)

0.
33

(0
.2
1–
0.
5)

0.
16

(0
.0
6–
0.
54
)

0.
28

In
th
e
ve
no

us
ph

as
e

1.
51

±
0.
71

1.
58

±
0.
66

1.
20

±
0.
84

0.
03

1.
57

±
0.
57

1.
66

±
0.
53

1.
23

±
0.
59

0.
02

nI
C
(ra
tio

of
le
si
on

an
d
ao
rt
a)

In
th
e
ar
te
ria
lp

ha
se

0.
04

(0
.0
1–
0.
08
)

0.
05

(0
.0
2–
0.
08
)

0.
04

(0
.0
1–
0.
07
)

0.
20

0.
04

(0
.0
2–
0.
06
)

0.
04

(0
.0
3–
0.
06
)

0.
02

(0
.0
1–
0.
06
)

0.
22

In
th
e
ve
no

us
ph

as
e

0.
29

±
0.
14

0.
31

±
0.
12

0.
24

±
0.
18

0.
07

0.
29

(0
.2
4–
0.
37
)

0.
3
(0
.2
7–
0.
40
)

0.
26

(0
.1
9–
0.
30
)

0.
04

nI
C
(ra
tio

of
le
si
on

an
d
no

rm
al
pa
re
nc
hy
m
a)

In
th
e
ar
te
ria
lp

ha
se

3.
00

(1
.2
7–
7.
58
)

3.
23

(1
.4
0–
8.
09
)

2.
31

(0
.6
4–
4.
67
)

0.
12

3.
00

(1
.0
8–
11
.1
9)

3.
35

(1
.8
6–
12
.5
)

2.
05

(0
.6
7–
4.
45
)

0.
12

In
th
e
ve
no

us
ph

as
e

11
.0
0
(5
.3
0–
22
.4
8)

12
.3
7
(6
.4
8–
23
.0
1)

5.
39

(3
.2
9–
14
.3
7)

0.
00
6

12
.7
9
(5
.8
0–
19
.5
9)

15
.2
1
(8
.1
5–
21
.0
8)

3.
87

(2
.0
2–
6.
54
)

<
0.
00
1

Ze
ff In

th
e
ar
te
ria
lp

ha
se

7.
46

(7
.3
0–
7.
66
)

7.
47

(7
.3
2–
7.
66
)

7.
37

(7
.2
6–
7.
62
)

0.
07

7.
43

(7
.3
1–
7.
58
)

7.
45

(7
.3
3–
7.
58
)

7.
33

(7
.2
3–
7.
46
)

0.
05
5

In
th
e
ve
no

us
ph

as
e

8.
1
±
0.
36

8.
14

±
0.
32

7.
92

±
0.
45

0.
02

8.
14

±
0.
28

8.
19

±
0.
25

7.
95

±
0.
3

0.
01

nZ
ef
f
(ra
tio

of
le
si
on

an
d
ao
rt
a)

In
th
e
ar
te
ria
lp

ha
se

0.
71

(0
.6
8–
0.
73
)

0.
71

(0
.6
8–
0.
73
)

0.
69

(0
.6
6–
0.
73
)

0.
14

0.
71

±
0.
03

0.
71

±
0.
03

0.
7
±
0.
03

0.
63

In
th
e
ve
no

us
ph

as
e

0.
84

±
0.
04

0.
85

±
0.
04

0.
83

±
0.
05

0.
08

0.
85

(0
.8
3–
0.
87
)

0.
85

(0
.8
3–
0.
87
)

0.
84

(0
.8
2–
0.
86
)

0.
08

nZ
ef
f
(ra
tio

of
le
si
on

an
d
no

rm
al
pa
re
nc
hy
m
a)

In
th
e
ar
te
ria
lp

ha
se

1.
05

(1
.0
2–
1.
07
)

1.
05

(1
.0
2–
1.
07
)

1.
03

(1
.0
1–
1.
06
)

0.
05
7

1.
03

(1
.0
2–
1.
07
)

1.
03

(1
.0
2–
1.
07
)

1.
03

(1
.0
1–
1.
05
)

0.
20

In
th
e
ve
no

us
ph

as
e

1.
12

±
0.
05

1.
13

±
0.
05

1.
09

±
0.
06

0.
01

1.
12

±
0.
05

1.
14

±
0.
04

1.
07

±
0.
05

0.
00
1

λ H
U
40
-7
0
ke
V
(H
U
/k
eV
)

In
th
e
ar
te
ria
lp

ha
se

0.
63

(0
.1
4–
1.
26
)

0.
69

(0
.1
9–
1.
27
)

0.
33

(0
–1
.1
4)

0.
05
4

0.
55

(0
.1
6–
0.
98
)

0.
62

(0
.2
2–
1.
00
)

0.
21

(−
0.
09
–0
.6
2)

0.
05
3

In
th
e
ve
no

us
ph

as
e

2.
95

±
1.
42

3.
1
±
1.
31

2.
31

±
1.
7

0.
03

3.
06

±
1.
13

3.
26

±
1.
05

2.
32

±
1.
13

0.
01

D
at
a
ar
e
m
ea
n
±
st
an

da
rd

de
vi
at
io
n
or

m
ed

ia
n
an

d
qu

ar
til
es
.λ

H
U
40
-7
0
ke
V
sl
op

e
of

th
e
sp
ec
tr
al

H
ou

ns
fi
el
d
un

it
cu
rv
e
be

tw
ee
n
40

an
d
70

ke
V

Xia et al. Insights into Imaging          (2024) 15:173 Page 6 of 12



pathological information (n= 8), invisible target lesions
on DECT images (n= 14), and poor image quality caused
by severe metal artifacts (n= 5). Finally, this study
included 222 breast lesions in 200 patients (mean age,
49.9 ± 11.9 years; age range, 22–83 years). All breast
lesions (100%) were diagnosed by surgical samples, and
pathological findings revealed that 43 lesions were benign
and 179 were malignant. The clinical characteristics and
DECT-derived morphological features of the patients in
the training and test cohorts are summarized in Table 1
and the pathological findings are shown in Appendix
Table E2. No significant differences were found between
the two cohorts in terms of age (50.1 ± 11.6 vs 49.3 ± 12.7,
p= 0.63), family history (14.8% vs. 16.4%, p= 0.92),
location (49% vs. 46.3%, p= 0.82), FGT (74.8% vs. 82.1%,
p= 0.31), BPE (65.1% vs. 56.7%, p= 0.30), menopausal
status (54.8% vs. 44.8%, p= 0.22), symptoms (60.6% vs
62.7%, p= 0.89), shape (31.0% vs. 35.8%, p= 0.58), margin
(7.1% vs. 6.0%, p > 0.99), enhancement (74.8% vs. 79.1%,
p= 0.61), inner enhancement (43.9% vs 50.7%, p= 0.43),
and max diameter (2.52 ± 1.50 vs. 2.38 ± 1.17, p= 0.44).
In the training cohort, univariate analysis showed that

patients with malignant breast lesions were older
(52.0 ± 9.9 vs. 41.9 ± 14.6, p= 0.001), more frequently
postmenopausal (50.8% vs. 20.7%, p= 0.006), and exhib-
ited more irregular shape (76.2% vs. 37.9%, p < 0.001) and
noncircumscribed margins (96% vs. 79.3%, p= 0.006)
compared with those with benign lesions.
The mean CTDIvol for each phase in this study was

6.40 ± 0.85 mGy. The DLP was 233.0 ± 11.31 mGy · cm,
and the mean effective radiation dose was 3.26 ± 0.16 mSv.

DECT quantitative parameters
Table 2 summarizes the DECT quantitative parameters of
benign and malignant breast lesions in the training and
test cohorts. In the arterial and venous phases, the
attenuation on conventional images (50.2 ± 14.4 vs.
43.6 ± 12.7, p= 0.02 and 85.9 ± 19.8 vs. 70.9 ± 26.3,
p= 0.007, respectively) and 40-keV VMIs (71.0
[52.9–95.4] vs. 52.7 [37.8–84.5], p= 0.04 and 177.8 ± 56.2
vs. 140.5 ± 74.1, p= 0.02), and in the venous phase, IC
(1.58 ± 0.66 vs. 1.20 ± 0.84, p= 0.03), Zeff (8.14 ± 0.32 vs
7.92 ± 0.45, p= 0.02), nIClesion/normal glandular tissue

(12.37[6.48–23.01] vs. 5.39 [3.29–14.37], p= 0.006),
nZefflesion/normal glandular tissue (1.13 ± 0.05 vs. 1.09 ± 0.06,
p= 0.01) and λHU (3.1 ± 1.31 vs. 2.31 ± 1.7, p= 0.03) were
higher for malignant lesions than benign lesions in the
training cohort. The diagnostic performances of these
quantitative parameters in the training cohort are illu-
strated in Table 3. ROC curve analysis showed that these
parameters had comparable diagnostic abilities, with a
maximum AUC of up to 0.68.

DECT-based model construction and evaluation
The clinical characteristics, DECT-based morphological
features, and DECT quantitative parameters with statistical
significance in univariate analysis were further included in
multivariate logistic regression analysis, which revealed age,
lesion shape, and Zeff in the venous phase as independent
predictors (Table 4). For individualized prediction of breast
lesions, a DECT-based model was constructed by incor-
porating these predictors and the corresponding regression
coefficients and was visualized by the nomogram (Fig. 2).

Table 3 Performances of DECT quantitative parameters for the differentiation of benign and malignant breast lesions

Variable AUC Threshold Sensitivity (%) Specificity (%) Accuracy (%)

Conventional attenuation (HU)

In the arterial phase 0.64 48.25 56.3 69.0 58.7

In the venous phase 0.68 71.05 76.2 58.6 72.9

40-keV VMIs attenuation (HU)

In the arterial phase 0.62 56.65 71.4 55.2 68.4

In the venous phase 0.66 85.38 97.6 34.5 85.8

IC (mg/mL)

In the venous phase 0.65 1.02 78.6 51.7 73.5

nIC (ratio of lesion and normal parenchyma)

In the venous phase 0.67 7.03 73.8 62.1 71.6

Zeff

In the venous phase 0.66 7.87 81.0 51.7 75.5

nZeff (ratio of lesion and normal parenchyma)

In the venous phase 0.68 1.08 81.0 58.6 76.8

λHU40-70 keV (HU/keV)

In the venous phase 0.65 1.93 81.0 51.7 75.5

All p > 0.05 in the Delong test
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The model showed promising diagnostic performance
in distinguishing between benign and malignant breast
lesions, with AUCs of 0.844 (95%CI, 0.764–0.925) and
0.791 (95%CI, 0.647–0.935) in training and test cohorts,
respectively (Fig. 3). The DeLong test detected no sig-
nificant difference in AUC between the two cohorts
(p= 0.53). The diagnostic performances of the model in
the training and test cohorts are shown in Table 5. Using
the optimal threshold of 0.705, the sensitivity, specificity,
and accuracy of the model were 89.7%, 65.5%, and 85.2%
in the training cohort, respectively, versus 86.8%, 64.3%,
and 82.1% in the test cohort, respectively. And corre-
sponding false negative rates were 10.3% and 13.2% in the
training and test cohorts, respectively. Moreover, Fig. 4

shows the calibration analysis, which suggested a good
concordance between the model-predicted probability
and actual frequency in both cohorts. The Hosmer-
Lemeshow test yielded p-values of 0.85 and 0.33 in the
training and test cohorts, respectively. The decision curve
analysis demonstrated that the novel model provided
enhanced net benefits over the default simple strategies
within a certain range of threshold (training cohort,
25–98%; test cohort, 45–90%) in both cohorts (Fig. 5). In
addition, two examples of the application of the model to
predict the probability of malignant breast lesions detec-
ted on DECT are illustrated in Fig. 6.

Discussion
In this study, DECT quantitative parameters were higher
for malignant breast lesions compared with benign
lesions. The multivariate regression analysis revealed that
age, lesion shape, and Zeff in the venous phase were
independent factors for differentiating between benign
and malignant breast lesions detected on DECT. Fur-
thermore, a DECT-based model was constructed by
integrating these predictors. The AUC, sensitivity, speci-
ficity, accuracy, and false negative rates were 0.844, 89.7%,
65.5%, 85.2%, and 10.3% in the training cohort and 0.791,

Points
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1
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20 25 30 35 40 45 50 55 60 65 70 75 80
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Total Points
0 20 40 60 80 100 120 140 160 180 200 220

Risk
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Fig. 2 Visualized nomogram of the model. The effective atomic number quantification-based model was developed in the training cohort, with lesion
shape, patient age, and effective atomic number in the venous phase (V_Zeff) included. Lesion shape was divided into two groups, with 0 denoting
regular shape and 1 denoting irregular shape

Table 4 Multivariate logistic regression analysis of the DECT-
based model

Variable β Adjusted OR 95%CI p

Intercept −22.778

Shape 1.875 6.518 2.360–18.002 < 0.001

Age 0.093 1.097 1.045–1.152 < 0.001

V_Zeff 2.332 10.3 2.414–43.954 0.002
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86.8%, 64.3%, 82.1%, and 13.2% in the test cohort,
respectively.
This study demonstrated that attenuation on conven-

tional images and 40-keV VMIs, IC, Zeff, and λHU were
higher in malignant breast lesions compared with benign
ones, corroborating previous studies [17, 18]. This might
imply that malignant breast lesions have more potential
microvessels and angiogenesis, as these DECT quanti-
tative parameters correlate to the distribution and con-
tent of contrast agents in lesions. Several studies [36–38]
revealed DECT quantitative parameters in the venous
phase have better diagnostic abilities compared with
counterparts in the arterial phase. This work also found
there were more DECT quantitative parameters with
statistically significant differences in the venous phase
compared with the arterial phase. Future studies focus-
ing on breast lesions could potentially apply venous
phase scans only to reduce radiation exposure. A pos-
sible explanation was that the DECT protocol applied in
this study was based on a chest-enhanced CT protocol,

which might not have allowed the contrast agent to
adequately penetrate breast lesions in the arterial phase,
making venous phase scans more informative for the
assessment of underlying microvessels within the
lesions.
In a previous study [28], patients with malignant breast

lesions were aged 50 to 54 years, which was consistent with
the present study, and age was further proven as an inde-
pendent factor. For breast lesions incidentally detected on
CT, irregular margins, irregular shape, and rim enhance-
ment were highly predictive of malignant breast lesions
[30, 39]. The current findings also confirmed that breast
lesions with non-circumscribed margins and irregular
shapes were more common in malignant lesions, but inner
enhancement of the lesions showed no significant differ-
ence in this study. This might be because heterogeneous
enhancement was not subdivided into clumped or clus-
tered ring enhancement and rim enhancement, thereby
concealing potential differences. To minimize individual
variations in circulation, the IC and Zeff of lesions were
divided by those of the aorta or normal breast parenchyma,
respectively, as previously proposed [16, 17]. However, it
was worth noting that Zeff in the venous phase was an
independent predictor, instead of the normalized para-
meters. Zeff is a measure of material composition that
reflects the atomic number of the element showing the
same x-ray attenuation coefficient. Malignant breast lesions
typically exhibit increased angiogenesis [40]. With more
angiogenesis occurring in breast lesions, the more the
iodine would present, and the higher the effective atomic
number would be. However, with excessive amounts of
iodine contrast in the aorta, it can be difficult to distinguish
a small difference between the nIClesion/aorta and nZefflesion/
aorta for benign and malignant breast lesions. Therefore,
further research is required to determine the practical value
of the standardization approach involving the division of IC
or Zeff of lesions by that of the aorta.
In contrast to prior work [18], the constructed model

consisted of clinical and morphological features and a
quantitative parameter. The model demonstrated pro-
mising discriminative power in both cohorts, confirming
its robustness. The calibration curves and the decision
curve analysis also showed that the model provided a
good fit and a greater net benefit within a certain
threshold range compared with the default simple

Table 5 Diagnostic performances of the model in the training and test cohorts

AUC 95% CI Sensitivity (%) Specificity (%) Accuracy (%)

Training cohort 0.844 (0.764–0.925) 89.7 65.5 85.2

Test cohort 0.791 (0.647–0.935) 86.8 64.3 82.1
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Fig. 3 ROC curve analysis showing the diagnostic abilities of the DECT-
based model in the training and test cohorts. No significant difference
was found in AUC between the two cohorts (DeLong test, p= 0.53)
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strategies in both the training and test cohorts. To the
best of our knowledge, this study first combined clinical
and morphological characteristics with DECT quantita-
tive parameters for the identification of breast lesions
detected on DECT. While the lesions included in this
study were not incidental breast lesions on CT,
the findings could be useful for differentiating benign
and malignant breast lesions incidentally detected
on DECT.

This study had several limitations. Firstly, it was a
single-center study with an imbalance in the numbers of
benign and malignant breast lesions, which could intro-
duce bias. Secondly, some invisible breast lesions on
DECT images were excluded, and most of them were
subsequently identified as benign lesions. Consequently,
the difference in conspicuity between benignity and
malignancy on DECT images may be overlooked. Thirdly,
the consensus reached in morphological feature analysis
may not represent the individual radiologists with differ-
ent levels of experience. Fourthly, the performance of the
model in different types of breast cancers was not
explored, considering the limited number of some types of
breast cancers. In addition, it is possible that other new
DECT parameters could further improve the differential
diagnostic performance for breast lesions. Future multi-
center studies including a more balanced dataset and
additional DECT quantitative parameters, such as elec-
tron density are required. Furthermore, validation pro-
cedures are warranted to assess the model’s performance,
particularly in the context of incidental breast lesions.
In conclusion, a DECT-based model, integrating age,

lesion shape, and Zeff in the venous phase, had favorable
diagnostic performance and can be beneficial for the
identification of benign and malignant breast lesions
detected on DECT to assist general radiologists in
deciding further work-up.

Fig. 4 Agreement between the observed frequency and model-predicted probability of benign and malignant breast lesions in the training and test
cohorts. Calibration curves of the model for the training (a) and test (b) cohorts. The solid blue line denotes the predictive performance, and the gray-
shaded area denotes the 95% CI. Close fitting of the predictive performance to perfect prediction (dashed red line) indicates the model was well fitted.
The Hosmer-Lemeshow test showed p-values of 0.85 and 0.33 in the training and test cohorts, respectively. Circles denote different data points
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Fig. 5 Decision curve analysis in the training and test cohorts. The net
benefit of using the model for clinical decision-making exceeded that of
applying default schemes to treat all patients (treat all scheme) or treat no
patients (treat none scheme) within a wide range of threshold
probabilities in both cohorts
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AUC Area under the curve
BPE Background parenchymal enhancement
CI Confidence interval
CTDIvol CT dose index volume
DECT Dual-energy CT
DLP Dose length product
FGT Fibroglandular tissue
HU Hounsfield unit
IC Iodine concentration
nIC Normalized iodine concentration
NME Non-mass enhancement
nZeff Normalized effective atomic number
ROC Receiver operating characteristic
ROI Regions of interest
VMI Virtual monoenergetic image
Zeff Effective atomic number
λHU Slope of the curve
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