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Abstract

Objectives To generate pseudo-CT (pCT) images of the pelvis from zero echo time (ZTE) MR sequences and compare
them to conventional CT.

Methods Ninety-one patients were prospectively scanned with CT and MRI including ZTE sequences of the pelvis.
Eleven ZTE image volumes were excluded due to implants and severe B1 field inhomogeneity. Out of the 80 data sets,
60 were used to train and update a deep learning (DL) model for pCT image synthesis from ZTE sequences while the
remaining 20 cases were selected as an evaluation cohort. CT and pCT images were assessed qualitatively and
quantitatively by two readers.

Results Mean pCT ratings of qualitative parameters were good to perfect (2–3 on a 4-point scale). Overall
intermodality agreement between CT and pCT was good (ICC= 0.88 (95% CI: 0.85–0.90); p < 0.001) with excellent
interreader agreements for pCT (ICC= 0.91 (95% CI: 0.88–0.93); p < 0.001). Most geometrical measurements did not
show any significant difference between CT and pCT measurements (p > 0.05) with the exception of transverse pelvic
diameter measurements and lateral center-edge angle measurements (p= 0.001 and p= 0.002, respectively). Image
quality and tissue differentiation in CT and pCT were similar without significant differences between CT and pCT CNRs
(all p > 0.05).

Conclusions Using a DL-based algorithm, it is possible to synthesize pCT images of the pelvis from ZTE sequences.
The pCT images showed high bone depiction quality and accurate geometrical measurements compared to
conventional CT.

Critical relevance statement pCT images generated from MR sequences allow for high accuracy in evaluating bone
without the need for radiation exposure. Radiological applications are broad and include assessment of inflammatory
and degenerative bone disease or preoperative planning studies.

Key Points
● pCT, based on DL-reconstructed ZTE MR images, may be comparable with true CT images.
● Overall, the intermodality agreement between CT and pCT was good with excellent interreader agreements for pCT.
● Geometrical measurements and tissue differentiation were similar in CT and pCT images.

Keywords Artificial intelligence, Deep learning, Synthetic computed tomography, Zero echo time, Magnetic resonance
imaging
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Graphical Abstract

UUsing a deep learning-based algorithm, it is possible to synthesize pseudo-CT images of
the pelvis from zero echo time MR sequences. The pseudo-CT images show high bone

depiction quality and accurate geometrical measurements compared to conventional CT.
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Introduction
Pseudo-CT (pCT) imaging enables the generation of CT
images from MR scans [1] which can be valuable for
detecting early inflammatory and degenerative changes in
the spine and hip joints [2, 3], as well as for preoperative
examinations in spine surgery [4] or pre-partum exam-
inations in gynecology [5]. Furthermore, the scaled den-
sity information of Hounsfield units (HU) available in CT
or pCT is helpful for distinguishing bones from soft tis-
sues or muscles from fat, especially in terms of radiation
planning or body composition profiling (such as in sar-
copenia or myosteatosis) [6–8].
While MRI is perfect for the evaluation of bone marrow

and soft tissues, it has disadvantages in pure bone
detection [9]. Advanced MR bone imaging sequences
such as ultrashort echo time or zero echo time (ZTE)
sequences can increase specificity in this regard [10, 11],
but do not allow for quantitative attenuation (HU)
information for bone and soft tissues like CT. Deep
learning (DL) based on bone-specific ZTE MR images
potentially allows for both high accuracy in bone geo-
metry and efficient simulation of soft tissue contrast of fat
and muscle, including specific scaled X-ray attenuation in
the form of HU.

The aim of this study was to investigate the compar-
ability of pCT images of the pelvis based on DL-
reconstructed ZTE MR images with true CT images, in
terms of both qualitative or geometric accuracy and
simulated HU-based scaled X-ray attenuation for bone
and soft tissues.

Methods
This prospective study was approved by the institutional
review board and the local ethics committee. Written
informed consent was obtained from all participants prior
to study inclusion. The study employs imaging data from
a previously published cohort [2]. The prior report com-
pared bone assessment of the sacroiliac (SI) joint by CT
and ZTE MRI. The current study expands this by gen-
erating DL-based pCT images from the acquired ZTE MR
sequences.

Study participants
Individuals aged > 18 years who were referred for clini-
cally indicated MR scans of the abdomen or pelvis
between May 2019 and January 2021 were recruited. All
patients considered for enrollment had undergone a CT
scan covering the SI joints within 12 months of their MR
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examination. If patients agreed to participate in the study,
an additional ZTE sequence was added to the respective
standard MR protocol.
Exclusion criteria were refusal to participate in the

study, pregnancy, contra-indications to MRI, any form of
incomplete datasets, major artifacts due to motion or
foreign bodies, or severe B1 field inhomogeneity.

MR imaging
All MR scans were obtained with a 3.0-T scanner (Dis-
covery 750W plus GEM; GE Healthcare) using an
abdominal coil. Different protocols were used according
to the respective clinical indications. At the end of each
protocol, the same ZTE sequence was acquired in each
participant (oZTEo, GE Healthcare; TR, 5.1 ms; TE,
≈ 0ms; acquisition matrix, 212 × 212 × 250; slice thick-
ness, 1.5 mm; field of view, 320mm; bandwidth,
± 62.5 kHz; flip angle, 2°; scan time, 4:06 min). ZTE ima-
ges were acquired in an axial plane in isotropic resolution.
The typical through-plane coverage was 250 slices, ran-
ging from the 12th thoracic vertebra to the lesser
trochanter.

pCT synthesis
pCT images were generated from ZTE MRI using the
method previously described in [12]. The solution con-
sists of a 2D multi-layer convolution neural network
adapted to a multi-task UNet framework. The network is
designed to maintain the overall structural accuracy of the
image while focusing on achieving precise bone repre-
sentation by learning correlated tasks: (a) image transla-
tion as the primary task, (b) bone segmentation, and (c)
bone density value estimations as auxiliary tasks. Each
task is optimized individually using a dedicated loss
function that is customized to minimize a specific error,
and the combined loss value contributes towards the
overall training of the network. By separating the tasks of
classification and regression, and by optimizing the net-
work to reduce both errors simultaneously, implicit
reinforcement can be achieved towards each of the cor-
related tasks [13]. Although the tasks are correlated, the
network is expected to learn them differently from one
another.

CT imaging
CT examinations were performed on different scanners.
The majority of scans consisted of an abdominal or pelvic
CT obtained with the latest generation energy-integrating
dual-source scanner (Somatom Definition FLASH, Sie-
mens Healthineers; tube voltage, 90 kVp, 100 kVp,
110 kVp, and 120 kVp; tube current, 100–150mAs with
active tube modulation); field of view, 500mm with a
matrix of 512 × 512; bone kernel (mostly Br59) for axial

image reconstruction). Image data were then reformatted
in all three planes with a slice thickness and increment of
1.5 mm, each.

Image analysis
The assessment of CT and pCT images was performed
independently by two fellows in musculoskeletal radiology
(J.M.G. and S.M., both 5 years of experience) after careful
instructions by a senior musculoskeletal radiologist with
more than 15 years of experience (R.G.). The readout of
the two datasets (CT and pCT, respectively) was con-
ducted in two different sessions, separated by 4 weeks and
in different random order to avoid recall bias. Both
readers were blinded to patient identification and clinical
data, as well as to the results of the other datasets. CT
images were evaluated using the institution’s picture
archiving and communication system (DeepUnity Diag-
nost, version R20 XX; Dedalus S.p.A.). pCT images were
viewed using Synedra View 21 (version 21.0.0.8 (× 64
edition); Synedra Information Technologies GmbH).

Qualitative analysis
CT and pCT images were rated qualitatively using a
4-point Likert scale (0–3; 0= poor, 1= slight, 2= good,
and 3= perfect) [14] with regard to the following para-
meters: sharpness of bone contour, differentiation of
cortical and trabecular bone, delineation of hip joint
space, delineation of SI joint space, and preservation of
soft tissue boundaries. For pCT, body masking and
severity of false bone classification around the pelvis (0–3;
0= none, 1= slight, 2=marked, and 3= severe) were
assessed additionally. Subjective assessment confidence
was rated separately for all image series (0–3; 0= poor
confidence that makes it almost impossible for assess-
ment, 1= low confidence that may affect the assessment,
2=moderate confidence that does not affect the assess-
ment negatively, and 3= high confidence facilitating a
clear assessment).

Quantitative analysis
To assess the geometrical accuracy of the synthesized
pCT images, the following measurements were performed
in both CT and pCT images: distance between the center
of the femoral heads in the axial plane, transverse
(greatest width of the superior pelvic aperture) and
anteroposterior (measured from the pubic symphysis to
the sacral promontory) pelvic diameter, alpha angle of the
right femur in the oblique axial plane, and lateral center-
edge angle of the right femur in the coronal plane.
Additionally, HU values (mean, SD, minimum, and

maximum) were determined using same-sized region of
interest (ROI) measurements (3 mm2 for cortical bone;
15 mm2 for all other anatomic locations) in the following
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structures in both CT and pCT: cortical bone of the body
of right ilium, trabecular bone of the body of right ilium,
right gluteus maximus, subcutaneous fat adjacent to right
gluteus maximus, and air close to tissue in areas that were
visually free of noise.
To quantitatively assess image quality and tissue dif-

ferentiation, contrast-to-noise ratios (CNR) were calcu-
lated for CT and pCT images with the following formula:

CNR ¼ jHUmeanðAÞ � HUmeanðBÞj
HUSDair

where (A) and (B) are structures in the ROI, and air is
defined as pure image noise.

Statistical analysis
All statistical analyses were conducted using SPSS
(version 29.0; IBM). p-values < 0.05 were considered
statistically significant. Intraclass correlation coefficients
(ICC) were calculated for all qualitative categories based
on Likert scales to assess rating consistencies between
both readers and methods. ICC estimates and their 95%
confidence intervals (CI) were calculated based on a
mean rating (k= 2), consistency agreement, and a two-
way mixed-effects model. ICC values less than 0.50 were
considered poor, between 0.50 and 0.75 moderate,
between 0.75 and 0.90 good, and above 0.90 as an
excellent agreement [15]. All distance and angle

measurements were first evaluated regarding their nor-
mal distribution using a Shapiro–Wilk test [16]. If a
normal distribution was present, a paired sample t-test
was applied to evaluate differences between readers,
respectively methods. If measurements did not show a
normal distribution, a Wilcoxon signed rank test was
calculated and on all significant results, a post-hoc
Holm–Bonferroni test for multiple comparisons was
performed [17].

Results
Participant inclusion is summarized in Fig. 1. A summary
of participant characteristics is shown in Table 1. A total
of 91 participants (58 men, 33 women, age 56 ± 15 years
(mean ± SD), range 20–86 years) were prospectively
recruited and scanned with MRI including ZTE sequen-
ces. Eleven ZTE image volumes were excluded due to
poor image quality because of severe image inhomo-
geneity (n= 7; 64%) or metal hardware artifacts (n= 4;
36%). Out of the 80 remaining data sets, 20 patient cases
(12 men, 8 women, age 46 ± 14 years (mean ± SD), range
20–72 years) were selected as an evaluation cohort
(= validation data set) and the remaining data was used to
train and update the existing DL-model for pCT image
synthesis from ZTE sequences (= training data set).
Exemplary CT and pCT images of the pelvis are shown in
Figs. 2 and 3.

Fig. 1 Flowchart for participant inclusion. DL, deep learning; pCT, pseudo-CT; ZTE, zero echo time
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Qualitative analysis
An overview of qualitative results is given in Table 2.
Mean CT and pCT ratings for the sharpness of bone
contour, differentiation of cortical and trabecular bone,

delineation of hip joint space, delineation of SI joint
space, and preservation of soft tissue boundaries were
good (2) to perfect (3), however, CT received

Fig. 2 Exemplary CT (a, b), ZTE MRI (c), and pCT (d) images of the pelvis of a 45-year-old study participant. The pCT (d) image was generated
from ZTE MRI (c) by applying a deep-learning algorithm. Note the almost perfect body masking and the small area that was falsely classified as
“bone” (arrow) in (d)

Table 1 Characteristics of the study participants and the evaluation sub-cohort

Characteristic Value

All study participants, (n= 91) Evaluation sub-cohort, (n= 20)

Age (years) 56 ± 15 (20–86) 46 ± 14 (20–72)

Sexa

Male 58 12

Female 33 8

Time between CT and MRI (months) 5.4 ± 4.3 (0–12) 6.2 ± 4.7 (0–12)

Clinical indication for CT and MRIb

Tumor 57.1 (52/91) 45 (9/20)

Infectious 12.1 (11/91) 15 (3/20)

Chronic musculoskeletal disorders 9.9 (9/91) 15 (3/20)

Trauma 5.5 (5/91) 0

Abdominal/inguinal hernia 5.5 (5/91) 15 (3/20)

Unknown diagnosis 9.9 (9/91) 10 (2/20)

Unless otherwise indicated, data are mean ± standard deviation, with the range in parentheses
a Data is the number of participants
b Data is percentages, with the numerator and denominator in parentheses
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significantly higher ratings than pCT by both readers in
all categories (see Table 2 for p-values). The mean rating
for body masking was perfect for CT (3.00 ± 0 (mean ±
SD)) and slight to good for pCT (1.58 ± 0.75, range 1–3;
p < 0.001). There were no false bone classifications
around the pelvis in CT. In pCT, the false bone classi-
fications were slightly to marked (1.38 ± 0.59, range 1–3;
p < 0.001). Mean subjective assessment confidence was
perfect for CT (3.00 ± 0) and good to perfect for pCT
(2.70 ± 0.46, range 2–3; p= 0.001). Post-hoc

Holm–Bonferroni tests for multiple comparisons con-
firmed the significant results.
Overall intermodality agreement for qualitative assess-

ment parameters between CT and pCT was good
(ICC= 0.88 (95% CI: 0.85–0.90); p < 0.001). The overall
interreader agreement was excellent (ICC= 0.95 (95%
CI: 0.94–0.96); p < 0.001) with excellent interreader
agreements for CT (ICC= 0.99 (95% CI: 0.98–0.99);
p < 0.001) and for pCT (ICC= 0.91 (95% CI: 0.88–0.93);
p < 0.001).

Fig. 3 Exemplary CT (a, b), ZTE MRI (c), and pCT (d) images of the pelvis of a 54-year-old study participant. The pCT (d) image was generated from ZTE
MRI (c) by applying a deep-learning algorithm. The images display a large tumor in the right iliac wing (asterisk; biopsy-proven plasmacytoma) which was
underestimated in d since the model was trained with enhanced focus on bone regions. Nevertheless, lytic bone destruction by the tumor was correctly
identified (arrowhead). Note the imperfect body masking (arrows) in d

Table 2 Intermodality assessment of qualitative ratings of CT and pCT by both readers

Qualitative parameter CT, (n= 40) pCT, (n= 40) p-value

Sharpness of bone contour 2.98 ± 0.16 (2–3) 2.63 ± 0.49 (2–3) < 0.001

Differentiation of cortical and trabecular bone 3.00 ± 0 (3–3) 2.88 ± 0.34 (2–3) 0.03

Delineation of hip joint space 2.87 ± 0.34 (2–3) 2.28 ± 0.62 (1–3) < 0.001

Delineation of SI joint space 2.88 ± 0.34 (2–3) 2.53 ± 0.56 (1–3) 0.001

Preservation of soft tissue boundaries 3.00 ± 0 (3–3) 2.23 ± 0.70 (1–3) < 0.001

Body masking 3.00 ± 0 (3–3) 1.58 ± 0.75 (1–3) < 0.001

Severity of false bone classification around the pelvis 0.00 ± 0 (0–0) 1.38 ± 0.59 (1–3) < 0.001

Subjective assessment confidence 3.00 ± 0 (3–3) 2.70 ± 0.46 (2–3) 0.001

Unless otherwise indicated, data are mean ± standard deviation, with the range in parentheses. The parameters were rated with a 4-point Likert scale (for the severity
of false bone classification: 0= none, 1= slight, 2=marked, and 3= severe; for all other parameters: 0= poor, 1= slight, 2= good, and 3= perfect)
pCT indicates pseudo-CT, SI sacroiliac
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Quantitative analysis
Distance and angle measurements in CT and pCT are
shown illustratively in Fig. 4 and summarized in Table 3.
Transverse pelvic diameter measurements and lateral
center-edge angle measurements of the right femur were
significantly different between CT and pCT (p= 0.001
and p= 0.002, respectively) while mean differences were
relatively small (1.98 mm and 1.71°, respectively).
All other geometrical measurements were not sig-
nificantly different between CT and pCT (all p > 0.05).
CT and pCT alpha angle measurements of the right
femur were significantly different between the two
readers (both p < 0.001; mean difference 13.67° in CT
and 14.28° in pCT); smaller significant interreader dif-
ferences could be observed in CT transverse pelvic
diameter measurements (p= 0.03; mean difference
2.57 mm) and in CT lateral center-edge angle

measurements of the right femur (p= 0.03; mean dif-
ference 2.30°). Except for pCT alpha angle measure-
ments of the right femur, there were no significant
differences between readers in pCT distance and angle
measurements (Fig. 5a, b).
HU measurements of different structures in CT and

pCT are shown in Table 4. All HU measurements were
significantly higher in CT than in pCT (all p < 0.05). HU
measurements were significantly different in the cortical
bone of the body of the right ilium in CT (p= 0.001) and
in the muscle of the right gluteus maximus in pCT
(p= 0.003). All other HU measurements were not sig-
nificantly different between the two readers.
CNRs are shown in Table 5. pCT CNRs showed a bigger

range of values compared to CT CNRs, however, mean
values were similar and there was no significant difference
between pCT and CT CNRs (all p > 0.05; Fig. 6).

Fig. 4 Illustrative measurements for quantitative analysis on CT images of a 20-year-old study participant. a Distance between the center of the femoral
heads in the axial plane, (b) transverse (greatest width of the superior pelvic aperture) and anteroposterior (measured from the pubic symphysis to the
sacral promontory) pelvic diameter, (c) alpha angle of the right femur in the oblique axial plane, and (d) lateral center-edge angle of the right femur in
the coronal plane
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Discussion
In this study, pCT images of the pelvis were generated
from ZTE MR sequences and compared to conventional
CT with regard to qualitative and quantitative assessment
parameters. Mean pCT ratings of qualitative parameters
were good to perfect (2–3 on the 4-point Likert scale).
Overall intermodality agreement between CT and pCT
was good (ICC= 0.88 (95% CI: 0.85–0.90); p < 0.001) with
excellent interreader agreements for pCT (ICC= 0.91
(95% CI: 0.88-0.93); p < 0.001). Most geometrical mea-
surements did not show any significant difference
between CT and pCT measurements (p > 0.05) with the
exception of transverse pelvic diameter measurements
and lateral center-edge angle measurements. Image
quality and tissue differentiation in CT and pCT were
similar without significant differences between CT and
pCT CNRs (all p > 0.05).
Previous studies have investigated the use of advanced

MR sequences and pCT in bone imaging. Jans et al [3]
used MR-based pCT images to detect structural lesions
in patients with suspected sacroiliitis and found that pCT
performed better than routine T1-weighted MRI.
Argentieri et al [18] and Breighner et al [19] presented
CT-like images based on ZTE MR sequences and
reported good agreement with CT of the spine and hips.
However, those sequences were lacking information on
tissue density and could thus provide only qualitative
image information. By generating pCT images from ZTE
MR sequences, our study integrated qualitative image
information of an advanced MR bone imaging sequence
with DL-facilitated simulation of quantitative HU
attenuation maps. This could also lead to new ways of
assessing bone quantity and quality using HU values,

through correlation with bone mineral density and tra-
becular bone strength. HU values are positively corre-
lated with material density and compressive strength
[20, 21]. The use of pCT images derived from ZTE MR
sequences may be useful to give an idea of bone status
opportunistically, in cases where morphological MR
sequences may show stress or insufficiency fractures, for
example.
Even though qualitative ratings of CT images were

significantly higher than those of pCT images, absolute
mean values of qualitative pCT ratings were still good to
perfect in all assessment categories, leading to high sub-
jective assessment confidence of the readers. Similarly,
some of the geometrical measurements were significantly
different between readers and modalities. When con-
sidering absolute mean values of transverse pelvic dia-
meter one can observe however that the mean difference
between the two modalities was less than 2 mm which
could easily be due to measurement inaccuracy and would
most likely be insignificant in clinical settings. The same
observation was made when comparing mean values of
lateral center-edge angle measurements between CT and
pCT where the mean difference between the two mod-
alities was less than 2°. Previously, angle measurements
with a difference of less than 5° between readers have been
considered identical [22]. The significant interreader dif-
ference for alpha angle measurements was most likely due
to a systematic measurement error of one of the readers
since there was no significant difference in intermodality
assessment.
pCT HU values were consistently lower compared to

CT HU values. The reason for the general under-
estimation of high-density HU values is mostly due to

Table 3 Interreader and intermodality assessments of distance and angle measurements in CT and pCT

Quantitative parameter Interreader assessment Intermodality assessment

Reader 1, (n= 20) Reader 2, (n= 20) p-value Both readers, (n= 40) p-value

Distance between the center of the

femoral heads (mm)

CT 175.51 ± 9.07 175.82 ± 9.32 0.39 175.38 ± 9.36 0.47

pCT 176.04 ± 11.53 176.67 ± 11.01 0.17 175.15 ± 9.89

Transverse pelvic diameter (mm) CT 128.08 ± 7.86 125.51 ± 9.32 0.03 126.55 ± 8.88 0.001

pCT 125.63 ± 7.93 124.50 ± 7.69 0.17 124.57 ± 7.38

Antero-posterior pelvic diameter (mm) CT 125.94 ± 12.45 123.35 ± 10.89 0.06 123.04 ± 11.08 0.73

pCT 123.68 ± 11.87 122.95 ± 12.80 0.51 123.32 ± 12.16

Alpha angle right femur (°) CT 67.77 ± 3.35 54.10 ± 5.14 < 0.001 61.58 ± 7.19 0.51

pCT 68.74 ± 3.84 54.46 ± 4.53 < 0.001 61.89 ± 8.11

Lateral center-edge angle right femur (°) CT 38.16 ± 6.61 40.46 ± 7.78 0.03 38.22 ± 5.74 0.002

pCT 40.29 ± 4.27 39.58 ± 5.34 0.41 39.93 ± 4.77

Unless otherwise indicated, data are mean ± standard deviation
pCT indicates pseudo-CT
Bold values indicate statistical significance p-values < 0.05

Getzmann et al. Insights into Imaging          (2024) 15:202 Page 8 of 12



Fig. 5 Bland Altman plots showing measurement variances between pCT and CT. Differences were calculated from paired measurements conducted in
the same case. a Distance measurements of pelvic diameters did show, except for singular outliers, differences of less than 5mm. Of all measured
variables the distance between the centers of the femoral heads showed the highest concordance, possibly due to the most comprehensive anatomical
landmark. b Angle measurements proportionally showed a higher deviation between measurements, however no trend towards higher values in either
imaging method was observed. This may be explained by a more substantial influence of individual measurement deviations
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the sparsity of those regions in comparison to the overall
image information. That is, the percentage of image
regions (voxels) > 900 HU in CT is a tiny fraction of the
body region. This sparsity gets overshadowed by the rest
of the pixels and tends to approximate the learning to
lower values. The authors believe that the difference
between pCT and conventional CT values should
become lower with further training of the algorithm
with diverse data. On the other hand, pCT HU values
allowed for correct tissue differentiation which is more
important than absolute HU values in most clinical
settings.
The authors acknowledge several limitations of this

study. First, body masking for pCT remains challenging.
This is mostly due to image inhomogeneity and attached
external objects. To resolve this problem, additional
background masking could be performed. In this study,
the focus was however on deeper structures such as the
pelvic bone and its adjacent soft tissues and body surface
information was less important.
Second, there were high-density areas in soft tissues that

were occasionally classified as bone in pCT images. Those

areas were mostly located in muscles around the pelvic
bones and could imitate calcifications. This was due to the
DL model which was trained with an enhanced focus on
bone regions, thus showing a fuller-appearing bone, but
also resulting in some false bone classifications because of
higher sensitivity towards high-density regions. In this
context, it is important to notice that the ZTE data in this
study were not enhanced by DL reconstructions. Nowa-
days, DL-reconstruction solutions for ZTE images are
available and have been shown to enhance image quality
[23, 24]. Therefore, higher DL-model performance in the
generation of pCT images could be expected by employ-
ing DL-reconstructed ZTE images.
Third, metal artifacts remain difficult to overcome in

MR imaging and therefore also represent a challenge in
ZTE sequences and subsequently pCT images generated
from ZTE sequences. In this study, participants with
metal implants in and around the hips were excluded. The
authors acknowledge that this may influence the gen-
eralizability of the study. In the future, further improve-
ments with regard to the reduction of metal artifacts in
MR imaging may make it possible to generate pCT images
also in patients with metal implants.
Fourth, although HU and geometrical measurements

were standardized, minor inconsistencies between readers
during manual readout sessions might have persisted and
impacted overall pCT accuracy.
In conclusion, it is possible to synthesize pCT images of

the pelvis from ZTE sequences using a DL-based algo-
rithm. The pCT images show high bone depiction quality
and accurate quantitative measurements compared to
conventional CT. Further training in the DL algorithm is
necessary to improve body masking and reduce false
bone classifications. Application of the algorithm in dif-
ferent body regions and in pathological settings

Table 4 Interreader and intermodality assessments of HU measurements in CT and pCT

Structure Interreader assessment Intermodality assessment

Reader 1, (n= 20) Reader 2, (n= 20) p-value Both readers, (n= 40) p-value

Cortical bone of the body of right

ilium (HU)

CT 1326.00 ± 188.52 1186.80 ± 131.64 0.001 1256.40 ± 175.29 < 0.001

pCT 822.63 ± 73.68 812.36 ± 64.72 0.56 817.49 ± 68.65

Trabecular bone of the body of right

ilium (HU)

CT 252.82 ± 98.41 266.90 ± 77.91 0.41 259.86 ± 87.90 < 0.001

pCT 181.38 ± 47.44 188.29 ± 42.96 0.66 184.83 ± 44.81

Right gluteus maximus (HU) CT 53.99 ± 10.98 54.21 ± 11.29 0.91 54.10 ± 10.99 < 0.001

pCT 21.17 ± 5.63 24.27 ± 5.27 0.003 22.72 ± 5.61

Subcutaneous fat adjacent to right

gluteus maximus (HU)

CT −103.72 ± 11.10 −106.33 ± 10.16 0.16 −105.03 ± 10.59 0.009

pCT −111.31 ± 10.58 −113.15 ± 12.83 0.20 −112.23 ± 11.65

Unless otherwise indicated, data are mean ± standard deviation
HU indicates Hounsfield unit, pCT pseudo-CT
Bold values indicate statistical significance p-values < 0.05

Table 5 CNRs calculated in CT and pCT images of the pelvis

CNR CT, (n= 20) pCT, (n= 20) p-value

CNR trabecular bone—muscle 19.41 ± 14.14 23.05 ± 16.54 0.50

CNR cortical bone—

trabecular bone

105.10 ± 43.32 96.32 ± 66.10 0.63

CNR cortical bone—muscle 124.51 ± 50.86 119.36 ± 80.40 0.82

CNR muscle—fat 15.42 ± 5.90 19.15 ± 12.65 0.26

Unless otherwise indicated, data are mean ± standard deviation
CNR contrast-to-noise ratio
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(i.e., osteoarthritis and inflammatory bone disease) are
objectives of future research.
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