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Abstract

Objective To assess renal interstitial fibrosis (IF) using diffusion MRI approaches, and explore whether corticomedullary
difference (CMD) of diffusion parameters, combination among MRI parameters, or combination with estimated
glomerular filtration rate (eGFR) benefit IF evaluation.

Methods Forty-two patients with chronic kidney disease were included, undergoing MRI examinations. MRI
parameters from apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM), diffusion kurtosis imaging
(DKI), and diffusion-relaxation correlated spectrum imaging (DR-CSI) were obtained both for renal cortex and medulla.
CMD of these parameters was calculated. Pathological IF scores (1–3) were obtained by biopsy. Patients were divided
into mild (IF= 1, n= 23) and moderate-severe fibrosis (IF= 2–3, n= 19) groups. Group comparisons for MRI
parameters were performed. Diagnostic performances were assessed by the receiver operator’s curve analysis for
discriminating mild from moderate-severe IF patients.

Results Significant inter-group differences existed for cortical ADC, IVIM-D, IVIM-f, DKI-MD, DR-CSI VB, and DR-CSI VC.
Significant inter-group differences existed in ΔADC, ΔMD, ΔVB, ΔVC, ΔQB, and ΔQC. Among the cortical MRI parameters,
VB displayed the highest AUC= 0.849, while ADC, f, and MD also showed AUC > 0.8. After combining cortical value
and CMD, the diagnostic performances of the MRI parameters were slightly improved except for IVIM-D. Combining VB
with f brings the best performance (AUC= 0.903) among MRI bi-variant models. A combination of cortical VB, ΔADC,
and eGFR brought obvious improvement in diagnostic performance (AUC 0.963 vs 0.879, specificity 0.826 vs 0.896, and
sensitivity 1.000 vs 0.842) than eGFR alone.

Conclusion Our study shows promising results for the assessment of renal IF using diffusion MRI approaches.

Critical relevance statement Our study explores the non-invasive assessment of renal IF, an independent and
effective predictor of renal outcomes, by comparing and combining diffusion MRI approaches including
compartmental, non-compartmental, and model-free approaches.

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Wentao Hu and Yongming Dai contributed equally to this work.

Minfang Zhang and Yan Zhou jointly supervised to this work.

*Correspondence:
Minfang Zhang
minfangzh@126.com
Yan Zhou
clare1475@hotmail.com
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0001-9402-1109
http://orcid.org/0000-0001-9402-1109
http://orcid.org/0000-0001-9402-1109
http://orcid.org/0000-0001-9402-1109
http://orcid.org/0000-0001-9402-1109
http://creativecommons.org/licenses/by/4.0/
mailto:minfangzh@126.com
mailto:clare1475@hotmail.com


Key Points
● Significant difference exists for diffusion parameters between mild and moderate-severe IF.
● Generally, cortical parameters show better performance than corresponding CMD.
● Bi-variant model lifts the diagnostic performance for assessing IF.

Keywords Renal interstitial fibrosis, Diffusion relaxation correlated spectrum imaging, Intra-voxel incoherent motion,
Diffusion kurtosis imaging, Corticomedullary difference

Graphical Abstract

SSignificant differences
between mild and moderate-
severe interstitial fibrosis
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variant models could lift
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both MRI parameters an eGFR.
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Introduction
Chronic kidney disease (CKD) is a rising public health
concern, defined as the loss of renal function for a long
period of time [1]. The global prevalence of CKD is esti-
mated to be 8–16% [2]. A key histological feature of CKD
is the presence of interstitial fibrosis (IF) [3], featured by
the accumulation of extracellular matrix (ECM) in the
renal interstitium and linked to pathologic changes like
capillary obliteration and tubular atrophy [2, 4, 5]. Esti-
mated glomerular filtration rate (eGFR) reflects the renal
function at a certain time, but is not an independent
predictor for renal function impairment. In comparison,
IF serves as an independent and effective predictor of
renal outcomes [6]. Patients with extensive fibrosis are
more likely to progress to end-stage renal failure [7, 8],
and may require planning for dialysis or transplantation.
Unfortunately, IF usually progresses silently with no
explicit manifestations [9]. Biopsy currently remains the

only established standard for IF assessment. However, the
invasive nature, risk of bleeding, sample bias, and
unsuitability for longitude monitoring restrict its clinical
value [9]. Non-invasive renal IF assessment methods
would certainly benefit CKD diagnosis and treatment
monitoring, even though they serve a complementary
role.
Among various imaging strategies, diffusion-weighted

imaging (DWI) and its derivatives stand out for assessing
renal microstructure [10–13]. Fibrotic tissues hinder
water mobility in extracellular space, which can be cap-
tured by DWI. Past research has already linked the
apparent diffusion coefficient (ADC) with IF levels and
eGFR [12]. Moreover, fibrosis-related obstructions like
increased collagens would deflect the molecular move-
ment further from the so-called Gaussian diffusion [5].
These non-Gaussian properties could be captured not by
mono-exponential ADC, but in principle by advanced
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diffusion models, including compartmental and non-
compartmental ones [13]. Intra-voxel incoherent motion
(IVIM) is a representative of the former, considering both
pseudo- and true-diffusion compartments, frequently
utilized in studies of renal fibrosis or dysfunction [14–16].
Decreased IVIM parameters, including D and f, were
reported in IF induced by IgA nephritis or unilateral
ureteral obstruction [15, 16]. Conversely, diffusion kur-
tosis imaging (DKI) represents the non-compartmental
model, describing features at high b values by an empirical
formula, and was increasingly applied in recent CKD
studies [17, 18]. A negative correlation between renal
parenchymal mean diffusivity and a positive correlation
between mean kurtosis to histopathological fibrosis score
was reported [17].
Despite the promising findings of diffusion models, they

heavily rely on artificial constraints, including pre-
determined components or specific mathematical for-
mulas. Also, these approaches ignore the influence of
other properties like relaxation time, limiting their ability
to resolve intra-voxel contributions [19]. Recent
advancements have introduced model-free methods like
multi-dimensional correlation magnetic resonance ima-
ging (MRI) [20]. A notable example, diffusion-relaxation
correlated spectrum imaging (DR-CSI) has preliminarily
been applied to kidney evaluation [21, 22]. Fresh insights
were provided by incorporating both the T2 dimension
and the peak-based spectrum quantification.
Although the aforementioned methods are all based on

diffusion MRI, they are established with different
hypotheses, and focus on distinct renal features. There-
fore, comparison and combination of them for assessing
the pathologic changes could be worthy of attempts.
Moreover, their assistance to renal functional biomarkers
such as eGFR would also be helpful. Besides, although
reports frequently suggest that IF progression correlates
with cortical MRI measurement [23, 24], some studies
also indicate that corticomedullary difference (CMD), like
ΔT1 and ΔADC, are effective [3, 10, 25]. Given the
assumption that pathologic changes in cortical and
medullary microstructure are distinct, it deserves curiosity
whether the CMD of these approaches would bring
additional interest.
The objective of this study is to (1) assess renal IF using

diffusion-based MRI approaches including ADC, IVIM,
DKI, and DR-CSI; (2) explore whether CMD of diffusion
parameters benefits IF evaluation; and (3) explore whether
a combination among these methods or with eGFR could
benefit IF evaluation.

Materials and methods
This cross-sectional study is part of an ongoing pro-
spective research plan on characterizing the longitude

alterations of pathologic changes in CKD patients using
MRI, approved by the Internal Review Board of our
hospital. Written informed consent was obtained.

Study subjects
From March 2022 to May 2023, fifty consecutive patients
suspected of high risk of CKD (with related clinical
symptoms lasting for over 3 months and abnormal blood
test results) while meeting the following standard were
enrolled and underwent renal MRI: (1) aged 18–80 years;
(2) no medical history of renal surgery or other significant
intervention; and (3) appropriate for the time-extended
MRI, evaluated by the on-site medical staff. In the further
analysis, eight patients were excluded due to: (1) una-
vailable of essential clinical and pathological data (n= 2);
(2) finally diagnosed as (or with comorbid) acute renal
injury (n= 1); (3) finally diagnosed as end-stage renal
disease (stage V) (n= 2); (4) incomplete MRI acquisition
(n= 1); and (5) poor MR image quality (n= 2).

Clinical and pathological evaluation
The eGFR was determined using serum creatine based on
the CKD epidemiology collaboration formula [26]. Renal
IF was assessed on a biopsy specimen by the Department
of Pathology of our hospital. Percutaneous biopsy was
performed within 3 days after the MRI examination, and
the specimens were stained using Masson’s trichrome
method. IF scores were quantified as 1, 2, and 3 based on
the percentage of fibrosis < 25%, 25–50%, and > 50%,
respectively, according to the Oxford Classification of IgA
nephropathy 2016 [27]. For further analysis, patients with
an IF score of 1 were classified into the “mild IF” group,
while patients with IF 2 or 3 were classified into the
“moderate-severe IF” group. This grouping criteria is
based on two reasons: the worse prognosis for both
moderate and severe IF patients compared to mild ones
[28], and the relatively small sample size of IF= 3 patients
(n= 6). Pathologic diagnosis is given in Table 1.

MRI acquisition
All participants underwent examination on a 3.0-T MRI
scanner (Magnetom Prisma, Siemens Healthineers) using an
18-channel phase-array body coil and embedded spine coil.
MRI protocols included: axial T1-weighted (T1w) Dixon,
axial fat-suppressed T2-weighted (T2w), coronal T2w, axial
multi-b DWI, and axial DR-CSI. The multi-b DWI scan was
realized by a spin-echo single-shot echo-planar-imaging
(SE-SS-EPI) sequence with three directions and 12 b values:
01 s/mm2, 101 s/mm2, 301 s/mm2, 501 s/mm2, 701 s/mm2,
1001 s/mm2, 2001 s/mm2, 4001 s/mm2, 8002 s/mm2,
10003 s/mm2, 15004 s/mm2, 20005 s/mm2, 25006 s/mm2,
respectively (the subscript denotes for the average). Other
parameters are: echo time (TE) 54ms, repetition time (TR)
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2100ms, field of view (FOV) 380 × 283mm2, acquisition
matrix 135 × 100, interpolation factor 2, 10 slices, slice
thickness/gap 3.0/3.0mm. The average was taken for the
three orthogonal directions, and the diffusion anisotropy
was ignored. The DR-CSI scan was realized by a SE-SS-EPI
sequence with 36 acquisitions: six TEs (51–200ms) com-
bined with six b values (0–1500 s/mm2). Other parameters
of the DR-CSI protocol, including TR, FOV, matrix,
and slice thickness/gap, were kept the same to the multi-b
DWI sequence. The detailed MR protocols are listed in
Table 2.

Image post-processing
Region of interest (ROI) is decided for cortex and medulla
separately, including all slices displaying kidney. Two
radiologists (with 7 years and 4 years of experience in

abdominal MRI, respectively) manually delineated the
ROI on DWI b0 with the assistance of T1w images
(Fig. S1) by using the segment editor tool embedded in
3D-Slicer (https://www.slicer.org/). Attempts were made
to avoid focal areas. An average cortical area of 105.3 cm2

and medulla area of 37.9 cm2 were obtained for the 12-b
DWI sequence, while an average cortical area of 71.8 cm2

and medulla area of 26.6 cm2 were obtained for DR-CSI.
ADC mapping was fitted using b0 and b800 images from
the 12-b DWI sequence.

IVIM fitting
IVIM and DKI models were fitted voxel-by-voxel using
homemade scripts on MATLAB, derived from the 12-b
DWI sequence. IVIM model is defined as follows:

S bð Þ
S0

¼ f � exp �b � Dð Þ þ ð1 � f Þ � exp �b � D�ð Þ

Where S0 is the original signal intensity, D and D* are the
diffusion coefficients of normal- and pseudo-diffusion
components, and f is the pseudo-diffusion fraction. In
renal MRI, the selection of the b value may influence the
results of diffusion models. Therefore, attempts were
made to separate the non-Gaussian effect caused by
perfusion and parenchyma. For IVIM analysis, b values
utmost to 800 s/mm2 were selected to avoid the kurtosis
effect at high b values. A two-step fitting strategy was
applied setting the threshold of 200 s/mm2 [29].

DKI fitting
DKI model adopted in this study is a direction-averaged
model, which is recommended in body MRI [30]:

S bð Þ=S0 ¼ exp �b �MD þ 1
6
MK � b2 �MD2

� �

Where MD is the mean diffusivity, and MK is the mean
kurtosis. To minimize the potential perfusion effect and
concentrate on soft-tissue-induced complexity, b values
from 200 s/mm2 to 2500 s/mm2 were selected, while low b
values were excluded. Similar practices could be found in
previous research assuming the large perfusion in the
kidney [31].

DR-CSI
The principle of DR-CSI has been illustrated clearly in the
literature [20, 32]. In practice, a discrete form of DR-CSI
is adopted:

Si b;TEð Þ ¼
X
j;k

f i Dj;T2k
� � � e�b�Dj � e�TE=T2k

Where f i is spectral intensity representing the distribution
on a D-T2 mesh, while each mesh point represents a
“component” with specific diffusivity and relaxometry.

Table 1 Clinical characteristics of the participants in this study

Characteristics Total, n= 42

Age, year

≤ 30 4

30–40 9

40–49 8

50–59 9

60–69 8

≥ 70 4

Gender

Male 23

Female 19

CKD stage

I 13

II 14

III 13

IV 2

IF score

1 (Mild) 23

2 (Moderate) 13

3 (Severe) 6

Primary clinicopathologic diagnosis

IgA nephropathy 16

Membranous nephropathy 10

Lupus nephritis 3

Podocyte injury 2

Diabetic nephropathy 2

Thrombotic micro-angiopathy 2

Renal arteriosclerosis 3

Glomerulosclerosis 1

Glomerulonephritis 1

Hepatitis B associated nephritis 1

Light chain deposition 1

CKD chronic kidney disease, IF interstitial fibrosis
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Specifically, the mesh consists of 30 rows of D (log-
spaced, 0.3–30 μm2/ms) and 30 columns of T2 (log-
spaced, 5–200ms). The DR-CSI post-processing work-
flow is similar to the previous paper [21]. Particularly,
three compartments A (short T2), B (long T2), and C
(high diffusivity) were defined by boundaries manually
chosen (T2 boundary within 30–50ms, diffusivity bound-
ary 6–9 μm2/ms) at a visible peak gap. Thus, DR-CSI
volume fractions VX for compartment X were obtained by
a summation over “components”. Compartments A and B
were considered to relate to intra- and extra-cellular
water, while C was considered to link with microvascular
and body liquid flow [21].

CMD
For common MRI parameters, a CMD of a patient was
defined as the average value of cortex ROI minus the
average value of medullary ROI. The notation “Δ” is used
as an abbreviation of CMD before a parameter name (e.g.
ΔADC). In addition to traditional DR-CSI CMD (ΔVX), a
novel “spectral CMD” (ΔQX) was defined (Fig. 1): a
difference-spectrum was obtained by subtracting the
normalized medullary D-T2 spectrum from the cortical
one, and then filtered by a spectral operator. ΔQB and
ΔQC were calculated due to the effectiveness of com-
partments B and C in evaluating IF [21]. A detailed
description was given in Supplementary Material.

Statistics
All statistical analysis was conducted using SPSS (v23.0; IBM
Corp.). The significance criteria were p < 0.05 throughout this
study. Intraclass correlation coefficient (ICC) was applied to
assess the inter-observer agreement of the MRI parameters.

ICC < 0.6, 0.6–0.8, and > 0.8 were defined as poor, fair, and
good, separately. If the agreement reached fair or good, the
value measured by the more experienced radiologist was
adopted. Spearman’s test was used to evaluate the correlation
between (1) MRI parameters and (2) each MRI parameter to
eGFR. Group comparison was conducted using student’s
t-test (age, eGFR), Mann–Whitney U-test (MRI parameters),
or Chi-square test (gender).
Multivariable linear regression models were established

to identify moderate-severe IF from mild IF, including the
combination of (1) MRI cortical parameters and corre-
sponding CMD, (2) several MRI parameters, and (3) eGFR
and MRI parameters. Several principles were obeyed to
choose the appropriate MRI parameter, with details in
Supplementary Material (“construction of multivariant
models” section). Accordingly, cortical VB, ADC f, and
ΔADC were considered in the multi-variant models. The
diagnostic performance of parameters (or models) was
evaluated using receiver operator’s curve (ROC) analysis,
with the area under the curve (AUC), sensitivity, and
specificity (optimized by Youden’s Index) calculated. AUC
values < 0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and > 0.9 were
interpreted as poor, acceptable, moderate, good, and
excellent diagnostic performance.

Results
Clinical characteristics
Finally, data from 42 CKD patients (23 male, 19 female,
age 24–74) were adopted into analysis, including 23 mild,
13 moderate, and 6 severe IF patients. Two typical cases
are given in Figs. 2 and 3. Detailed clinical information is
given in Table 1. No significant differences were found in
age (p= 0.726) or sex (p= 0.801) between the mild and

Table 2 The detailed MR protocols used in this study

T2w BLADE with FS T2w HASTE T1w VIBE Dixon Multi-b DWI Multi-TE-multi-b DWI

Plane Transverse Coronal Transverse Transverse Transverse

TR (ms) 3300–8000 400 3.97 2100 2100

TE (ms) 86 96 1.29 54 51, 80, 110, 140, 180, 200

FOV (mm2) 380 × 380 400 × 400 380 × 308 380 × 283 380 × 283

Acquisition matrix 384 × 384 320 × 256 320 × 182 135 × 100 135 × 100

Slice thickness/gap (mm) 4.0/1.2 4.0/0.4 3.0/0.0 3.0/3.0 3.0/3.0

Num of slice 35 30 72 10 6

Bandwidth (Hz/pixel) 710 710 1040 2330 2330

b values (s/mm2) / / / 0, 10, 30, 50, 70, 100, 200, 400, 800, 1000,

1500, 2000, 2500

0, 150, 400, 800, 1200,

1500

Method of acquisition Belt trigger Breath-hold Breath-hold Free-breathing Free-breathing

Scan time 2–4 min 12 s 2 × 12 s 3 min 54 s 9 min 18 s

TR repetition time, TE echo time, FOV field of view, T1w T1-weighted, T2w T2-weighted, DWI diffusion-weighted imaging, FS fat saturation, TSE turbo spin echo, BLADE
proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER), HASTE half-Fourier acquired single-shot turbo spin-
echo, VIBE volumetric interpolated breath-hold examination
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moderate-severe IF groups. The moderate-severe IF
group had a significantly lower eGFR (51.1 ± 24.7 vs
90.3 ± 19.7, p < 0.001).

Group comparison
Inter-operator agreements for all parameters are fair to
good (Table S1). The results of the group comparison for
MRI parameters are listed in Table 3. Within the region of
the cortex, significant differences could be found for
ADC, D, f, MD, VB, and VC, among the two groups.
Specifically, ADC (1.97 ± 0.23 vs 2.19 ± 0.12 μm2/ms,
p= 0.001), D (1.54 ± 0.16 vs 1.65 ± 0.10 μm2/ms,
p= 0.019), f (17.3 ± 4.9% vs 22.6 ± 4.6%, p= 0.001), MD
(2.74 ± 0.48 vs 3.17 ± 0.29 μm2/ms, p= 0.001), and VC

(24.9 ± 5.3% vs 31.0 ± 6.5%, p= 0.003) presented lower
values, while VB (54.5 ± 8.4% vs 42.9 ± 8.5%, p= 0.001)
displayed higher value in the moderate-severe IF com-
pared to the mild IF. Within the region of the medulla,

significantly higher D* (67.4 ± 17.1 vs 53.1 ± 19.5 μm2/ms,
p= 0.018) and lower f (12.1 ± 3.3% vs 16.1 ± 4.2%,
p= 0.002) were found in the moderate-severe group
compared to the mild group. For most parameters, the
moderate-severe group tended to have less CMD com-
pared to the mild group. A significant difference could be
found in ΔADC (0.19 ± 0.10 vs 0.33 ± 0.14 μm2/ms,
p < 0.001), ΔMD (0.48 ± 0.23 vs 0.77 ± 0.31 μm2/ms,
p= 0.002), ΔVB (0.5 ± 8.6% vs −7.3 ± 7.9%, p= 0.007),
ΔVC (2.9 ± 4.6% vs 6.6 ± 5.8%, p= 0.037), ΔQB (0.01 ± 1.17
vs −1.15 ± 1.16, p= 0.007) and ΔQC (0.39 ± 0.89 vs
1.28 ± 1.24, p= 0.016).

Correlations between MRI parameters and eGFR
The correlations among cortical MRI parameters are
presented in Figs. 4 and S2. A strong correlation exists
between ADC with MD (r= 0.84, p < 0.001). A moderate
correlation exists between MD with D* (r= 0.55), ADC

Fig. 1 Workflow of the main post-processing procedures. a IVIM and DKI fitting using DWI of different ranges of b value. CMD was obtained for each
individual by subtraction of the mean value in cortex and medulla. b DR-CSI post-processing includes two types of CMD. The traditional one simply
calculates the volume fraction for the cortex and medulla separately, and performs a subtraction. The new one is obtained by applying a mathematical
operator on the cortex-minus-medulla spectrum. c The mathematical operator used in this study. Intensity on the D-T2 spectrum was multiplied by a
compartmental filter and order operator, and then summed up. IVIM, intra-voxel incoherent motion; DKI, diffusion kurtosis imaging; DR-CSI, diffusion-
relaxation correlated spectrum imaging; ROI, region of interest; MD, mean diffusivity; MK, mean kurtosis
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with D* (r= 0.50), VA with VB (r=−0.64), and VB with
VC (r=−0.53) (all p < 0.001). A significant but weak
correlation exists between f with ADC (r= 0.33), f with
MD (r= 0.40), and VC with D* (r= 0.35) (all p < 0.05).
Among the correlation within medullary parameters
(Figs. S3 and S4), similar relationships could be found,
despite the significant correlations between ADC with D
(r= 0.41) and between D* with MK (r= 0.43) (both
p < 0.01).
The correlations for MRI parameters to eGFR are pre-

sented in Fig. S5. Positive correlations exist in cortical
ADC (r= 0.45), D (r= 0.62), f (r= 0.33), MD (r= 0.36),
VC (r= 0.49), medullary D (r= 0.50), f (r= 0.32), and
ΔADC (r= 0.39), ΔMD (r= 0.36), and ΔVC (r= 0.39). A
negative correlation exists in cortical VB (r=−0.45).

Assessing IF
The results of ROC analysis are presented in
Tables 4 and 5 and Fig. 5. Cortical parameters showed a
higher AUC than CMD for all parameters. Among the

cortical MRI parameters, DR-CSI VB showed a numeri-
cally highest AUC (0.849), while ADC, f, and MD also
showed good performance (AUC 0.803–0.838). Among
the CMD of parameters, only ΔADC showed good per-
formance (AUC= 0.828).
After combining cortical value with CMD, AUC and

specificity for most of the involved parameters were
slightly improved (1–5%), except for D. Combining cor-
tical VB with ΔQB (AUC= 0.879) showed slightly better
lift than with ΔVB (AUC= 0.860). The combination of
cortical VC with ΔQC reached a larger sensitivity (0.894)
than with ΔVC (0.842), while the AUC is similar (0.806 vs
0.801).
Combining VB with f brings the best performance

(AUC= 0.903) among MRI bi-variant models, followed
by VB with ΔADC (AUC= 0.897), both bringing a > 5%
AUC raise. MRI tri-variant models did not show a large
improvement (0.892–0.906). Discriminating moderate-
severe IF using eGFR alone turned out a good perfor-
mance (AUC= 0.879). A combination of cortical VB,

Fig. 2 A 65-year-old male with membranous nephropathy, pathologically confirmed as mild IF. a1–a3 Cortex displayed hyperintensity compared to
medulla on T1w DIXON water and DWI b0, but less distinguishable on DWI b400. b–e Parameter mappings by (b) ADC, (c1–c3) IVIM, (d1, d2) DKI, and
(e1–e3) DR-CSI were given. f1–f3 D-T2 spectrum by DR-CSI of the cortex, medulla, and their difference. CKD, chronic kidney disease; IVIM, intra-voxel
incoherent motion; DKI, diffusion kurtosis imaging; DR-CSI, diffusion-relaxation correlated spectrum imaging; MD, mean diffusivity; MK, mean kurtosis
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ΔADC, and eGFR could reach the excellent performance
of AUC 0.963, as well as a rise of specificity (0.826 vs
0.896) and sensitivity (0.842 vs 1.000) compared to eGFR
alone. A combination of cortical VB, f, and eGFR also
displayed improved AUC (0.879 vs 0.938) and sensitivity
(0.842 vs 0.947) compared to eGFR alone.

Discussions
Our study compared, as well as combined several diffu-
sion MRI approaches including conventional (ADC),
compartmental (IVIM), non-compartmental (DKI), and
model-free (DR-CSI) ones for differentiating CKD
patients with moderate or severe IF from those with mild
fibrosis. Each method revealed promising imaging bio-
markers, demonstrating significant differences between
groups. Among them, VB, ADC, ΔADC, f, and MD
showed good diagnostic capabilities, which were further
enhanced using bi-variant models. Moreover, we found
that integrating diffusion MRI metrics offered a diagnostic
improvement over using eGFR alone.

Pseudo-diffusion compartments in IVIM are believed to
link with perfusion, which is an appealing topic in renal
research [14, 15, 33]. For severe CKD patients, tubular
atrophy often co-exists with IF, leading to an anticipated
reduction in perfusion. This is corroborated by our find-
ings, where f was one-fourth lower in the more severe IF
group within both the cortex and medulla. Although
cortical D also presented a difference, its diagnostic per-
formance was unexpectedly lower than f, contrary to our
initial assumption and previous report in immunoglobulin
A nephropathy [16]. This discrepancy might be explained
by the larger volume of tubular atrophy than interstitium,
and is further supported by a stronger correlation for f
than D to histopathological fibrosis score in literature
[34]. A known challenge with IVIM is the instability of D*
fitting, evidenced by the substantial standard deviation for
D* in this study. Also, D* demonstrates the lowest inter-
observer agreement, consistent with existing literature
[31]. Given that common ADC measurement incorpo-
rates a low b value (0 s/mm2 or 50 s/mm2). its correlation

Fig. 3 A 24-year-old female with IgA nephritis, pathologically confirmed as severe IF. a1–a3 Cortex displayed hyperintensity compared to medulla on
T1w DIXON water, but was less distinguishable on both DWI b0 and b400. b–e Parameter mappings by b ADC, c1–c3 IVIM, d1, d2 DKI, and e1–e3 DR-CSI
were given. f1–f3 D-T2 spectrum by DR-CSI of cortex, medulla, and their difference. CKD, chronic kidney disease; IVIM, intra-voxel incoherent motion; DKI,
diffusion kurtosis imaging; DR-CSI, diffusion-relaxation correlated spectrum imaging; MD, mean diffusivity; MK, mean kurtosis
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to IVIM-f and D* is expected. Among IVIM parameters,
our study highlights the clinical relevance of f, followed by
D, while D* is not recommended.
While the adoption of DKI in renal studies is increasing,

the interpretation of “complexity” remains ambiguous.
Contrary to prior research, we did not find a significant
change in MK toward severe fibrosis [35]. Additionally,
the comparative kurtosis between cortex and medulla
holds higher, and remains a topic of debate, given con-
tradictions in either fibrotic [35, 36] or healthy kidney

[31, 37, 38]. Our study reports a slight but positive CMD
for both groups of patients. Fortunately, MD is less con-
troversial, as our study demonstrates inter-group differ-
ences and good diagnostic performance aligns with the
previous findings [35, 36]. However, its additional value to
ADC is limited by their similarity in outcomes, as evi-
denced by the strong Spearman correlation. This is
attributed to their overlapping role in measuring mean
diffusivity. The clinical utility of DKI in assessing renal IF
may need more investigation.
Advanced compartmental models, such as a three-

component IVIM model, have been introduced to capture
renal microstructure [39]. However, accurately deter-
mining these compartments is mathematically challenged
due to the difficulties of inverting multi-exponential signal
decay [40]. Encouragingly, this ill-posedness is alleviated
by an expanded dimension [19, 20], and DR-CSI has
showcased its potential in renal microstructure imaging
[21]. In this study, cortical VB outperformed other para-
meters, which implies that hindered extra-cellular water
may be tightly associated with IF. The newly defined
spectral CMD showed promising results, providing the
inspiration that model-free approaches may maximize the
advantage by leveraging both peak shift and change of
fractions. Elevated ΔVB and ΔQB in moderate-severe IF
might relate to the increased ECM accumulation.
Decreased ΔVC and ΔQC hint at a diminished contribu-
tion and reduced diffusivity within cortical microvascular.
DR-CSI stands out for its less correlation with parameters
from other models, likely attributed to the inclusion of T2.
This enhanced the diagnostic capability when combining
VB with f or ADC. An exception is VC correlated with D*,
both representing perfusion-related characters. Never-
theless, inherent negative correlations exist within the
DR-CSI fractions since they must add up to 1, under-
scoring the complexity of interpreting these
measurements.
The results of multi-variant models are encouraging,

reflecting the diverse biophysical focus of these approa-
ches. Diffusion MRI fulfilled the expectation as a robust
adjunct to eGFR, since eGFR could only reflect one,
although important, aspect of renal function. Our study
reported greater numbers of cortical parameters showing
inter-group differences, aligning with the previous opi-
nion that loss of T1w CMD in fibrotic kidneys was raised
by cortical changes [25]. Yet, a subtraction by medulla is
still meaningful, considering the individual variation of
kidney ADC [10, 41]. A trend of CMD towards zero at
severe fibrosis was observed, consistent with prior find-
ings on ADC [3, 10]. As indicated by our findings, the
CMD of the advanced diffusion approaches is not a
superior indicator on its own but promising as a supple-
mentary input. Combining with kidney segmentation

Table 3 Group comparison of cortical, medullary values, and
CMDs of diffusion MRI-derived parameters

IF= 1 IF= 2-3 p value

Mono-exponential

Cortical ADC (μm2/ms) 2.19 ± 0.12 1.97 ± 0.23 0.001**

Medullary ADC (μm2/ms) 1.85 ± 0.12 1.78 ± 0.16 0.123

ΔADC (μm2/ms) 0.33 ± 0.14 0.19 ± 0.10 < 0.001***

IVIM

Cortical D (μm2/ms) 1.65 ± 0.10 1.54 ± 0.16 0.019*

Cortical D* (μm2/ms) 73.0 ± 20.3 77.9 ± 26.6 0.579

Cortical f (%) 22.6 ± 4.6 17.3 ± 4.9 0.001**

Medullary D (μm2/ms) 1.64 ± 0.09 1.57 ± 0.12 0.090

Medullary D* (μm2/ms) 53.1 ± 19.5 67.4 ± 17.1 0.018*

Medullary f (%) 16.1 ± 4.2 12.1 ± 3.3 0.002**

ΔD (μm2/ms) 0.01 ± 0.08 −0.03 ± 0.10 0.137

ΔD* (μm2/ms) 20.0 ± 19.0 10.4 ± 20.9 0.126

Δf (%) 6.5 ± 5.1 5.2 ± 3.7 0.356

DKI

Cortical MD (μm2/ms) 3.17 ± 0.29 2.74 ± 0.48 0.001**

Cortical MK 0.492 ± 0.029 0.502 ± 0.040 0.376

Medullary MD (μm2/ms) 2.39 ± 0.26 2.26 ± 0.32 0.181

Medullary MK 0.483 ± 0.059 0.487 ± 0.057 0.850

ΔMD (μm2/ms) 0.77 ± 0.31 0.48 ± 0.23 0.002**

ΔMK 0.008 ± 0.049 0.014 ± 0.046 0.668

DR-CSI

Cortical VA (%) 26.0 ± 7.3 20.9 ± 8.3 0.067

Cortical VB (%) 42.9 ± 8.5 54.5 ± 8.4 0.001**

Cortical VC (%) 31.0 ± 6.5 24.9 ± 5.3 0.003**

Medullary VA (%) 25.7 ± 4.9 23.6 ± 8.7 0.283

Medullary VB (%) 50.1 ± 8.3 54.9 ± 9.4 0.240

Medullary VC (%) 24.3 ± 5.8 22.0 ± 5.5 0.346

ΔVA (%) −0.2 ± 6.4 −2.7 ± 7.6 0.153

ΔVB (%) −7.3 ± 7.9 0.5 ± 8.6 0.007**

ΔVC (%) 6.6 ± 5.8 2.9 ± 4.6 0.037*

ΔQB −1.15 ± 1.16 0.01 ± 1.17 0.007**

ΔQC 1.28 ± 1.24 0.39 ± 0.89 0.016*

Δ Represents the CMD, which was defined as cortical value minus medullary
value
Significant level: * p < 0.05, ** p < 0.01, *** p < 0.001
IF interstitial fibrosis, ADC apparent diffusion coefficient, IVIM intra-voxel
incoherent motion, DKI diffusion kurtosis imaging, MD mean diffusivity, MK
mean kurtosis, DR-CSI diffusion relaxation correlated spectrum imaging
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techniques, this may bring modest, cost-efficient,
enhancement to current CKD assessments.
This study has several limitations. First, sampling bias is

a challenge, since patients with severe CKD are more
likely to be judged as unsuitable for biopsy and therefore

not included. This might also explain the relatively
smaller sample of severe fibrosis cases (n= 6). Second, the
sample size for the three levels of IF is restricted. This also
leads to the merging of the moderate and severe IF into
one group, which is another limitation in the study design.

Table 4 Diagnostic performance of MRI parameters for the discrimination of moderate-severe IF from mild IF

Cortex CMD Combinationa

AUC Cut-off Specificity Sensitivity AUC Cut-off Specificity Sensitivity AUC Cut-off Specificity Sensitivity

ADC (μm2/ms) 0.838 2.065 0.869 0.737 0.828 0.263 0.739 0.894 0.851 2.147,

0.142

0.870 0.790

IVIM D (μm2/ms) 0.671 1.579 0.739 0.632 0.609 −0.036 0.739 0.526 0.671 1.580,

0.036

0.783 0.632

IVIM f (%) 0.821 19.10 0.826 0.789 0.618 9.28 0.391 0.947 0.835 18.93,

2.91

0.783 0.842

DKI MD (μm2/ms) 0.803 2.798 0.956 0.631 0.792 0.508 0.783 0.790 0.810 2.955,

0.610

0.826 0.790

DR-CSI VB (%) 0.849 46.87 0.739 0.894 0.764 −3.05 0.696 0.790 0.860 54.05,

−1.13

0.957 0.632

DR-CSI ΔQB / / / / 0.769 −0.075 0.826 0.632 0.879 48.03,

−0.86

0.826 0.842

DR-CSI VC (%) 0.767 29.44 0.609 0.894 0.736 4.99 0.652 0.842 0.801 26.50

7.58

0.739 0.842

DR-CSI ΔQC / / / / 0.719 1.69 0.739 0.631 0.806 22.94

1.69

0.739 0.894

a Combined linear regression model using cortical value and CMD of MRI parameter
Δ Represents the CMD, which was defined as cortical value minus medullary value
IF interstitial fibrosis, CMD corticomedullary difference, ADC apparent diffusion coefficient, IVIM intra-voxel incoherent motion, DKI diffusion kurtosis imaging, MD
mean diffusivity, MK mean kurtosis, DR-CSI diffusion relaxation correlated spectrum imaging

Fig. 4 The heat-map plot illustrates Spearman’s correlation coefficient (r) among cortical MRI parameters. ADC, apparent diffusion coefficient; MD, mean
diffusivity; MK, mean kurtosis
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Although moderate and severe IF patients show worse
prognoses compared to mild ones, they have different
clinical implications. Third, the pathological assessment
of IF utilized a three-point score instead of providing a
quantitative measure of fibrotic tissue proportion. A
previous study reached a quantitative assessment of
fibrosis to a precision of 10% [3], enabling a correlation
analysis with MRI parameters. At last, a minor point that
deserves notice is that the DR-CSI sequence in this study
covers only six transverse slices. Fibrosis resulting from
CKD tends to be diffusely distributed, and functional MRI
without whole coverage of the kidney is acceptable. Yet as
this technique is in an early stage of application, future
efforts to explore larger coverage would be valuable.

Conclusion
In conclusion, our study shows promising results for the
assessment of renal IF using diffusion MRI approaches.

Fig. 5 ROC curves discriminating moderate-severe fibrosis with (a) cortical DR-CSI parameters and combination to their CMD; b DWI model parameters
and combination to their CMD; c multivariant MRI model; d eGFR and combination to MRI parameters. ROC, receiver operator’s curve; CMD,
corticomedullary difference; DWI, diffusion-weighted imaging; DR-CSI, diffusion-relaxation correlated spectrum imaging; eGFR, estimated glomerular
filtration rate; ADC, apparent diffusion coefficient; MD, mean diffusivity

Table 5 Diagnostic performance of multivariant models using
MRI, eGFR, and multivariant models combined MRI and eGFR, for
the discriminating moderate-severe IF from mild IF

AUC Specificity Sensitivity

VB+ ADC 0.876 0.869 0.842

VB+ f 0.903 0.869 0.947

ADC+ f 0.847 0.956 0.684

VB+ ΔADC 0.897 0.870 0.789

VB+ ADC+ f 0.892 0.826 0.895

VB+ ΔADC+ f 0.906 0.870 0.895

eGFR 0.879 0.826 0.842

eGFR + VB+ ΔADC 0.963 0.896 1.000

eGFR + VB+ f 0.938 0.826 0.947

MRI parameters in this table are cortical values if not stated
Δ Represents the CMD, which was defined as cortical value minus medullary
value
IF interstitial fibrosis, ADC apparent diffusion coefficient, eGFR estimated
glomerular filtration rate
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For most MRI parameters included, significant differences
between different IF groups were found in both cortical
value and CMD. Several parameters displayed good
diagnostic performance discriminating patients with
moderate-severe IF from mild ones. Bi-variant MRI model
could lift the diagnostic performance. Combining diffu-
sion parameters could bring improvement compared to
eGFR alone. These findings could offer insights into non-
invasive evaluation strategies for renal pathology.
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