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Abstract

Objectives Synchronous colorectal cancer peritoneal metastasis (CRPM) has a poor prognosis. This study aimed to
create a radiomics-boosted deep learning model by PET/CT image for risk assessment of synchronous CRPM.

Methods A total of 220 colorectal cancer (CRC) cases were enrolled in this study. We mapped the feature maps
(Radiomic feature maps (RFMs)) of radiomic features across CT and PET image patches by a 2D sliding kernel. Based on
ResNet50, a radiomics-boosted deep learning model was trained using PET/CT image patches and RFMs. Besides that,
we explored whether the peritumoral region contributes to the assessment of CRPM. In this study, the performance of
each model was evaluated by the area under the curves (AUC).

Results The AUCs of the radiomics-boosted deep learning model in the training, internal, external, and all validation
datasets were 0.926 (95% confidence interval (CI): 0.874–0.978), 0.897 (95% CI: 0.801–0.994), 0.885 (95% CI: 0.795–0.975),
and 0.889 (95% CI: 0.823–0.954), respectively. This model exhibited consistency in the calibration curve, the Delong test
and IDI identified it as the most predictive model.

Conclusions The radiomics-boosted deep learning model showed superior estimated performance in preoperative
prediction of synchronous CRPM from pre-treatment PET/CT, offering potential assistance in the development of more
personalized treatment methods and follow-up plans.

Critical relevance statement The onset of synchronous colorectal CRPM is insidious, and using a radiomics-boosted
deep learning model to assess the risk of CRPM before treatment can help make personalized clinical treatment
decisions or choose more sensitive follow-up plans.

Key Points
● Prognosis for patients with CRPM is bleak, and early detection poses challenges.
● The synergy between radiomics and deep learning proves advantageous in evaluating CRPM.
● The radiomics-boosted deep-learning model proves valuable in tailoring treatment approaches for CRC patients.
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Introduction
Colorectal cancer (CRC) ranks as the second leading
cause of cancer-related deaths [1]. At the time of initial
diagnosis, 5–15% of CRC patients present with
peritoneal metastases [2]. Synchronous colorectal
cancer peritoneal metastasis (CRPM) refers to cases
where peritoneal metastasis (PM) occurs either at the
time of initial diagnosis or within six months after surgery
[3]. The prognosis for PM is grim, lacking standard
treatment, and average life expectancy ranges from 6 to 12
months [4, 5]. Although a combination of bevacizumab
and cetuximab can extend overall survival (OS) by
18.2 months for CRPM patients, its efficacy remains
inferior to that for liver and lung metastases [6]. A mul-
ticenter phase III clinical trial demonstrated the potential
of cytoreductive surgery (CRS) in treating CRPM, yielding
a median OS of 41.2 months [7]. Accurate diagnosis of
CRPM is crucial; however, the diagnostic process is
challenging, and not all patients can undergo laparoscopic
examination for pathological confirmation.
Noninvasive methods are commonly used to predict PM,

among which serum tumor markers such as carcinoem-
bryonic antigen (CEA) and carbohydrate antigen 19-9
(CA19-9) play an important role, which reflects to varying
degrees of tumor invasion, proliferation, and invasion of

peritoneal mesothelial cells, but not all patients exhibit ele-
vated tumor markers, making them supplementary diag-
nostic tools [8, 9]. Computed tomography’s (CT) sensitivity
to peritoneal lesions smaller than 0.5 cm is limited to
11–48% [10]. While diffusion-weighted magnetic resonance
imaging (DW-MRI) and PET/CT are highly sensitive and
specific for CRPM, they can be influenced by factors such as
respiratory and intestinal motility, changes in lesion size, and
pathological types. Particularly, 18F-fluorodeoxyglucose
PET/CT (18F-FDG PET/CT) is valuable for diagnosing
and staging various malignancies, including CRC, but dis-
tinguishing peritoneal cancer lesions is challenging due to
physiological FDG uptake in the normal gut and lower
uptake in certain mucinous tumors [11, 12]. Additionally,
inter-reader variability in imaging diagnosis cannot be
entirely avoided.
Radiomics and deep learning algorithms are gaining

recognition in medical imaging analysis [13, 14].
Extracting handcrafted radiomic features allows for sen-
sitive detection of subtle heterogeneity in tumor mor-
phology or function. Li et al demonstrated high accuracy
in predicting CRPM status by utilizing CT texture
extracted from primary tumor lesions and the largest
metastatic lymph node [14]. However, handcrafted
radiomic features heavily rely on accurately delineating
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lesion boundaries. In contrast, convolutional neural net-
works, by directly learning specific features from input
images, enhance accuracy and eliminate the need for
precise lesion depiction [15].
This study leverages the complementary nature of

handcrafted radiomics and deep learning to develop a
radiomics-boosted deep learning model for preoperative
risk assessment of synchronous CRPM based on PET/CT
images. Notably, there are no reports on the application of
PET/CT-based radiomics and deep learning methods for
predicting synchronous CRPM.

Methods and materials
Patient selection
This retrospective study received approval from the
Ethics Committee of the Affiliated Hospital of Nantong
University, and informed consent was waived due to its
retrospective nature. The study included 220 patients
diagnosed with CRC at Nantong University Affiliated
Hospital between June 2016 and August 2023. Prior to
March 2023, patients were randomly divided into
training (n= 123), internal validation (n= 41), and
external validation cohorts at a 6:2:2 ratio. Subsequently,
all patients diagnosed from March 2023 to August 2023
were assigned to external validation cohorts (n= 56).
Eighty with PM and 140 non-metastasis (NM) were
included. Inclusion criteria comprised: (1) undergoing
FDG-PET/CT scans before any treatment; (2) confirm-
ing CRC diagnosis through surgery or biopsy; (3) avail-
ability of follow-up data and clinical-pathologic
information. Exclusion criteria included: (1) undergoing
neoadjuvant chemotherapy and radiotherapy before

surgery; (2) poor PET/CT image quality affecting accu-
rate labeling; (3) abdominal trauma, abdominopelvic
infection, or concurrent lesions of other malignant
tumors. Detailed cohort inclusion is presented in Fig. 1.
Clinicopathological data and lab results were collected
within two weeks before the PET/CT scan. Details of
synchronous CRPM status evaluation are provided in
Supplementary A1.

Region of interest (ROI) patch generation
Details of 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG-PET/CT)
examinations, image preprocessing, and subjective CT
finding evaluation are outlined in Supplementary A2.
Using Lifex software (version 7.23) [16], original regions
of interest (ROIs) were drawn along the lesion contour on
the largest tumor cross-sectional image section in the
axial direction. A minimum rectangle boundary was cre-
ated around each manual original ROI, and cropping was
performed to obtain original ROI patches. To explore the
potential contributions of surrounding tissue, we expan-
ded 10 pixels around the minimum bounding box of the
ROI, creating expanded ROI patches (Fig. 2). All images
were resized to 224 × 224.

Radiomic feature maps (RFMs) generation
Classical radiomics is commonly utilized to capture the
overall texture of ROIs, but it may not effectively discern
subtle texture variations. To address this limitation, we
devised a workflow for computing RFMs, as illustrated
in Fig. 2. Utilizing a 7 × 7 matrix-size kernel, we
extracted 75 radiomic features from the ROI, specifically

Fig. 1 Participant recruitment flowchart for the study
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including GLCM × 24, GLDM × 14, GLRLM × 16,
GLSZM × 16, and NGTDM× 5 (refer to Table 1) [17].
Employing the kernel, we generated 75 feature maps
with the same dimensions as the ROI patch by sliding it
across the ROI patches, with the center value of the
kernel being filled into each pixel.
For each feature, the feature value was assigned by

centering at the ROI, utilizing a moving kernel across
the ROI patch as a sliding window operation. This
process resulted in the formation of 75 feature maps,
maintaining the same dimensions as the original ROI
patches.
To mitigate feature redundancy, for each patient in the

training cohort, we calculated Pearson correlation coeffi-
cients (r) for each pair of RFMs, leading to the creation of
123 covariance matrices. Highly correlated feature maps
with r > 0.95 were then excluded in the subsequent aver-
age Pearson covariance matrix [18].

Neural network architecture
We explored two neural network architectures, namely
ResNet34 (Fig. 3A) and ResNet50 (Fig. 3B). To tailor the
models to the specific problem, we employed transfer
learning and fine-tuning techniques, including: (1)
initializing the convolutional bases with pre-trained
weights from ImageNet and (2) treating the last two

fully connected layers (FC) as free parameters for
training specific tasks [19]. To prevent overfitting, a
dropout was placed between the two FC layers, and the
output utilized softmax activation. Detailed parameters
of the deep learning model can be found in Supple-
mentary A3.
For the pilot model, the sole input comprised original

and expanded ROI patches. Grayscale ROI patches were
broadcast to three channels to align with pre-trained
neural network input shapes. In the radiomics-boosted
model, a three-channel image was generated by stacking
grayscale ROI patches and two RFMs as input variables.
The two RFMs were selected based on the saliency map
(SM) of the pilot model, indicating the importance of each
pixel for the final classification. Pixels with higher inten-
sity values in the SM were deemed more critical for neural
networks to diagnose, so two RFMs were chosen whose
average correlation with SM was the highest in the
training dataset. For each model, we assessed stability
through 50 runs. Subsequently, the model with the best
average area under the curve (AUC) and its input vari-
ables were selected as the final model. The model closest
to the average AUC was chosen to obtain output prob-
abilities for all cases. Finally, a PET/CT radiomics-boosted
deep-learning model based on network output probability
was constructed using multivariable logistic analysis.

Fig. 2 Workflow of RFM calculation in the study. RFM, radiomics feature map
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Model comparison
Radiomics-boosted deep-learning compared with classical
radiomics model
We conducted a comparative analysis between the
radiomics-boosted deep-learning model and the classical
radiomics model to assess their effectiveness. The con-
struction process of the classical radiomics model is
detailed in Supplementary A4.

Radiomics-boosted deep-learning compared with clinical
and subjective CT finding model
Univariate logistic regression analysis was employed to
investigate the impact of clinical information and sub-
jective CT findings on CRPM risk. The clinical and sub-
jective CT finding model was developed using
multivariable logistic analysis with backward stepwise
selection.

Table 1 Seventy-five radiomics features included in this study

GLCM-based features 1. Autocorrelation GLRLM-based features 39. GrayLevelNonUniformity

2. ClusterProminence 40. GrayLevelNonUniformityNormalized

3. ClusterShade 41. GrayLevelVariance

4. ClusterTendency 42. HighGrayLevelRunEmphasis

5. Contrast 43. LongRunEmphasis

6. Correlation 44. LongRunHighGrayLevelEmphasis

7. DifferenceAverage 45. LongRunLowGrayLevelEmphasis

8. DifferenceEntropy 46. LowGrayLevelRunEmphasis

9. DifferenceVariance 47. RunEntropy

10. Id 48. RunLengthNonUniformity

11. Idm 49. RunLengthNonUniformityNormalized

12. Idmn 50. RunPercentage

13. Idn 51. RunVariance

14. Imc1 52. ShortRunEmphasis

15. Imc2 53. ShortRunHighGrayLevelEmphasis

16. InverseVariance 54. ShortRunLowGrayLevelEmphasis

17. JointAverage GLSZM-based features 55. GrayLevelNonUniformity

18. JointEnergy 56. GrayLevelNonUniformityNormalized

19. JointEntropy 57. GrayLevelVariance

20. MCC 58. HighGrayLevelZoneEmphasis

21. MaximumProbability 59. LargeAreaEmphasis

22. SumAverage 60. LargeAreaHighGrayLevelEmphasis

23. SumEntropy 61. LargeAreaLowGrayLevelEmphasis

24. SumSquares 62. LowGrayLevelZoneEmphasis

GLDM-based features 25. DependenceEntropy 63. SizeZoneNonUniformity

26. DependenceNonUniformity 64. SizeZoneNonUniformityNormalized

27. DependenceNonUniformityNormalized 65. SmallAreaEmphasis

28. DependenceVariance 66. SmallAreaHighGrayLevelEmphasis

29. GrayLevelNonUniformity 67. SmallAreaLowGrayLevelEmphasis

30. GrayLevelVariance 68. ZoneEntropy

31. HighGrayLevelEmphasis 69. ZonePercentage

32. LargeDependenceEmphasis 70. ZoneVariance

33. LargeDependenceHighGrayLevelEmphasis NGTDM-based features 71. Busyness

34. LargeDependenceLowGrayLevelEmphasis 72. Coarseness

35. LowGrayLevelEmphasis 73. Complexity

36. SmallDependenceEmphasis 74. Contrast

37. SmallDependenceHighGrayLevelEmphasis 75. Strength

38. SmallDependenceLowGrayLevelEmphasis
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Maximum standardized uptake value (SUVmax) based
classification
SUVmax is a widely recognized semiquantitative para-
meter in PET/CT studies. We evaluated a logistic
regression model based on SUVmax as a baseline com-
parison in our cohorts [20, 21].

Statistical analyses
R version 4.2.2 (http://www.r-project.org) was utilized
for statistical analyses. Categorical variables were pre-
sented as counts with proportions, while continuous
variables with normally distributed and non-normally
distributed data were expressed as mean ± SD, median,
and interquartile range, respectively. A significance level
of p < 0.05 on both sides was considered statistically
significant. ROC analyses were conducted using the

“pROC” package. Wilcoxon signed rank tests were
employed to compare results from 50 runs in the
pilot model.

Results
Clinical information and subjective CT findings
Table 2 displays the demographics and subjective CT
findings across all cohorts. Patients were categorized into
two groups based on follow-up results: PM and NM.
Significant differences were observed in tumor infiltration
into the surrounding fat and the level of CA19-9 between
the two groups across all three cohorts. Primary tumor
location, SUVmax, and levels of CEA exhibited differences
in the training and external validation cohorts. Patient age
reached statistical significance only in the internal vali-
dation cohort (p < 0.05).

Fig. 3 Two deep neural networks studied. A ResNet34. B ResNet50
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Predictive performance of the pilot model
Table 3 provides a summary of quantitative comparisons,
including sensitivity, specificity, accuracy, positive pre-
dictive value (PPV), negative predictive value (NPV),
AUC, and average AUC of 50 runs, comparing the pilot
models and radiomics-boosted models in both the train-
ing and internal validation cohorts. In all pilot models,
using expanded ROI patches as the input variable
achieved higher average AUC values in the validation
cohort (p < 0.001). Comparing ResNet34 and ResNet50
models, the latter achieved average AUC gains with any
CT patches and used PET expand ROI patches as input
variables, yielding similar results (p < 0.001) (Fig. S1 A, B,
D, and E). Ultimately, two optimal models were selected
from the pilot models: ResNet50 with CT and PET
expand ROI patches as input variables, exhibiting higher
AUC and lower standard deviation (SD), indicating a high
level of robustness (0.739 ± 0.027 and 0.798 ± 0.007,
respectively). The AUC, accuracy, sensitivity, specificity,
PPV, and NPV of the CT model that is closest to the
average AUC value in the internal validation cohort are
0.749, 0.659, 0.600, 0.692, 0.529, and 0.750, respectively,
while in the PET model, they are 0.797, 0.732, 0.933,
0.615, 0.583, and 0.941, respectively.

RFM selection and radiomics-boosted deep-learning model
construction
Figure 4A, C illustrates the average correlation heatmap of
RFM generated by expanded ROI patches from CT and
PET images. After excluding highly correlated features,
the RFMs of CT and PET include 37 and 27 features. The
average correlation values between RFMs and the SM
from the two pilot models are depicted in Fig. 4B, D,
highlighting the highest-performing features with green
boxes. For the RFMs of CT patches, GLDM-based small

dependence emphasis (SDE) (0.145) and GLDM-based
small dependence high gray level emphasis (SDHGLE)
(0.146) achieved the highest average correlation. Similarly,
for the RFMs of PET patches, GLCM-based difference
entropy (DE) (0.288) and GLDM-based large dependence
low gray level emphasis (LDLGLE) (0.258) were selected.
The overall average correlation value of RFMs generated
from CT is lower than PET.
Compared to the ResNet50 using only CT expand ROI

patches as input, the model’s performance significantly
improved after adding RFMs (AUC from 0.739 ± 0.027 to
0.866 ± 0.018, p < 0.001) (Fig. S1 C). The AUC, accuracy,
sensitivity, specificity, PPV, and NPV in the internal vali-
dation cohort are 0.869, 0.780, 0.800, 0.769, 0.667, and
0.870. Unexpectedly, the performance of the radiomics-
boosted model decreased in PET (AUC from 0.798 ± 0.007
to 0.796 ± 0.008, p= 0.006) (Fig. S1 F and Table 3).
After a comprehensive comparison of various models,

two best models based on PET/CT images were identified:
(1) ResNet50 with CT ROI expand patches+ RFMs as
input. (2) ResNet50 with only PET ROI expand patches as
input. The radiomics-boosted deep-learning model score
was obtained by multivariable logistic regression on the
output probabilities of the two models. This model not
only exhibits the best predictive performance in the
training and internal validation cohorts but also has high
generalization ability in the external validation cohort.
The AUC, accuracy, sensitivity, specificity, PPV, and NPV
in the internal validation cohort are 0.897 (95% con-
fidence interval (CI): 0.801–0.994), 0.829, 0.800, 0.846,
0.750, and 0.880, respectively, 0.885 (95% CI:
0.795–0.975), 0.821, 0.700, 0.889, 0.778, and 0.842 in the
external validation cohort. In all validation datasets, these
values were 0.889 (95% CI: 0.823–0.954), 0.825, 0.743,
0.871, 0765, and 0.857 (Table 4). All datasets showed

Table 3 Performance of pilot models with different input variables and different neural networks

Mode Modality Patches Training cohort Validation cohort

AUC ACC SEN SPE PPV NPV AUC ACC SEN SPE PPV NPV AUC (50 repeats)

ResNet34 CT Original 0.613 0.545 0.711 0.449 0.427 0.729 0.513 0.512 0.800 0.346 0.414 0.750 0.514 ± 0.064

Expand 0.775 0.691 0.844 0.603 0.551 0.870 0.656 0.583 0.5333 0.615 0.444 0.696 0.656 ± 0.039

PET Original 0.761 0.780 0.578 0.897 0.787 0.765 0.654 0.658 0.600 0.692 0.750 0.529 0.655 ± 0.033

Expand 0.833 0.748 0.778 0.731 0.625 0.851 0.718 0.658 0.667 0.654 0.526 0.772 0.725 ± 0.019

ResNet50 CT Original 0.797 0.748 0.778 0.731 0.452 0.851 0.667 0.667 0.538 0.538 0.455 0.737 0.679 ± 0.029

Expand 0.787 0.844 0.551 0.658 0.521 0.860 0.749 0.659 0.600 0.692 0.529 0.750 0.739 ± 0.027

PET Original 0.781 0.699 0.578 0.769 0.591 0.759 0.651 0.610 0.600 0.515 0.473 0.727 0.636 ± 0.023

Expand 0.819 0.707 0.733 0.692 0.579 0.818 0.797 0.732 0.933 0.615 0.583 0.941 0.798 ± 0.007

ResNet50 CT Expand+ RFM 0.884 0.740 0.889 0.654 0.597 0.911 0.869 0.780 0.800 0.769 0.667 0.870 0.866 ± 0.018

PET Expand+ RFM 0.809 0.756 0.444 0.936 0.810 0.725 0.782 0.415 1.000 0.115 0.395 1.000 0.796 ± 0.008

RFM radiomic feature maps
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differences between the NM and PM groups (Fig. 5A).
According to the Hosmer-Lemeshow test, the ideal curve
and the predictive calibration curve are similar in both
training, internal, external, and all validation datasets
(p= 0.225, 0.224, 0.447, 0.696, respectively) (Fig. 5B, C).

Model comparison
Radiomics-boosted deep-learning compared with classical
radiomics model
The AUCs of the radiomics model in all cohorts are
illustrated in Fig. S2 A–F. The PET/CT classical radiomics
model score, calculated by multivariable logistic regres-
sion, yielded AUCs of 0.813 (95% CI: 0.736–0.890), 0.680
(95% CI: 0.504–0.855), 0.642 (95% CI: 0.473–0.810), and
0.659 (95% CI: 0.537–0.779) in the training, internal,
external, and all validation datasets, respectively. The IDI
and DeLong test demonstrated that the radiomics-
boosted deep-learning model improved performance
compared to the classical radiomics model (IDI= 0.302,
p < 0.001; DeLong test, p < 0.001) (Fig. 5D–G).

Radiomics-boosted deep-learning compared with clinical
and subjective CT finding model
Three clinical information and one subjective CT feature
were screened using univariate and multivariate logistic

regression to construct a clinical and subjective CT
finding model (Table 5). The AUCs in the training,
internal, external, and all validation datasets were 0.797
(95% CI: 0.717–0.877), 0.727 (95% CI: 0.567–0.887), 0.786
(95% CI: 0.657–0.915), and 0.758 (95% CI: 0.658–0.858),
respectively. The performance was still lower than the
radiomics-boosted deep-learning model (IDI= 0.206,
p= 0.005; DeLong test, p= 0.024) (Fig. 5D–G).

SUVmax assessment
The SUVmax showed limited performance, with AUCs of
0.650 (95% CI: 0.544–0.757) in the training cohort and
0.680 (95% CI: 0.506–0.853), 0.672 (95% CI: 0.518–0.826),
and 0.686 (95% CI: 0.575–0.798) in the internal, external,
and all validation datasets, respectively (Fig. 5D–G).
Detailed data about AUC, accuracy, sensitivity, specificity,
PPV, and NPV of all models are presented in Table 4.

Discussion
This study utilized a new complementary approach of
radiomics and deep learning for risk prediction of syn-
chronous CRPM. The proposed radiomics-boosted deep
learning model is completely superior to the clinical and
subjective CT finding model, classical radiomics model,
and SUVmax assessment, achieving optimal performance.

Fig. 4 RFM selection. Average correlation heatmap of RFM generated by expanded ROI patches from CT (A) and PET (C) images. Panels B, D depict the
average correlation values between RFM and SM of CT and PET pilot models after removing redundant features, highlighting the highest-performing
features with green boxes. RFM, radiomics feature map; SM, saliency map
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We believe that for high-risk patients, it is necessary to
search for metastatic lesions in more detail or develop a
more compact and sensitive follow-up plan.
The independent predictive factors for CRPM in this

study include elevated levels of CEA and CA19-9, which
are consistent with previous research findings [22–25]. In
addition, we also found that tumors situated in the right
colon have a higher propensity for PM (p= 0.020). Pre-
vious research indicates that compared to adenocarcino-
mas in the left colon (32.5%), mucinous adenocarcinomas
(42.3%) and signet ring cell carcinomas (48.8%) are more
prevalent in the right colon, with respective probabilities
of PM at 20.1%, 48.2%, and 51.2% (p < 0.001) [26]. Recent
studies in CRC have explored the application of radiomics
and deep learning techniques [27–31]. Li et al [14]
developed a radionics-clinical fusion model based on
texture features from primary tumor lesions and the lar-
gest metastatic lymph node, achieving good performance
in predicting synchronous CRPM (training set AUC:
0.855, validation set: 0.793). Yuan et al [32] employed a
ResNet3D+ SVM-based deep learning framework,
demonstrating potential in PM detection, albeit requiring
substantial computational resources. Zhang et al [33]
successfully developed a PM detection model with robust

generalization using meta-learning algorithms, despite
limited raw data availability, achieving an AUC of 0.728.
The onset of synchronous CRPM is insidious and

symptoms lack specificity. National guidelines recom-
mend the hematological, imaging examination, diagnostic
laparoscopy, and cytological examination of abdominal
fluid or perfusion fluid as primary diagnostic tools for
CRPM [12, 34–36]. Nonetheless, due to the limitations of
various methods, a significant number of patients are not
diagnosed with PM until surgical exploration [37]. This
study, involving a minimum six-month follow-up through
pathology or imaging, developed classical radiomics and
radiomics-boosted deep learning model based on pre-
treatment PET/CT images. These models effectively
assess the current risk and predict short-term significant
progression of CRPM in patients, even in those initially
assessed as negative. It can remind doctors to search for
metastatic lesions in more detail or develop more sensi-
tive follow-up plans. In this study, four CT and two PET
radiomics features were constructed traditional radiomics
models for synchronous CRPM risk evaluation (Supple-
mentary A5). Notably, in our study, CT-derived features
emphasized image texture complexity and uniformity,
whereas PET features, exclusively first-order, depicted

Table 4 Comparison of the prediction performance of four models for synchronous CRPM risk

Data set Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Training cohort,

(n= 123)

Radiomics-boosted

deep-learning model

0.926 (0.874–0.978) 0.886 (109/123) 0.826 (38/46) 0.922 (71/77) 0.864 (38/44) 0.899 (71/79)

Clinical and subjective

CT finding

0.797 (0.717–0.877) 0.707 (87/123) 0.891 (41/46) 0.597 (46/77) 0.569 (41/72) 0.902 (46/51)

Radiomics 0.813 (0.736–0.890) 0.732 (90/123) 0.870 (40/46) 0.650 (50/77) 0.597 (40/67) 0.893 (50/56)

SUVmax 0.650 (0.544–0.757) 0.675 (83/123) 0.609 (28/46) 0.714 (55/77) 0.560 (22/50) 0.753 (55/73)

Internal validation

cohort, (n = 41)

Radiomics-boosted

deep-learning model

0.897 (0.801–0.994) 0.829 (34/41) 0.800 (12/15) 0.846 (22/26) 0.750 (12/16) 0.880 (22/25)

Clinical and subjective

CT finding

0.727 (0.567–0.887) 0.634 (26/41) 0.867 (13/15) 0.500 (13/26) 0.500 (13/26) 0.867 (13/15)

Radiomics 0.680 (0.504–0.855) 0.585 (24/41) 0.733 (11/15) 0.500 (13/26) 0.458 (11/24) 0.765 (13/17)

SUVmax 0.680 (0.506–0.853) 0.561 (23/41) 0.600 (9/15) 0.539 (14/26) 0.429 (9/21) 0.700 (14/20)

External validation

cohort, (n = 56)

Radiomics-boosted

deep-learning model

0.885 (0.795–0.975) 0.821 (46/56) 0.700 (14/20) 0.889 (32/36) 0.778 (14/18) 0.842 (32/38)

Clinical and subjective

CT finding

0.786 (0.657–0.915) 0.714 (40/56) 0.850 (17/20) 0.639 (23/36) 0.567 (17/30) 0.885 (23/26)

Radiomics 0.642 (0.473–0.810) 0.643 (36/56) 0.450 (9/20) 0.750 (27/36) 0.500 (9/18) 0.711 (27/38)

SUVmax 0.672 (0.518–0.826) 0.643 (36/56) 0.600 (12/20) 0.667 (24/36) 0.500 (12/24) 0.750 (24/32)

All validation cohorts,

(n = 97)

Radiomics-boosted

deep-learning model

0.889 (0.823–0.954) 0.825 (80/97) 0.743 (26/35) 0.871 (54/62) 0.765 (26/34) 0.857 (54/63)

Clinical and subjective

CT finding

0.758 (0.658–0.858) 0.680 (66/97) 0.857 (30/35) 0.581 (36/62) 0.536 (30/56) 0.878 (36/41)

Radiomics 0.659 (0.537–0.779) 0.619 (60/97) 0.571 (20/35) 0.645 (40/62) 0.476 (20/42) 0.727 (40/55)

SUVmax 0.686 (0.575–0.798) 0.598 (58/97) 0.600 (21/35) 0.597 (37/62) 0.457 (21/36) 0.725 (37/51)
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pixel or voxel distribution within the ROI, akin to physi-
cians’ film interpretations, ignoring spatial correlations
[17]. However, the classical radiomics model, reliant on
predefined features, exhibits poor prediction accuracy
(AUC: 0.659 (95% CI: 0.537–0.779) across all validation
datasets). Previous research has highlighted synergies
between deep learning and radiomics features, prompting
this study to boost model efficacy through deep learning
techniques, whilst leveraging the strengths of radiomics
features [38–41].
To overcome the challenge of deep learning’s extensive

training dataset requirement, we applied transfer learning

and data augmentation to expand our dataset and prevent
overfitting. The streamlined architecture and efficient
training time of ResNet effectively captured predictive
features, as demonstrated in our study and supported by
other research [3, 42].
To comprehend the impact of tumor-surrounding tis-

sues on classification, we annotated additional image
patches encompassing the surrounding regions of the
original ROI. The inclusion of surrounding tissue sig-
nificantly enhanced the performance of both the CT and
PET models, resulting in an average AUC of 0.739 ± 0.027
and 0.798 ± 0.007 in the validation cohort. This

Fig. 5 Performance evaluation of prediction models. Distribution of the radiomics-boosted deep-learning model score in all datasets (A). Calibration
curves of the radiomics-boosted deep-learning model in training (B) and validation cohorts (C). Panels D–G show AUCs of different models in all training,
internal, external, and all validation datasets. AUC, area under the curves
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observation is consistent with the subjective assessment of
tumor-surrounding fat infiltration on CT images (p < 0.05
in all cohorts). In CRC, the pT4 category, indicating ser-
osal involvement by tumor cells, has been identified as a
crucial independent prognostic factor, surpassing local
spread and lymph node involvement [43]. Santvoort et al
[44] advocate for diagnostic laparoscopy before selective
resection in patients with radiological suspicion of T4
CRC. The introduction of RFMs is a noteworthy highlight,
capturing subtle texture variations within ROIs driven by
anatomical factors, as opposed to radiomic features cal-
culated as scalar values. Prior studies on lung diseases
have validated the rationality of this method, suggesting
that the potential functional information in RFMs can
enhance the accuracy of preoperative risk assessment for
PM in CRC patients [18, 45]. The superimposition of CT
images and RFMs yielded significant performance bene-
fits, with GLDM-based SDE and GLDM-based SDHGLE
having the highest correlation to SM. GLDM-based SDE
assesses the distribution of small dependencies, with a
greater value indicating smaller dependence and less

homogeneous textures. GLDM-based SDHGLE measures
the joint distribution of small dependence with higher
gray-level values. The tumor boundary in two sets of
RFMs is better defined than in the original image, and if
fat infiltration is present around the tumor in the original
image, the pixel value in the corresponding position in the
RFMs decreases accordingly (Fig. 6).
The neural network model based on PET original ROI

patches exhibits good predictive performance, but after
radiomics enhancement, the performance is suppressed.
This may be attributed to the rich tissue metabolism
information in the original image, but a low number of
pixels and the lack of anatomical texture information in
the image. These results align with recent research, indi-
cating a close relationship between FDG metabolism
levels in primary tumor tissue and CRPM, with mucus
components prone to causing PM exhibiting lower FDG
uptake, although the AUC value was relatively low in this
study [9, 46, 47].
Figure 6 illustrates the inference process for two deep-

learning models. Pixels in SMs represent attention in the
deep learning model, and hot regions are colored based
on attention patterns. The model exhibits more attention
to the surrounding area of the tumor for CT images, while
the attention in PET images demonstrates significant
differences in FDG metabolism.
Several limitations should be acknowledged in this

study. Firstly, it is a retrospective and single-center study,
with a relatively small sample size and potential bias,
which may overestimate the performance of the model.
Further studies should be conducted in a different data-
base (e.g., multicentre, larger sample size) in the future.
Secondly, the diagnosis of some CRPM patients relied on
follow-up due to the inability to undergo surgery or
laparoscopic exploration for confirmation, resulting in a
lack of a gold standard diagnosis. Thirdly, the study uti-
lized a 2D convolutional neural network, converting
three-dimensional lesion information into two dimen-
sions, which may disrupt the spatial topological relation-
ship between different tumor layers, potentially leading to
the loss of key information for overall tumor evaluation.
Fourthly, the classical radiomics model only extracted
features from tumor lesions and did not include the
surrounding area of the tumor in this study. Lastly, we
observed that the model based on clinical and subjective
CT findings demonstrated high sensitivity. In the future,
integrating the deep learning model with clinical infor-
mation may achieve higher diagnostic efficiency.
In conclusion, our results indicate that the Radiomics-

boosted deep-learning model surpasses the classical
radiomics model, SUVmax model, and clinical and

Table 5 Univariate and multivariate logistic regression analysis
for clinical information and subjective CT findings in the training
cohort

Characteristics Uni-variate

analysis, (p)

Clinical and subjective

CT finding model

(p, AIC= 137.74)

Location

Right

Left 0.030a 0.020a

Gender

Female

Male 0.180

Age 0.745

Weight 0.647

BMI 0.213

Thickness 0.249

CEA

(−, ≤ 5 ng/mL)

(+, > 5 ng/mL) 0.001a 0.046a

CA19-9

(−, ≤ 37 U/mL)

(+, > 37 U/mL) < 0.001a 0.002a

Infiltration

Absent

Present 0.017a 0.043a

CEA carcinoembryonic antigen, CA19-9 carbohydrate antigen 19-9
a Indicating statistical significance
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subjective CT finding model. This could potentially assist
physicians in making more personalized treatment deci-
sions and follow-up plans for patients.

Abbreviations
AUC Area under the curve
CA19-9 Carbohydrate antigen 19-9
CEA Carcinoembryonic antigen
95% CI 95% Confidence interval
CRC Colorectal cancer
CRPM Colorectal cancer peritoneal metastasis
CT Computed tomography
FC Fully connected
18F-FDG-
PET/CT

18F-fluorodeoxyglucose positron emission tomography/com-
puted tomography

NM Non-metastasis
NPV Negative predictive value
PM Peritoneal metastasis
PPV Positive predictive value
RFM Radiomic feature map
ROI Region of interest
SD Standard deviation
SM Significance map
SUVmax Maximum standardized uptake value
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