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Abstract

Objectives Radiomics has been demonstrated to be strongly associated with TNM stage and patient prognosis. We
aimed to develop a model for predicting lymph node metastasis (LNM) and survival.

Methods For radiomics texture selection, 3D Slicer 5.0.3 software and the least absolute shrinkage and selection
operator (LASSO) algorithm were used. Subsequently, the radiomics model, computed tomography (CT) image, and
clinical risk model were compared. The performance of the three models was evaluated using receiver operating
characteristic (ROC) curves, decision curve analysis (DCA), calibration plots, and clinical impact curves (CICs).

Results For the LNM prediction model, 224 patients with LNM information were used to construct a model that was
applied to predict LNM. According to the CT data and clinical characteristics, we constructed a radiomics model, CT
imaging model and clinical model. The radiomics model for evaluating LNM status showed excellent calibration and
discrimination in the training cohort (AUC = 0.926, 95% Cl = 0.869-0.982) and the validation cohort (AUC = 0.872, 95%
Cl=0.802-0.941). DelLong’s test demonstrated that the difference among the three models was significant. Similarly,
DCA and CIC showed that the radiomics model has better clinical utility than the CT imaging model and clinical
model. Our model also exhibited good performance in predicting survival—in line with the findings of the model built
with clinical risk factors.

Conclusions CT radiomics models exhibited better predictive performance for LNM than models built based on
clinical risk characteristics and CT imaging and had comparative clinical utility for predicting patient prognosis.

Critical relevance statement The radiomics model showed excellent performance and discrimination for predicting
LNM and survival of duodenal papillary carcinoma (DPC).
Key Points

* |NM status determines the most appropriate treatment for DPC.
* Our radiomics model for evaluating the LNM status of DPC performed excellently.
* The radiomics model had high sensitivity and specificity for predicting survival, exhibiting great clinical value.
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The radiomics model showed
excellent performance and
discrimination for predicting
lymph node metastasis and
survival of duodenal papillary
carcinoma.
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Introduction
The duodenum is a component of the small intestine that
is 5—6 m long, and tumours rarely occur there. Duodenal
carcinoma accounts for approximately 50% of small
intestinal cancers and approximately 0.3% of gastro-
enterological cancers [1]. The duodenal papilla is an
important site of carcinogenesis because it is formed by a
common duct linking the bile duct with the pancreatic
duct, the surrounding sphincter muscle, and the papillary
bulge of the duodenal mucosa. The greatest function of
the papilla is to participate in regulating the secretion of
bile and pancreatic fluid; therefore, once tumours occur,
patients will experience jaundice and indigestion [2].
Duodenal papillary carcinoma (DPC) usually involves
the duodenum, bile ducts, and pancreatic ducts. Previous
studies have shown that lesions are mostly located at the
common opening of the duodenal papilla [2]. DPCs in the
early stage are mistaken for chronic inflammation or
benign protuberant lesions due to their small size, as
determined by CT, endoscopic examination and other
methods. Furthermore, the incidence of small intestinal
carcinoma and DPC has increased annually, and the
mortality rate has increased by 26% [3]. As many patients
are asymptomatic until advanced disease detection
through imaging examination, diagnostic delays often

occur, leading to a poor prognosis [4]. Previous studies
have shown that more than 56% of patients exhibit locally
advanced tumours or distant metastases at initial diag-
nosis, and those with advanced tumours only have a
5-year survival rate of 42.6% [3]. For papilla tumours in
situ without lymphovascular invasion (LVI) or lymph
node metastasis (LNM), endoscopic papillectomy is safe
and curative; however, when tumours exhibit LNM or
LVI, surgery is considered the first modality without
considering endoscopy [5, 6]. Most studies have suggested
that LNM is associated with prognosis, and the incidence
of LNM ranges from 22% to 76% [7, 8]. Undoubtedly, the
LNM status can determine the method of treatment and
affect whether patients can undergo curative resection.
Clinically, if patients are identified as having positive
LNM, chemotherapy should be administered after surgery
or before surgery. Hence, identifying the status of LNMs
is crucial for managing patients and predicting the prog-
nosis of DPC patients.

There are few previous studies on the ability of the
model to predict LNM and patient prognosis in DPC, and
the performance of the model is not desirable [9, 10].
Endoscopic ultrasound and intraductal ultrasonography
are also unsatisfactory for detecting LNM, with a sensi-
tivity and specificity of 0.61 and 0.77, respectively [11].
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Radiomics is an emerging diagnostic and predictive
method that facilitates accurate diagnosis by extensively
exploring, predicting, and analysing a vast amount of
medical imaging data [12]. Radiomics can identify het-
erogeneity within tissues and employ automated high-
throughput feature extraction algorithms to convert
image data into readable quantitative data [13]; this
transformation enables healthcare professionals to better
comprehend the information embedded in images and
apply it in clinical practice. To date, many studies have
focused on radiomics for predicting LNM, as well as LVI,
and these studies have demonstrated that radiomics has a
promising future in clinical practice [14, 15]. However,
whether radiomics is an effective tool for individualised
prediction of LNM in DPC patients is unknown.

In our study, to establish a new radiomics model based
on CT imaging for LNM in the DPC, 224 patients with
DPC were enroled between January 2018 and September
2022 for statistical analysis, after which the performance
of the model was evaluated internally and externally.

Methods

Patient extraction

All patients diagnosed with DPC between January 2018 and
September 2022 were obtained from the First Affiliated
Hospital of Nanchang University. The inclusion criteria
were as follows: (1) diagnosed with DPC based on histo-
logical examination, (2) had detailed CT data recorded, and
(3) had complete LNM data. We excluded the following
patients: (1) patients who did not undergo surgery; (2)
patients with incomplete or unavailable imaging data; (3)
patients with other severe diseases, such as renal failure and
heart failure; and (4) patients receiving neoadjuvant che-
motherapy. For patients with missing survival information,
we recorded the information via telephone follow-up. All
patients were followed up until October 2022. Finally, 224
patients from our centre were randomly assigned to two
groups at a 1:1 ratio: the training group (112 patients) and
the testing group (112 patients). The study flowchart is
shown in Supplementary Fig. 1.

Definitions of variables

In our study, the following data were collected: (1) clinical
characteristics, including age, sex, drinking status,
smoking status, survival time, and CT imaging; (2)
pathological-related features, including TNM  stage,
tumour size, and cell differentiation; and (3) serum mar-
kers, including CEA and CA199. Patient characteristics
are summarised in Table 1. Sex was recorded as male or
female, and age was categorised into < 50 and > 50-years-
old. Clinical features such as drinking, smoking status and
LNM status based on CT were classified as no or yes. CEA
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Table 1 Basic information of extracted patients from the First
Affiliated Hospital of Nanchang University diagnosed with DPC
Variables Total N_stage N stage p value
(yes) (no)
Total 224 69 155
Sex 0452
Male 128 (57.1) 42 (60.9) 86 (55.5)
Female 96 (42.9) 27 (39.1) 69 (44.5)
Age 0.16
<50 37 (16.5) 15 (21.7) 22 (14.2)
>50 187 (83.5) 54 (783) 133 (85.8)
Cell differentiation 0.251
Well 57 (254) 21 (304) 36 (23.3)
Poorly 167 (74.6) 48 (69.6) 119 (76.7)
T stage 0.041
TO/T1 19 (85) 4 (5.8) 15 (9.7)
T2 60 (26.8) 11 (159 49 (31.6)
T3 28 (12.5) 10 (14.5) 18 (11.6)
T4 117 (52.2) 44 (63.8) 73 (47.1)
M stage 0.627
MO 189 (84.4) 57 (82.6) 132 (85.2)
M1 35 (15.6) 12 (17.4) 23 (14.8)
CEA 0.525
<65 140 (62.5) 41 (594) 99 (63.9)
>6.5 84 (37.5) 28 (40.6) 56 (36.1)
Smoking 0.389
No 155 (69.2) 45 (65.2) 110 (71.0)
Yes 69 (30.8) 24 (34.8) 45 (29.0)
Drinking 0.288
No 157 (70.1) 45 (65.2) 112 (72.3)
Yes 67 (29.9) 24 (34.8) 43 (27.7)
Lymph vessel < 0.001
invasion
No 143 (63.8) 28 (40.6) 116 (74.8)
Yes 80 (357) 41 (00.59.4) 39 (25.2)
Tumour size 0417
<2cm 60 (26.8) 16 (23.2) 44 (284)
>2cm 164 (73.2) 53 (76.8) 111 (71.6)
CA199 0.774
<27 81 (36.2) 24 (34.8) 57 (36.8)
> 27 143 (63.8) 45 (65.2) 98 (63.2)
CT imaging <0.001
No (LNM) 166 (74.1%) 25 (36.2) 141 (90.9)
Yes (LNM) 58 (25.9%) 44 (36.8) 14 (9.1)
Survival time (M) 11.0(6.0,200) 80 (50,1600 120(6.0,21.7)

and CA199 values were recorded as actual measurements.
The degree of differentiation was divided into good dif-
ferentiation and poor differentiation. T stage was recor-
ded according to the 8th edition of the TNM staging
system. LNM and distant metastasis were classified as no
or yes, respectively.
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CT image acquisition, segmentation, and extraction of
radiomics features

The radiomics workflow is illustrated in Fig. 1. In this
study, all patients underwent contrast-enhanced abdom-
inal CT scans that covered the entire tumour. The CT
scans were performed using a Siemens SOMATOM
Definition AS 128-slice spiral CT scanner. The CT scan
was conducted with the following parameters: 120 kV, 200
effective mAs, a collimation of 640.6 mm, a matrix of
512 x 512, a pitch of 0.8, and a gantry rotation time
of 0.5s. After the nonenhanced CT scan, 80—-100 mL of
nonionic contrast agent (370 mg I/mL, Pamir iodine,
Bracco) was intravenously injected at a rate of 3.5mL/s,
followed by a saline flush (20 mL), after which a dynamic
contrast-enhanced CT scan was performed. Images in the
arterial phase and venous phase were obtained at 30 s and
60 s, respectively. The slice thickness of the images was
1.0mm. The CT images in the arterial phase were
retrieved for image feature extraction. The region of
interest (ROI) for tumour lesions was semiautomatically
segmented using 3D Slicer 5.0.3, and the ROI was selected
on the slice containing the tumour area. Texture extrac-
tion was performed using the radiomics tool 3D Slicer
5.0.3 to extract imaging features from the three-
dimensional images of the tumours. ROI segmentation
for tumour imaging was conducted by two clinicians with
the help of extensively experienced radiologists. Further-
more, intra- and interclass correlation coefficients were
calculated to assess the consistency of the two readers in
radiomics feature extraction. Distinct radiological char-
acteristics may indicate a suspicious LNM. Non-
metastatic LNs typically appear as discrete, kidney-
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Fig. 1 The flowchart of radiomics and the whole study
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shaped structures composed of soft tissue featuring a
concave hilum consisting of fat tissue. In contrast, LNs
with metastases appear round on imaging and exhibit
rim enhancement, irregular borders, a nonuniform par-
enchymal staining pattern, and hypodense central
attenuation. Additionally, size, typically more than 5 mm,
remains a commonly used criterion [16].

Feature selection and radiomics signature construction

We used the least absolute shrinkage and selection
operator (LASSO) logistic regression algorithm, which
can achieve dimension reduction for high-dimensional
data. A formula, which is shown in Supplementary
Material 1, was generated using a linear combination of
selected features according to their respective LASSO
coefficients; then, the formula was used to determine a
risk score (named the CT radiomics model) for each
patient to reflect the TNM status of patients with DPC.

Statistical analysis

For statistical analysis, patients extracted from our centre
were first divided into a training group and a testing group
at a 1:1 ratio. In addition, features were compared
between the two groups. Differences in continuous vari-
ables were compared using the Mann-Whitney U-test or
independent ¢-test, while comparisons of categorical
variables were conducted using the chi-square test or
Fisher’s exact test. To construct the model, we simulta-
neously constructed a radiomics model, a clinical feature
model and a CT imaging alone model. For the model’s
performance and discriminative ability, we tested the
Hosmer-Lemeshow goodness-of-fit test and plotted

Study Flowchart

Validation group

Training group

856 Imaging
features

LASSO logistic
regression

Constructing a model

By multiple
clinical features

By CT radiomics
and CT imaging

Comparison

CT radiomics is Best
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receiver operating characteristic (ROC) curves to evaluate
the model’s classification ability. We used decision curve
analysis (DCA) and a clinical impact curve (CIC) to
evaluate the clinical net benefit of the predictive models.
Additionally, we conducted DeLong’s test to calculate the
significant differences in the models. All the statistical
analyses were performed using R software, and the rele-
vant software packages were obtained from the R software
program website (https://cran.r-project.org/). A p value
less than 0.05 was considered to indicate statistical sig-
nificance for all analyses.

Results

Basic patient information and study design

In this work, according to the inclusion and exclusion
criteria, as shown in Supplementary Fig. 1, we included
224 DPC patients diagnosed in our hospital from Jan-
uary 2018 to September 2022. As shown in Table 1, male
patients and older patients (> 50 years) accounted for
more than 50% of the DPC patients; however, the
imbalance in distribution was not significant in the
LNM group. The distribution of cells differentiating
between LNM-negative and LNM-positive tumours was
similar (p > 0.05); however, there were more advanced-
stage tumours in the LNM-positive DPC than in the
LNM-negative DPC (p =0.041). In terms of distant
metastasis, there seemed to be no association with LNM
status. Similarly, between the LNM-positive group and
the LNM-negative group, the rates of smoking and
drinking were similar (p > 0.05). Most DPC patients had
larger tumours (>2cm); however, the size of the
tumours was not associated with LNM status. Moreover,
the levels of CEA and CA199 did not differ between the
LNM-positive and LNM-negative patients. We found
that tumours with lympho-vascular invasion tended to
be positive for LNM (59.4 vs 25.2, p <0.001). The true
positive rate of CT imaging for LNM was not perfect,
with a value of 0.745 (44/59). The median survival time
of patients with positive LNMs was 8 months (5-16),
while patients without LNM had a median survival time
of 12 (6-21.7).

Establishment of a model for predicting LNM in DPC
patients

Our patients were divided into training and testing groups
at a ratio of 1:1. The detailed characteristics of the patients
in the training set and testing set are shown in Table 2.
There were 112 patients in the training group and 112
patients in the testing group. Table 2 shows that the
distribution was random because the p value was greater
than 0.05. Then, based on the flowchart shown in Fig. 1,
we enroled 856 variables, including shape-based variables,
first-order statistics and textural features, according to
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Table 2 Basic information of training group and testing group
diagnosed as DPC

Variables Total Training Testing p value
group group
Total 224 112 112
Sex 1
Male 128 (57.1) 64 (57.1) 64 (57.1)
Female 96 (42.9) 48 (42.9) 48 (42.9)
Age 0.28
<50 37 (16.5) 15 (134) 22 (19.6)
>50 187 (83.5) 97 (86.6) 90 (80.4)
Cell differentiation 0.032
Well 57 (254) 21 (188) 36 (32.1)
Poorly 167 (74.6) 91 (81.2) 76 (67.9)
T stage 1
TO/T1/T2 79 (35.3) 40 (35.7) 39 (34.8
T3/T4 145 (64.7) 72 (64.3) 73 (65.2)
M stage 0.27
MO 189 (84.4) 98 (87.5) 91 (81.2)
M1 35 (15.6) 14 (12.5) 21 (188)
CEA 0.89
<65 140 (62.5) 71 (634) 69 (61.6)
=65 84 (37.5) 41 (36.6) 43 (384)
Smoking 1
No 155 (69.2) 77 (68.8) 78 (69.6)
Yes 69 (30.8) 35(31.2) 34 (304)
Drinking 1
No 157 (70.1) 79 (70.5) 78 (69.6)
Yes 67 (29.9) 33 (29.5) 34 (304)
Tumour size 1
<2cm 99 (44.2) 49 (43.8) 50 (44.
>2cm 125 (55.8) 63 (56.2) 62 (554
CA199 1
<65 81 (36.2) 41 (36.6) 40 (35.7)
>65 143 (63.8) 71 (634) 72 (64.3)
N stage 1
No 155 (69.2) 78 (69.6) 77 (68.8)
Yes 69 (30.8) 34 (304) 35 (31
Lymph vessel 0.163
invasion
No 144 (64.3) 67 (59.8) 77 (68.7)
Yes 80 (35.7) 45 (40.2) 35 (31
CT-positive LNM 0357
No 166 (74.1%) 85 (75.9) 81 (72.3%)
Yes 58 (259%) 27 (24.1) 31 27.7)
Survival time (M) 11.0 (6.0, 11.0 (6.0, 187) 11.50 (5.0, 0811
20.0) 21.2)

standardised definitions [17]. We performed LASSO
logistic regression to identify the features, as shown in
Fig. 2A, B. A total of 14 features, which are presented in
Supplementary Material 1, were used to construct a
model according to the value of X (logh = —2.75). Next,
we constructed a formula for calculating the radiomics


https://cran.r-project.org/

Tang et al. Insights into Imaging (2024)15:155

Page 6 of 13

A B 17 79 53 8 1

125 122 117 108 10594 92 83 75 69 62 56 52 48 37 24 21 15 8 7 6 4 3 1 1 1

0.40

Misclassification Error
0.35
!
Coefficients

0.30

T T T T T
-6 -5 -4 -3 -2
Log(»)

o
o S
2
© a]
z° o
2 B
4 3
« 3
< z
S -
S
— CTradiomics
o
=R A
CT imaging &
=
— clinical risk model
o
=) T
1.0 0.5 0.0
E Specificity F
2
I
2
©
24
a4
© =z °
2°7] 2
2 ©
] =
5 2
@ -
.8 51
— CT radiomics
~
] o
° ——  CTimaging S~
— clinical risk model
o
o T
1.0 0.5 0.0

Specificity

-500

T T T T T
-6 -5 -4 -3 -2
Log Lambda

—— clinical_risk_model

|—— CT_radiomics_model

CT_model

r T T T
0.0 0.2 0.4 06 0.8 1.0
High Risk Threshold

—— clinical_risk_model

——  CT_radiomics_model

—— CT_model

Al

0.0 0.2 0.4 06 0.8 1.0
High Risk Threshold

Fig. 2 Texture feature selection was determined by LASSO logistic regression and conducted models. A Selection of the tuning parameter (\) according

to the LASSO model via 10-fold cross-validation based on minimum criteria.

Binomial deviances from the LASSO regression cross-validation procedure

were plotted as a function of log(\). The y-axis indicates binomial deviances. The lower x-axis indicates the log(\). Numbers along the upper x-axis

represent the average number of predictors. Red dots indicate average deviance values for each model with a given A, and vertical bars through the red
dots show the upper and lower values of the deviance. The vertical black lines define the optimal values of A, where the model provides its best fit to the
data. The optimal\ (logh = —2.75) was selected. B LASSO coefficient profiles of the five features. The dotted vertical line was plotted at the value selected
using 10-fold cross-validation in (A). C, D ROC and DCA of the CT radiomics model, CT imaging model and clinical risk model predict LNM of DPC in the
training group, respectively. E, F ROC and DCA of the CT radiomics model, CT imaging model and clinical risk model predict LNM of DPC in the training

group, respectively

score according to the weight coefficient of the features
and constructed a CT radiomics model. Moreover, we
performed multivariate logistic regression analysis utilis-
ing clinical features, and the results are presented as

nomogram plots (Table 3 and Fig. 3). According to the
multivariate analysis, T stage and LVI were associated
with LNM status, as indicated by a p value less than 0.05;
early-stage non-LVI was associated with negative LNM
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(Table 3). Compared to the T stage, LVI contributed the
most to LNM (Fig. 3). For the interpretation of the
nomogram, each patient had these features, and the risk
score was determined according to our nomogram.
Next, we constructed a vertical straight line and observed
the risk of LNM. Finally, we estimated the risk with a
concrete value of accuracy. Furthermore, we constructed
a simple model in which CT imaging alone was used to
predict the status of LNM.
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Validation and comparison among the three models

To estimate the performance of our models, first, we
performed a ROC analysis on the three models. As shown
in Fig. 2C-E, CT radiomics had the highest sensitivity
and specificity (AUC =0.926, 95% CI=0.869-0.982),
followed by CT imaging (AUC=0.665 95%
CI=0.571-0.758) and the clinical risk model (AUC =
0.752, 95% CI = 0.65—0.853). The difference between the
CT radiomics model and the clinical risk model or CT

Table 3 Univariate and multivariate logistic regression model for exploring the potential favourable factors of LNM in DPC patients

Variable OR (univariable) OR (multivariable)
Age <50 -
>50 046 (0.18-1.20, p=0.114)
Sex Male
Female 0.71 (0.31-1.61, p=0411)
Differentiation Low -
High 0.50 (0.22-1.15, p=0.104)
Size <2cm -
>2cm 1.57 (0.69-3.55, p = 0.283)
Smoking No -
Yes 1.08 (0.45-2.55, p =0.868)
Drinking No -
Yes 1.30 (0.55-3.07, p =0.543)
CEA No -
Yes 1.10 (049-2.50, p =0.814)
CA199 No -
Yes 1.10 (0.47-2.53, p=0832)
T stage T1/T2 -
T3/T4 2.84 (1.11-7.31, p=0.030) 272 (1.03-7.16, p = 0.043)
Lymph vessel invasion No -
Yes 3.10 (1.33-7.22, p = 0.009) 298 (1.25-7.08, p=0.013)

40 50 60 70 80 90 _ 100

Points
T_stage r T3/T4
T1/T2
Lymph_vessel r Yes
No
Total Points T T T T T T T . )
0 20 40 60 80 100 120 140 160 180 200 220

Linear Predictor

Risk

Fig. 3 The nomogram constructed by clinical risk factors in our study

035 04 045 05 055
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Table 4 AUC of ROC for exploring LNM
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AUC value 95% Cl Z score p value
Training group
CT radiomics 0.926 0.869-0.982
Clinical risk model 0.752 0.65-0.853 2.93 (VS CT radiomics) 0.003
CT imaging 0.665 0.571-0.758 467 (VS CT radiomics) <0.001
1.18 (VS clinical risk model) 0.235
Testing group
CT radiomics 0.872 0.802-0.941 1.21 (VS CT radiomics in training group) 0.053
Clinical risk model 0.688 0.58-0.795 2.81 (VS CT radiomics) 0.005
CT imaging 0.749 0.66-0.839 2.06 (VS CT radiomics) 0.039
—0.86 (VS clinical risk model) 0.388

imaging was significant (p < 0.05); however, the difference
between the clinical risk model and CT imaging model
was not meaningful (Table 4). Similarly, the Z score of
DeLong’s test showed that the CT radiomics were perfect
(Table 4). Similarly, in the testing cohort, the CT radio-
mics model had the best AUC (AUC=0.872, 95%
CI=0.802-0.941, p < 0.05), while the CT imaging model
and clinical risk model had similar performances
(AUC=0.749 vs AUC = 0.0.688, Z score= —0.86,
p=0.388) (Table 4). As for the clinical effect, Fig. 2D, F,
and DCA graphically showed that the use of the CT
radiomics model to predict LNM had remarkable pre-
dictive power and was superior to the use of the clinical
risk model and CT imaging. For the calibration plot, using
the bootstrap validation method (# = 1000), we observed
that the CT radiomics model had good agreement with
the actual values (Fig. 4A); however, the other two models
had remarkable inconsistencies between the prediction
and actual values (Fig. 4C—E). Like in the training cohort,
in the testing cohort, the CT imaging model and clinical
risk model had poorer consistency between the actual
value and the predictive value, while the CT radiomics
model remained consistent (Fig. 4B, D, F). Additionally,
the CICs of the complex model indicated that the radio-
mics models had more remarkable predictive power than
the other two models in both the training set and the
testing set (Fig. 5A-F).

Validation and comparison of the ability of CT radiomics
features and clinical risk models to predict patient
prognosis

Previously, our models exhibited good performance for
LNM prediction; however, whether our model was effec-
tive at predicting patient prognosis was unknown. First, we
generated K-M survival curves to evaluate the association
between LNM and survival. Figure 6A shows that patients
with positive LNM had poorer survival than did those

without LNM (p = 0.044). Then, we evaluated the efficacy
of the models for predicting survival. As shown in Fig. 6B,
C, in the training cohort, CT radiomics had high sensitivity
and specificity for predicting 1-year and 3-year survival
(1-year, AUC=0.753, 95% CI=0.711-0.821; 3-year,
AUC=0.661, 95% CI=0.612-0.732), while the clinical
risk factor model had a smaller AUC for predicting 1-year
survival and 3-year survival (1-year, AUC=0.703,
95% CI=0.653-0.758; 3-year, AUC=0.643, 95%
CI=0.609-0.719); however, only the difference in pre-
dicting 1-year survival was significant (p =0.046). As for
the clinical effect, Fig. 6D, E, and DCA graphically showed
that the CT radiomics model had greater predictive power
than the clinical risk model. In the testing cohort
(Fig. 6F-I), regardless of the ROC curve or DCA, the CT
radiomics model and clinical risk model had remarkable
power for predicting survival. The difference between them
was not statistically significant (Table 5).

Discussion

The incidence of DPC transformation from adenoma to
cancer ranges from 25% to 85% [18]. Moreover, surgery
remains the primary treatment strategy for patients with
DPC, but the extent of surgical intervention is difficult to
control because the status of LNM is difficult to diagnose
[19]. Medical imaging has greatly advanced cancer diagnosis
and treatment planning with the emergence of ‘radiomics’, a
field that involves high-throughput data mining of medical
images [20]. In our study, we constructed a radiomics
model via LASSO and analysed its performance in pre-
dicting LNM and survival; the radiomics model for asses-
sing LNM had the best predictive performance.

Previous studies have demonstrated that CT imaging is
helpful for the diagnosis of duodenal papilla disease, but
the traditional CT features of patients with DPC tend to be
similar to those of patients with chronic mucositis except
for larger tumours, easily leading to misdiagnosis [21].
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Clinically, CT images evaluate the status of LNM based on
size and morphology and are considered to indicate a
lesion when the size of the lymph node is greater than
5mm in diameter [19]. In our study, we found that the
area under the curve (AUC) of CT for the diagnosis of
LNM ranged from 0.665 to 0.749, which is consistent with
the findings of previous studies [21, 22]. Hence, to improve
the diagnosis of DPC and its TNM stage, comprehensive
diagnosis should include a combination of other clinical
characteristics and new technologies. To our knowledge,
few studies have constructed models to predict LNM and

survival in patients with duodenal malignant tumours via
radiomics analysis [23]. Previous studies have shown that
T stage and lymph vessel invasion are independent risk
factors for LNM [24—26]. Our results are consistent with
the above studies, and it is reasonable that surgery should
be performed for DPC in advanced stages. Radiomics, an
emerging image quantification approach, has been widely
used in the diagnosis and prognosis of cancer based on
medical images. Some studies used support vector
machines and other deep learning methods, while our
study applied LASSO regression analysis to select potent
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Fig. 5 CIC were performed in the training and validation group. A, C, E CIC of CT radiomics model, CT imaging model, and clinical risk model in training,
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variables, both of which could improve efficiency. As
radiomics involves the use of large amounts of medical
image data, efficient methods are needed to extract rele-
vant information from these large radiomics datasets.
Hence, due to the ability to fully utilise data, radiomics
often compensates for the shortcomings of traditional CT.
As expected, our radiomics model exhibited the best
performance in predicting LNM, which was also in line
with the findings of previous studies [15, 27].

The association between LNM and survival is strong, in
which the risk of cancer-specific death seems to be two to
three times greater; moreover, LNM is strictly related to
increased cancer recurrence and worse oncological out-
comes [1]. In line with these findings, we found that
patients with positive LNM had poorer survival, and most
patients with LNM were in the T3/T4 stage [28]. Previous
studies reported that the 5-year overall survival (OS) rate
of patients with DPC ranged from 30% to 70% [1, 28], but
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our data showed that the 3-year OS rate was low. Previous
models for predicting duodenal cancer prognosis were
built with clinical risk factors, the C-index of which ran-
ged from 0.6 to 0.7 [10, 29, 30]. In our study, the model
for predicting survival had an AUC of more than 0.7 for
1-year or 3-year survival, which also showed good per-
formance compared to that of the other models.

Nevertheless, our findings suggest that the radiomics
model did not show a discernible edge over our clinical
model. It is plausible that the restricted sample size may
have contributed to this outcome.

Nevertheless, our study has several limitations. First,
our study was a single-centre retrospective study that
included only 224 DPC patients, decreasing the reliability
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Table 5 Accuracy of the prediction model for estimating the prognosis of patients with DPC

Variable Value (95% Cl)

Training group p value Testing group p value
1-year AUC for CT radiomics 0.753 (0.711-0.821) 0.046 0.751 (0.705-0.838) 0.091
1-year AUC for clinical risk model 0.703 (0.653-0.758) 0.713 (0.644-0.801)
3-year AUC for CT radiomics 0661 (0612-0.732) 0.327 0.653 (0.549-0.707) 0.162
3-year AUC for clinical risk model 0.643 (0.609-0.719) 0.671 (0615-0.737)

and possibility of popularising the findings. Hence, further
study is needed to validate the performance and gen-
eralizability of our models to other populations. Second,
the included clinical risk factors were limited, resulting in
unreliable clinical risk models. Third, in this work, we
focused only on clinical risk factors, ignoring the potential
genetic markers involved. Finally, the radiomics analysis
in our study was based on images of the primary tumours
rather than on the lymph nodes. In fact, there are still few
studies that establish a radiomics model based on lymph
nodes for LNM prediction in DPC patients, and we think
it would be more reliable to evaluate the efficacy of pre-
dicting LNM compared to traditional CT. Future research
is needed to explore the feasibility and predictive value of
radiomics analysis based on lymph node imaging or a
combination of primary tumour and lymph node images.

Conclusion

On the whole, as evidenced by results from the training
and testing groups, our radiomics model demonstrated
superior performance in predicting LNM compared to
both the standalone CT imaging model and the clinical
risk model. However, further studies are needed to
explore whether the radiomics model is superior to the
model based on clinical risk factors. In the future, we
envisage that radiomics models have the potential to
transform the screening of DPC patients and subse-
quently contribute to DPC management.
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