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Abstract

Objectives To explore the value of radiomic features derived from pericoronary adipose tissue (PCAT) obtained by
coronary computed tomography angiography for prediction of coronary rapid plaque progression (RPP).

Methods A total of 1233 patients from two centers were included in this multicenter retrospective study. The
participants were divided into training, internal validation, and external validation cohorts. Conventional plaque
characteristics and radiomic features of PCAT were extracted and analyzed. Random Forest was used to construct five
models. Model 1: clinical model. Model 2: plaque characteristics model. Model 3: PCAT radiomics model. Model 4:
clinical+ radiomics model. Model 5: plaque characteristics+ radiomics model. The evaluation of the models
encompassed identification accuracy, calibration precision, and clinical applicability. Delong’ test was employed to
compare the area under the curve (AUC) of different models.

Results Seven radiomic features, including two shape features, three first-order features, and two textural features,
were selected to build the PCAT radiomics model. In contrast to the clinical model and plaque characteristics model,
the PCAT radiomics model (AUC 0.85 for training, 0.84 for internal validation, and 0.81 for external validation; p < 0.05)
achieved significantly higher diagnostic performance in predicting RPP. The separate combination of radiomics with
clinical and plaque characteristics model did not further improve diagnostic efficacy statistically (p > 0.05).

Conclusion Radiomic feature analysis derived from PCAT significantly improves the prediction of RPP as compared to
clinical and plaque characteristics. Radiomic analysis of PCAT may improve monitoring RPP over time.

Critical relevance statement Our findings demonstrate PCAT radiomics model exhibited good performance in the
prediction of RPP, with potential clinical value.

Key Points
● Rapid plaque progression may be predictable with radiomics from pericoronary adipose tissue.
● Fibrous plaque volume, diameter stenosis, and fat attenuation index were identified as risk factors for predicting rapid
plaque progression.

● Radiomics features of pericoronary adipose tissue can improve the predictive ability of rapid plaque progression.
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Graphical Abstract

OOur findings demonstrate pericoronary adipose tissue radiomics model exhibited good 
performance in the prediction of rapid plaque progression, with potential clinical value.

Coronary CTA based radiomic signature 
of pericoronary adipose tissue predict 
rapid plaque progression
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Introduction
The consequences of coronary artery disease are the
leading cause of mortality worldwide [1]. Atherosclerotic
plaque formation and rapid plaque progression (RPP) are
the main underlying drivers in coronary artery disease
[2–4]. Studies have shown that coronary plaque tends to
increase rapidly in the months prior to an acute coronary
event, and this phenomenon of plaque progression is the
prerequisite for plaque rupture [5].
Wall inflammation is a major contributor to athero-

sclerotic plaque instability, which can promote the pro-
gression and rupture of coronary plaques [6–8]. A
persistent two-way interaction between the coronary wall
and the surrounding pericoronary adipose tissue (PCAT)
has been demonstrated. The fat attenuation index (FAI) of
pericoronary fat has been used as an indirect marker
reflecting coronary inflammation by estimating the mean
density value of pericoronary fat at coronary computed
tomography angiography (CCTA) [7, 9–11]. However, fat
density primarily relies on the values of voxel intensity,
whereas radiomic analysis may provide a more detailed
analysis of voxel characteristics [12].

Radiomic analysis extracts a large number of quantita-
tive features (such as shape, attenuation, intensity dis-
tribution, and spatial information) from medical images,
which can be used to quantitatively evaluate the hetero-
geneity of lesions, thereby improving diagnostic accuracy
[13–15]. Recently, the radiomic analysis of PCAT has
been shown to improve the prediction of acute coronary
syndromes [16, 17]. However, whether the radiomic
analysis of PCAT can improve the accuracy of RPP pre-
diction is largely unknown.
Accordingly, the purpose of this study is to explore the

value of radiomic analysis of PCAT in the prediction
of RPP.

Materials and methods
This retrospective study was approved by the ethics
committee (IRB number: KT2021213), and the require-
ment for written informed consent was waived.

Study population
Patients from two centers who underwent two CCTA
examinations were enrolled in this retrospective study. All
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included patients in Center 1 from January 2016 to
August 2022 were split into training and internal valida-
tion cohorts at random in a 7:3 ratio. Patients in Center 2
from January 2018 and December 2022 were assigned to
an external validation cohort. Inclusion criteria were: (1)
patients with known or suspected coronary artery disease;
(2) patients undergoing two CCTA scans performed with
the same CT equipment; (3) the interval between two
CCTA examinations was longer than 6 months. The
exclusion criteria of patients were: (1) inadequate image
quality for plaque analysis; (2) lack of visible lesions on
CCTA; (3) patients who underwent coronary artery
bypass grafting or coronary stent implantation between
two CCTAs; (4) different kVp settings used between the
baseline and follow-up CCTA examinations. The flow-
chart of patient selection is shown in Fig. 1.

CCTA acquisition
All scans of the two centers were conducted using a
second-generation dual-source CT unit (Somaton Defi-
nition Flash CT, Siemens Healthcare). The target heart
rate was 60–80 beats/min, and patients with a heart rate
> 80 beats/min were given an oral β-blocker 1 h before
the examination. Sublingual nitroglycerin was adminis-
tered to each patient within 3–5 min before the start of
the scan. Retrospective ECG-triggered was used for
coronary image acquisition. 50–100 mL of nonionic

iodine contrast agent was injected into the antecubital
vein at a rate of 4–5 mL/s using a dual-channel high-
pressure syringe. Then followed by a 50 mL saline flush.
The CCTA acquisition initiated with a 4-s delay fol-
lowing the ascending aorta’s peak time. Parameters for
acquisition and reconstruction of the two centers
included: a tube voltage of 120 kVp, tube current auto-
matically adjusted according to patient BMI,
60 × 0.6 mm collimation, and 0.75 mm reconstructed
slice thickness.

CCTA analysis
Analysis of coronary segments was conducted on vessels
≥ 2mm in diameter based on the 17-segment model [18].
Analysis of baseline and follow-up coronary plaques were
performed at the highest-grade stenosis using semi-
automated software (QAngioCT Research Edition
v3.2.0.13; Medis Medical Imaging Systems). The software
automatically recognizes the contours of the lumen and
vessel, with manual adjustment as needed. Fiduciary
landmarks were used to coregister baseline and follow-up
coronary segments, such as distance from branch vessel
origins or ostia.
Qualitative plaque features were analyzed, including

positive remodeling, spotty calcifications, low-attenuation
plaques, and the napkin-ring sign [19, 20]. High-risk
plaque was defined as lesions with ≥ 2 features above.

Fig. 1 A flowchart of patient recruitment and study design. CCTA, coronary computed tomography angiography
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Quantitative plaque characteristics included diameter
stenosis and total plaque volume. Plaque characteristics
were subclassified as necrosis core (−30–30 Hounsfield
units (HU)), fibrofatty plaque (31–130 HU), fibrous pla-
que (131–350 HU), and calcified plaque (> 350 HU)
[21, 22]. Plaque burden (PB) was defined as plaque
volume divided by vessel volume [23]. Voxels within a
radial distance equal to the average diameter of the cor-
responding coronary vessel and showing CT attenuation
values ranging from −190 to −30 HU were identified as
PCAT, and the software-generated fat measurements FAI
(−190–30 HU) [24, 25]. According to the annual change
in PB ((follow-up PB− baseline PB)/CCTA intervals *
100% > 1.0%) was defined as RPP [26–29]. All images
were assessed by two radiologists separately with 5 years’
of work experience. Each parameter was measured three
times, and the average value was used as the final result.

Radiomic analysis; Image segmentation and radiomic
features analysis
For segmentation and radiomic feature analysis, all images
were transferred into the Research Portal V1.1 (United
Imaging Intelligence, Co., Ltd.). The region of interest
(ROI) was outlined manually layer by layer for pericor-
onary fat adjacent to the plaque lesion separately. For each
lesion, 1904 radiomics parameters were extracted in total,
including first-order features, shape features, gray-level
co-occurrence matrix (GLCM), gray-level run-length
matrix (GLRLM), gray-level size-zone matrix (GLSZM),
gray-level dependence matrix (GLDM), and neighboring
gray-tone difference matrix (NGTDM). In the process of
feature extraction, we selected features with an intra-class
correlation coefficient value > 0.75 for subsequent

analysis, and the feature pairs exhibiting a Spearman’s
correlation coefficient above 0.9 were eliminated. Finally,
the least absolute shrinkage and selection operator
(LASSO) method was used for refining feature analysis.

Model construction and validation
We developed five models to predict RPP. Model 1:
clinical model. Model 2: plaque characteristics model.
Model 3: PCAT radiomics model. Model 4: clinical+
radiomics model. Model 5: plaque characteristics+
radiomics model. Random Forest was used to build
models. To assess the performance of the models, deci-
sion curve analysis (DCA), calibration curve analysis, and
receiver operating characteristic (ROC) analyses were
conducted. The workflow of the radiomics is displayed in
Fig. 2.

Statistical analysis
All statistical analyses were conducted utilizing SPSS soft-
ware (version 26.0, IBM) and the R software (version 4.1.2).
Continuous variables were expressed as means ± standard
deviations (SD) or median (interquartile range). To assess
the variances in continuous variables between the two
groups, the student’s t-test and Mann–Whitney U-test
were employed. Frequencies and percentages were used to
represent categorical variables, and the Chi-square test was
utilized to compare the two groups. Univariate and multi-
variate logistic analyses were employed to identify factors
influencing the RPP. The effectiveness of different models
was assessed using the area under the curve (AUC) of the
ROC analysis. The AUC of different models was compared
using the Delong test. Statistical significance was indicated
by a two-sided p-value < 0.05.

Fig. 2 A flowchart of the prediction model development process
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Results
Baseline clinical characteristics
Table 1 summarized the clinical characteristics of the three
cohorts. A comparison of clinical characteristics between
the RPP group and non-RPP group was presented in
Table 2. There were no significant differences in the clinical
characteristics between the groups with and without RPP in
the training and internal validation cohort. In the external
validation cohort, the prevalence of smoking was higher in
the RPP group than in the non-RPP group.

Conventional coronary plaque characteristics
The conventional coronary plaque characteristics of the
three cohorts are presented in Table 3. There were no
significant differences in the qualitative plaque char-
acteristics between the RPP group and the non-RPP

group. Patients with RPP had significantly higher levels of
all the measured quantitative parameters related to pla-
que, including diameter stenosis, FAI, total plaque
volume, fibrous plaque volume, fibrofatty plaque volume,
necrotic core volume, and calcified plaque volume than
patients without RPP in the training cohort (all p < 0.05).
There was no statistical difference in calcified plaque
volume between the RPP and non-RPP groups in the
internal validation cohort. Except for diameter stenosis,
fibrous plaque volume, and calcified plaque volume, other
quantitative parameters were higher in the RPP group
than in the non-RPP group in the external validation
cohort. Factors associated with RPP identified in the
univariate analysis were presented in Table 4. The mul-
tivariate analysis indicated that fibrous plaque volume,
diameter stenosis, and FAI were independently associated
with RPP.

Radiomics feature selection
Among the features extracted in PCAT, seven radiomic fea-
tures were identified as most valuable in correlation with RPP,
notably including original_shape_Elongation, original_-
shape_Maximum3DDiameter, boxsigmaimage_firstorder_
Maximum, wavelet_firstorder_wavelet-LLL-Skewness, lapla-
ciansharpening_glrlm_ShortRunLowGrayLevelEmphasis, dis-
cretegaussian_firstorder_Maximum, mean_glszm_GrayLevel
NonUniformity. Figure 3 displays the rating of features.

Predictive performance of models for RPP
Discrimination
For training, internal, and external validation datasets,
ROC curves of the five models were constructed to
evaluate their efficacy in identifying RPP, as illustrated in
Fig. 4. The performance of five predictive models was
quantified using metrics such as AUC, sensitivity, speci-
ficity, and diagnostic accuracy, detailed in Table 5. We
found that the radiomics model performed better than the
clinical model and plaque characteristics model in the
training, internal validation cohorts, and external valida-
tion cohorts. According to DeLong’s test, in the training,
internal, and external validation dataset, the AUC of the
radiomics model differed significantly from the clinical
model and the plaque characteristics model (p < 0.05). In
the training dataset, Model 4 exhibited a slightly higher
AUC compared to Model 3. Similarly, Model 5 demon-
strated a marginally higher AUC than Model 3 in both the
training and the internal validation datasets. However,
according to the DeLong’ test, these differences were not
statistically significant.

Calibration
The five predictive models’ calibration curves indicated a
high degree of alignment between the prediction

Table 1 Clinical characteristics of three cohorts

Characteristics Training

cohort

(n= 291)

Interval

validation

cohort

(n= 125)

External

validation

cohort

(n= 120)

Age (years) 58.3 ± 9.2 58.6 ± 9.4 59.6 ± 7.4

Male, n (%) 190 (65.3) 77 (61.6) 64 (53.3)

Intervals time

(years)

1.7 (1.1–2.1) 1.7 (1.1–2.3) 1.6 (1.1–2.2)

Smoking, n (%) 79 (27.1) 21 (16.8) 42 (35.0)

Hypertension, n

(%)

150 (51.5) 60 (48.0) 75 (62.5)

Diabetes mellitus,

n (%)

54 (18.6) 19 (15.2) 32 (26.7)

Family history, n

(%)

31 (10.7) 8 (6.4) 11 (9.2)

Dyslipidemia, n (%) 146 (50.2) 57 (45.6) 63 (52.5)

Symptoms, n (%)

Typical 62 (21.3) 27 (21.6) 32 (26.7)

Atypical 15 (5.2) 5 (4.0) 8 (6.7)

Nonanginal 33 (11.3) 22 (17.6) 15 (12.5)

Other 23 (7.9) 9 (7.2) 16 (13.3)

No symptoms 158 (54.3) 62 (49.6) 49 (40.8)

Medication, n (%)

Aspirin 140 (48.1) 60 (48.0) 45 (37.5)

Statin 167 (57.4) 78 (62.4) 83 (69.2)

Beta-blockers 59 (20.3) 23 (18.4) 29 (24.2)

Lipid profile, mg/dL

Total cholesterol 4.6 (3.9–5.2) 4.6 (3.9–5.2) 3.9 (3.0–5.0)

Triglycerides 1.3 (1.0–2.0) 1.3 (1.1–1.9) 1.6 (1.3–2.0)

HDL cholesterol 1.2 (1.0–1.4) 1.2 (1.0–1.3) 1.4 (1.2–1.6)

LDL cholesterol 2.9 (2.3–3.4) 2.9 (2.4–3.3) 2.3 (1.7–3.0)

Values are mean ± SD, n (%), or median (IQR)
HDL high-density lipoprotein, LDL low-density lipoprotein
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outcomes and true results in the training, internal, and
external validation datasets (Fig. 5).

Clinical application
The DCA was employed to ascertain the clinical applic-
ability of the five predictive models by comparing their net
benefits at various threshold probabilities within training,
internal and external validation datasets, which revealed a
superior net benefit for the Model 3, Model 4, and Model
5 over the Model 1 and Model 2 (Fig. 6).

Discussion
A PCAT radiomics model to predict RPP was tested in the
current study. The main result showed that the PCAT
radiomics model achieves better performance in predict-
ing RPP as compared with the clinical model and plaque
characteristics model. Furthermore, combining plaque
characteristics with the radiomics model did not further
improve diagnostic efficacy statistically.

In line with the findings of Han et al [30], our study
showed statistically significant differences in plaque
quantification metrics based on CCTA between groups
with and without RPP. When incorporating significant
quantitative parameters from univariate analysis into a
multivariate analysis, fibrous plaque volume, diameter
stenosis, and FAI emerged as independent predictors of
RPP. The increase in fibrous plaque volume reflects a
cumulative burden of atherosclerosis that contributes to
coronary plaque progression. Diameter stenosis can alter
blood flow patterns, leading to reduced shear stress in
certain areas. In a low-shear stress environment, endo-
thelial cells express more inflammatory factors and
adhesion molecules, promoting the adhesion of white
blood cells and other inflammatory cells to the vessel wall.
This exacerbates the inflammatory response and pro-
motes the progression of plaque [31]. Consistent with our
study, a previous study indicated that the increase in
vessel inflammation represented by PCAT was

Table 2 Comparison of clinical characteristics between the RPP group and non-RPP group of three cohorts

Characteristics Training cohort (n= 291) Internal validation cohort (n= 125) External validation cohort (n= 120)

RPP (n= 114) Non-RPP

(n= 177)

p RPP (n= 49) Non-RPP

(n= 76)

p RPP (n= 39) Non-RPP

(n= 81)

p

Age (years) 59.33 ± 9.8 57.6 ± 8.8 0.117 58.2 ± 9.7 58.9 ± 9.4 0.703 60.1 ± 6.9 59.4 ± 7.7 0.616

Male, n (%) 81 (71.1) 109 (61.6) 0.098 30 (61.2) 47 (61.8) 0.945 24 (61.5) 40 (49.4) 0.211

Intervals time (years) 1.6 (1.1–2.1) 1.7 (1.1–2.2) 0.241 1.4 (1.0–1.9) 1.8 (1.1–2.3) 0.056 1.6 (1.1–2.2) 1.6 (1.1–2.2) 0.582

Smoking, n (%) 38 (33.3) 41 (23.2) 0.057 11 (22.4) 10 (13.2) 0.175 19 (48.7) 23 (28.4) 0.029

Hypertension, n (%) 63 (55.3) 87 (49.2) 0.309 26 (53.1) 34 (44.7) 0.363 22 (56.4) 53 (65.4) 0.339

Diabetes mellitus, n

(%)

26 (22.8) 28 (15.8) 0.134 11 (22.4) 8 (10.5) 0.070 14 (35.9) 18 (22.2) 0.113

Family history, n (%) 16 (14.0) 15 (8.5) 0.133 5 (10.2) 3 (3.9) 0.261 4 (10.3) 7 (8.6) 0.747

Dyslipidemia, n (%) 59 (51.8) 87 (49.2) 0.665 24 (49.0) 33 (43.4) 0.542 23 (59.0) 40 (49.4) 0.324

Symptoms, n (%)

Typical 21 (18.4) 41 (23.2) 0.335 9 (18.4) 18 (23.7) 0.481 9 (23.1) 23 (28.4) 0.537

Atypical 7 (6.1) 8 (4.5) 0.542 3 (6.1) 2 (2.6) 0.379 4 (10.3) 4 (4.9) 0.274

Nonanginal 14 (12.3) 19 (10.7) 0.685 11 (22.4) 11 (14.5) 0.253 7 (17.9) 8 (9.9) 0.244

Other 6 (5.3) 17 (9.6) 0.180 2 (4.1) 7 (9.2) 0.481 5 (12.8) 11 (13.6) 0.909

No symptoms 66 (57.9) 92 (52.0) 0.323 24 (49.0) 38 (50.0) 0.911 14 (35.9) 35 (43.2) 0.445

Medication, n(%)

Aspirin 58 (50.9) 82 (46.3) 0.448 20 (40.8) 40 (52.6) 0.193 16 (41.0) 29 (35.8) 0.580

Statin 67 (58.8) 100 (56.5) 0.702 29 (59.2) 49 (64.5) 0.551 29 (74.4) 54 (66.7) 0.393

Beta-blockers 19 (16.7) 40 (22.6) 0.219 7 (14.3) 16 (21.1) 0.340 10 (25.6) 19 (23.5) 0.793

Lipid profile, mg/dL

Total cholesterol 4.6 (3.9–5.2) 4.6 (3.9–5.2) 0.426 4.6 (3.8–5.1) 4.6 (4.0–5.2) 0.867 4.0 (2.9–5.0) 3.8 (3.1–5.1) 0.622

Triglycerides 1.3 (1.0–1.8) 1.3 (1.0–2.0) 0.192 1.4 (1.1–1.9) 1.3 (1.0–1.8) 0.345 1.6 (1.1–2.0) 1.6 (1.4–2.1) 0.310

HDL cholesterol 1.2 (0.9–1.3) 1.2 (1.0–1.4) 0.209 1.2 (0.9–1.3) 1.2 (1.0–1.3) 0.974 1.4 (1.2–1.6) 1.4 (1.2–1.6) 0.906

LDL cholesterol 2.9 (2.1–3.3) 2.9 (2.4–3.5) 0.125 2.9 (2.1–3.2) 2.9 (2.4–3.3) 0.262 2.2 (1.7–3.2) 2.4 (1.7–3.0) 0.701

Values are mean ± SD, n (%), or median (IQR)
RPP rapid plaque progression, HDL high-density lipoprotein, LDL low-density lipoprotein
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independently associated with RPP [32]. These findings
suggest that FAI is a more sensitive biomarker capable of
dynamically reflecting coronary artery inflammation,
underscoring its potential clinical utility in early predic-
tion of plaque progression. Furthermore, in our study, no
significant differences were observed in high-risk plaque
characteristics, contrasting with previous research that
confirmed high-risk plaque features as biomarkers of RPP
[27, 33]. This discrepancy could be attributed to the small
proportion of patients with high-risk plaque features in
our study.
However, the information provided by traditional pla-

que characteristics on the microenvironment of coronary
plaques is limited, which presents challenges in the pre-
cise and comprehensive evaluation of RPP. Radiomics
provides many high-throughput data, enabling the iden-
tification of texture features that reflect voxel spatial
relationships and capture the microstructural changes
within diseased tissue.
Previous radiomic studies have shown findings con-

sistent with our study. Oikonomou et al [12] identified
the radiomics features within PCAT reflecting altera-
tions in adipose tissue, that may be indicative of cor-
onary artery inflammation, fibrosis, and angiogenesis.
Additionally, Si et al [16] showed that using PCAT
radiomics features based on CCTA for identifying acute
myocardial infarction patients. It has been shown that
PCAT radiomics has better performance than FAI, for
identifying patients with acute myocardial infarction.
Consistent with our study, Feng et al [34] revealed that
the radiomics signature of plaques offered a more
accurate predictive value for plaque progression than
traditional parameters.
In our study, LASSO was finally used to select the seven

best predictors among the 1904 PCAT radiomic features
derived from CCTA, including three first-order features,
two shape features, and two textural features. The two first-
order features, boxsigmaimage_firstorder_Maximum, and
discretegaussian_firstorder_Maximum, reflect the highest
signal intensity in the lesion area. The higher value of this
feature in the RPP group suggests that there is a region of
higher pixel intensities in the PCAT, which may indicate
that this region is more biologically active, reflecting an
increase in local inflammation that can promote plaque
progression. Wavelet_firstorder_wavelet-LLL-Skewness
indicating skewness reflects asymmetry in the distribution
of pixel intensities. Inflammatory activity or changes in the
nature of the adipose tissue may lead to changes in the
distribution of pixel intensities. Inflammatory regions show
higher pixel intensity values on the image due to increased
water content, increased cell density, etc. The negative
skewness of this feature in the RPP group indicates that
more pixel intensities are concentrated at higher values,Ta
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Table 4 Univariate and multivariate logistic analyses of CCTA-derived parameters predicting rapid plaque progression

Variables Univariable Multivariable

OR 95% CI p OR 95% CI p

DS (%) 1.03 1.02–1.05 < 0.001 1.02 1.00–1.04 0.012

FAI (HU) 1.05 1.02–1.08 0.002 1.05 1.01–1.08 0.006

Total plaque volume (mm³) 1.00 1.00–1.01 < 0.001

Fibrous plaque volume (mm³) 1.02 1.01–1.03 < 0.001 1.02 1.01–1.03 < 0.001

Fibrofatty plaque volume (mm³) 1.02 1.01–1.03 0.002

Calcified plaque volume (mm³) 1.01 1.01–1.02 < 0.001

Plaque burden (%) 1.04 1.02–1.06 < 0.001

CCTA coronary computed tomography angiography, CI confidence interval, OR odds ratio, DS diameter stenosis, FAI fat attenuation index

Fig. 3 Radiomics feature importance ranking of the seven features most relevant to rapid plaque progression

Fig. 4 ROC analyses for predicting rapid plaque progression of all models. Model 3, Model 4, and Model 5 exhibited higher AUCs compared to Model 1
and Model 2 in the training (A), internal validation (B), and external validation (C) cohorts. Model 1= clinical model, Model 2= plaque characteristics
model, Model 3= PCAT radiomics model, Model 4= clinical+ radiomics model, Model 5= plaque characteristics+ radiomics model. ROC, receiver
operating characteristic; AUC, area under the curve; PCAT, pericoronary adipose tissue
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possibly reflecting heterogeneity and localized inflamma-
tory activity within the PCAT. The size of the original_-
shape_Elongation feature, which describes the degree of
“elongation” of the shape, provides important information
about the morphology and potential stability of the PCAT.
This feature was negatively correlated with RPP, with lower
values in the RPP group than in the non-RPP group.
Smaller values of original_shape_Elongation indicate that
the PCAT shape in the RPP group is relatively more irre-
gular, possibly reflecting structural changes in the PCAT
that occur during plaque progression, such as an uneven

distribution of fat or changes in localized fat volume. This
irregularity in shape may result from inflammation,
remodeling of adipose tissue, or altered interaction with the
vessel wall. Irregularly shaped PCAT may exert uneven
external pressure on neighboring coronary arteries, affect-
ing the distribution of stress in the wall and thus
affecting plaque progression. The original_shape_Max-
imum3DDiameter feature measures the distance between
the two farthest points within the ROI in three-dimensional
space, considering the length, width, and height dimen-
sions, and provides information about the overall size of the
lesion area. A larger value of this feature indicates a larger
maximum span of the lesion. In our study, an increase in
this value quantifies the expansion of the PCAT volume,
which may originate from direct adipose tissue prolifera-
tion or from inflammation-induced edema and enlarge-
ment of adipose tissue and implies an increased activity of
the PCAT, including an accumulation of inflammatory
cells, such as macrophages, which release inflammatory
factors that directly affect neighboring coronary arteries
through paracrine effects, contributing to plaque formation
and progression. Therefore, an increase in the value of
original_shape_Maximum3DDiameter not only reflects the
spatial expansion of PCAT but is also an indirect indicator
of the local inflammatory state and altered biological
activity associated with the progression of coronary artery
disease. The GLRLM in the laplaciansharpening_glrlm_-
ShortRunLowGrayLevelEmphasis feature is a method for
quantifying texture that examines the continuity of gray
values in an image to analyze the texture characteristics and
provides a wide range of information about the image
texture by describing the length of time that the gray levels
in the image appear in a certain direction. Short-
RunLowGrayLevelEmphasis mainly reflects the texture
details and gray-level distribution, emphasizing the short
distance and low gray-level pixels in the image. The high

Fig. 5 Calibration curves for the five models. All models demonstrated good calibration for predicting rapid plaque progression in the training (A),
internal validation (B), and external validation (C) cohorts. Model 1, clinical model; Model 2, plaque characteristics model; Model 3, PCAT radiomics model;
Model 4, clinical+ radiomics model; Model 5, plaque characteristics+ radiomics model, PCAT, pericoronary adipose tissue

Table 5 Recognition ability of all models for patients with rapid
plaque progression

Cohort Model AUC (95% CI) SEN SPE ACC

Training Model 1 0.59 (0.52–0.65) 0.30 0.86 0.64

Model 2 0.73 (0.67–0.79) 0.64 0.71 0.68

Model 3 0.85 (0.80–0.90) 0.66 0.97 0.85

Model 4 0.86 (0.82–0.91) 0.67 0.95 0.84

Model 5 0.86 (0.81–0.91) 0.69 0.96 0.86

Internal validation Model 1 0.58 (0.47–0.68) 0.29 0.86 0.63

Model 2 0.71 (0.62–0.81) 0.65 0.65 0.65

Model 3 0.84 (0.75–0.92) 0.63 0.96 0.83

Model 4 0.84 (0.76–0.92) 0.65 0.93 0.82

Model 5 0.85 (0.77–0.92) 0.67 0.92 0.82

External validation Model 1 0.57 (0.47–0.68) 0.33 0.78 0.63

Model 2 0.65 (0.54–0.76) 0.72 0.54 0.60

Model 3 0.81 (0.71–0.91) 0.62 0.96 0.85

Model 4 0.80 (0.71–0.90) 0.64 0.85 0.78

Model 5 0.81 (0.71–0.90) 0.67 0.94 0.85

Model 1 clinical model, Model 2 plaque characteristics model, Model 3 PCAT
radiomics model, Model 4 clinical+ radiomics model, Model 5 plaque
characteristics+ radiomics model, AUC area under the curve, 95% CI 95%
confidence interval, SEN sensitivity, SPE specificity, ACC accuracy, PCAT
pericoronary adipose tissue
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value of ShortRunLowGrayLevelEmphasis indicates that
there are a large number of continuous pixel sequences of
low gray value and short length in the image, on the con-
trary, a low value of ShortRunLowGrayLevelEmphasis
means that there are fewer darker textures in the image or
that these textures occur in longer sequences. In coronary
artery inflammation, the degree of infiltration and edema of
the associated inflammatory cells alters the density and
heterogeneity of the tissue, which in turn causes texture
changes, and the ShortRunLowGrayLevelEmphasis
value reflects such structural and textural changes,
thus predicting plaque progression. The mean_-
glszm_GrayLevelNonUniformity feature measures the
non-uniformity of the size distribution of consecutive
groups of pixels with the same gray value in an image and
can help to identify lesion status. The progression of cor-
onary plaque leads to an increased local inflammatory
response, which in turn affects the nature of the sur-
rounding adipose tissue, and this change in the local
environment can be captured in the values of this feature,
reflecting changes in the structure and composition of the
internal adipose tissue.
These features indicate that the radiomics model

offered more nuanced information on fat heterogeneity
and morphological variations in PCAT, thereby enhan-
cing the prediction accuracy for RPP compared to the
traditional plaque characteristics model. The utilization of
this advanced radiomics approach is particularly advan-
tageous in enhancing risk assessment. It facilitates the
identification of patients at a higher risk of coronary
plaque progression, which is pivotal for early and proac-
tive medical intervention.
When combining PCAT radiomics features with clinical

characteristics and plaque characteristics respectively, the
AUC of the combined model increased only marginally

and did not show statistical significance compared to the
PCAT radiomics model. This suggested that the radio-
mics model had already captured the relevant data,
proving to be sufficiently robust. Therefore, clinical
characteristics and plaque characteristics had no addi-
tional contribution to the predictive value of RPP in
this study.
The limitations of this study should be recognized.

Firstly, this was a retrospective study with a relatively
small sample size, which may hamper its reproducibility.
Secondly, some patients received statins or other lipid-
lowering therapy in the interval between CCTA, and the
specific medication cycle and dose of each patient were
different, which may have a certain impact on the results
of the study. Thirdly, patients in our study who had
revascularization prior to a follow-up CCTA were exclu-
ded, leading to selection bias among participants.
In conclusion, in the prediction of rapid plaque pro-

gression, the PCAT radiomics model outperformed the
clinical model and plaque characteristics model. This
offers a new perspective for early detection and inter-
vention of rapid plaque progression.

Abbreviations
AUC Area under the curve
CCTA Coronary computed tomography angiography
DCA Decision curve analysis
FAI Fat attenuation index
GLRLM Gray-level run-length matrix
GLSZM Gray-level size-zone matrix
HU Hounsfield units
LASSO Least absolute shrinkage and selection operator
PB Plaque burden
PCAT Pericoronary adipose tissue
ROC Receiver operating characteristic
ROI Region of interest
RPP Rapid plaque progression
SD Standard deviations

Fig. 6 The decision curve analysis for the five models in predicting rapid plaque progression. The Model 3, Model 4, and Model 5 had a higher net
benefit than the Model 1 and Model 2 in the training (A), internal validation (B), and external validation (C) datasets. Model 1, clinical model; Model 2,
plaque characteristics model; Model 3, PCAT radiomics model; Model 4, clinical+ radiomics model; Model 5, plaque characteristics+ radiomics model;
PCAT, pericoronary adipose tissue
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