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Abstract

Objectives To construct and validate multiparametric MR-based radiomic models based on primary tumors for
predicting lymph node metastasis (LNM) following neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal
cancer (LARC) patients.

Methods A total of 150 LARC patients from two independent centers were enrolled. The training cohort comprised
100 patients from center A. Fifty patients from center B were included in the external validation cohort. Radiomic
features were extracted from the manually segmented volume of interests of the primary tumor before and after nCRT.
Feature selection was performed using multivariate logistic regression analysis. The clinical risk factors were selected
via the least absolute shrinkage and selection operator method. The radiologist’s assessment of LNM was performed.
Eight models were constructed using random forest classifiers, including four single-sequence models, three
combined-sequence models, and a clinical model. The models’ discriminative performance was assessed via receiver
operating characteristic curve analysis quantified by the area under the curve (AUC).

Results The AUCs of the radiologist’s assessment, the clinical model, and the single-sequence models ranged from
0.556 to 0.756 in the external validation cohort. Among the single-sequence models, modelpost_DWI exhibited superior
predictive power, with an AUC of 0.756 in the external validation set. In combined-sequence models,
modelpre_T2_DWI_post had the best diagnostic performance in predicting LNM after nCRT, with a significantly higher
AUC (0.831) than those of the clinical model, modelpre_T2_DWI, and the single-sequence models (all p < 0.05).

Conclusions A multiparametric model that incorporates MR radiomic features before and after nCRT is optimal for
predicting LNM after nCRT in LARC.

Critical relevance statement This study enrolled 150 LARC patients from two independent centers and constructed
multiparametric MR-based radiomic models based on primary tumors for predicting LNM following nCRT, which aims
to guide therapeutic decisions and predict prognosis for LARC patients.
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Key Points
● The biological characteristics of primary tumors and metastatic LNs are similar in rectal cancer.
● Radiomics features and clinical data before and after nCRT provide complementary tumor information.
● Preoperative prediction of LN status after nCRT contributes to clinical decision-making.

Keywords Rectal neoplasm, Magnetic resonance imaging, Machine learning, Neoadjuvant therapy, Lymphatic
metastasis
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Introduction
Locally advanced rectal cancer (LARC) refers to patients
with rectal cancer (RC) with clinical (c) T3-cT4 or positive
nodal status. The standard treatment strategy is neoadju-
vant chemoradiotherapy (nCRT) followed by total mesor-
ectal excision [1]. nCRT aims to achieve tumor
downstaging, improve resection rate, increase sphincter
preservation probability, and reduce local recurrence rate.
For patients with a clinically complete response to nCRT,
organ preservation strategies, such as a watchful waiting
policy, could avoid radical surgery, preserve organ function,
and enhance quality of life. Notably, studies suggest a
possible link between the status of lymph nodes (LNs) after
nCRT and the prognosis of LARC patients because com-
plete LN regression consistently correlates with improved
disease-free survival, overall survival, and reduced local
recurrence and distal metastasis risk [2–4]. Chan et al
found that the recurrence rate of LN-positive patients was

six times higher than that of LN-negative patients; more-
over, the five-year survival rate was 42% for LN-positive
patients and 85% for LN-negative patients [5]. Additionally,
when watchful waiting or local excision is considered, a
precise assessment of LN restaging following nCRT is
important. Lymph node regression after nCRT may help
predict the clinical complete response of the primary tumor
[6]. Conversely, LNs containing tumor cells after nCRT are
a potential source of local recurrence and distant metas-
tasis. Therefore, accurate prediction of LN metastasis
(LNM) after nCRT is crucial in therapeutic decisions and
for predicting prognoses for LARC patients.
At present, the preoperative evaluation of LN status and

restaging following nCRT in RC relies on high-resolution
magnetic resonance imaging (MRI) [7]. High-resolution
T2 weighted imaging (HR-T2WI) is preferred for the
evaluation of the morphological and signal characteristics
of LN, such as irregular borders, uneven internal signals,
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and roundness. Diffusion-weighted imaging (DWI) facil-
itates malignant LN detection and provides biological
information on cellularity. Incorporating DWI and T2WI
can improve the accuracy of preoperative LNM predic-
tions [8]. However, the reaction of LN to nCRT is het-
erogeneous, ranging from residual cancers to a complete
fibrotic response, causing LN changes in morphology,
dimension, quantity, and texture [9, 10]. In this context,
visual assessment based on MRI to identify LNM fol-
lowing nCRT may be ambiguous, especially for small
nodes (< 3mm). Thus, there is a need for a new diagnostic
method.
Radiomics extracts quantitative features from medical

images and transforms them into mineable, high-
dimensional data to reveal pathophysiological information
about tumor heterogeneity in biomedical images [11, 12].
Studies have demonstrated that the radiomic character-
istics of primary tumors can be used to predict LNM in RC
[13–15]. For instance, one study reported that a radiomic
nomogram based on T2WI, apparent diffusion coefficient
(ADC) features, and clinical factors performed favorably
[16]. Yang et al developed and validated an HR-T2WI
radiomic model that could help predict the LNM of RC
[17]. Furthermore, several studies focus on predicting LNM
following nCRT based on multiparametric MRI using
radiomics and report relatively high performances with
areas under the curve (AUCs) of 0.812–0.865 in the vali-
dation cohort [18]. However, the absence of an external
cohort to show how the model performs in the real world
limits the clinical translation of these methods. Addition-
ally, the radiomic models based on MR data performed
before nCRT may miss key information related to LNM.
This study aimed to construct and validate multi-

parametric MR-based radiomic models with the pre- and/
or post-nCRT information to predict LN status following

nCRT in LARC patients. To obtain better predictive per-
formance, we constructed and validated MR-based radio-
mics models based on various combinations obtained from
pre- and/or post-nCRT information to predict LN status
following nCRT in LARC patients, and compared them
with the radiologist’s qualitative evaluations.

Materials and methods
Patients
The institutional review boards of the Nanfang Hospital
(Guangzhou, China, center A) and the Second Affiliated
Hospital of Guangzhou University of Chinese Medicine
(Guangzhou, China, center B) granted ethical approval of
the retrospective study and waived the need for informed
consent. Between October 2017 and October 2020, con-
secutive LARC patients (n= 150) from the two medical
centers were included. The inclusion criteria were: (1) his-
topathologically confirmed rectal adenocarcinoma; (2)
diagnosed as LARC (cT3–T4 or cN1–2) at the initial
treatment stages; (3) received MR scan before and after
nCRT; and (4) received complete nCRT followed by surgery
and confirmed by postoperative pathology. The exclusion
criteria were: (1) additional targeted therapy or immu-
notherapy during treatment; (2) recurrent rectal carcinoma;
(3) poor quality MRI; and (4) incomplete clinicopathological
data. Figure 1 depicts a flowchart for patient recruitment.
The clinicopathological features of patients were

obtained from their medical records. The collected data
included age, gender, carcinoembryonic antigen (CEA)
level before and after nCRT, tumor location, chemother-
apy regimen, and tumor differentiation.

Pathologic assessment
All patients underwent total mesorectal excision surgery
after nCRT. The extent of LN dissection encompassed the

Fig. 1 Flowchart of patient selection
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following regions: perirectal LNs, internal iliac LNs,
external iliac LNs, common iliac LNs, superior rectal LNs,
presacral LNs, and pararectal LNs. The pathological
assessment was performed on all the surgically resected
LNs. The pathologic T and N stages were evaluated
according to the American Joint Committee on Cancer’s
Cancer Staging Manual (AJCC 8th edition) by two
pathologists in consensus (X.H.D. and H.S.W., with 11
and 15 years of experience in gastrointestinal diagnosis,
respectively).

MRI acquisition and radiologist’s assessment LN after nCRT
All study participants had anMRI one week before the start
of nCRT and one week before surgery; these are referred to
as pre- and post-nCRT MRI, respectively. Before the MR
examinations, patients received a cleansing enema but did
not receive bowel preparation antispasmodic medication,
or rectal distention. The imaging protocol included T2WI,
DWI, and T1-weighted imaging in the oblique axial, cor-
onal, and sagittal planes. Oblique axial and coronal
sequences were angulated perpendicular and parallel to the
tumor axis, respectively. Additionally, a coronal sequence
parallel to the anal canal was performed in distal tumors
(lower third of the rectum). Table 1 summarizes the ima-
ging acquisition parameters for axis T2WI and DWI.
A gastrointestinal radiologist (X.L., with 19 years of

experience) retrospectively and independently reviewed
MRI images to evaluate MR-based tumor regression grade
(mrTRG) and LN status after nCRT, without knowing the
patient’s pathological findings. mrTRG was assessed as
outlined by Patel et al [19]. LN MR-restaging was assessed

according to the European Society of Gastrointestinal and
Abdominal Radiology (ESGAR) criterion, including size
(short axis diameter > 5mm) and nodal morphological
features (shape, contour, signal intensity homogeneity on
T2WI, and enhanced homogeneity) [7].

Tumor segmentation and radiomic feature extraction
The volume of interest (VOI) of the primary tumors was
manually delineated in a blinded manner in the axis T2WI
and DWI (b= 1000 s/mm2) before and after nCRT treat-
ment by two radiologists (X.H. and L.C.), each with more
than seven years of experience in consensus using ITK-
SNAP software (version 3.8; http://www.itksnap.org/). The
intestinal lumen and noninvaded rectal wall were carefully
excluded from the tumor regions (Fig. 2). The radiologists
were blinded to the patients’ clinicopathological informa-
tion. To ensure consistency and reproducibility of extracted
features, 45 patients were chosen at random to calculate the
intraclass correlation coefficient (ICC); features with an
ICC < 0.75 were eliminated.
Before feature extraction, the MR images were pre-

processed using AK software (GE Healthcare, China) to
compensate for differences owing to different protocols.
The pre-processing steps were: (1) the MR images were
smoothed with the bilateral filter algorithm to achieve
similar noise characteristics; (2) the MR images and VOI
were resampled to a uniform voxel size of 1 × 1 × 1mm3

using linear interpolation and nearest neighbor inter-
polation, respectively; and (3) T2WI and DWI images
were Z-score normalized to eliminate the influence of
different gray value ranges.

Table 1 MRI sequences parameters of T2WI and DWI of different MR devices

Center A Center B

Manufacturer/model Philips achieve 3.0 T Siemens verio 3.0 T Philips ingenia 3.0 T Siemens prisma 3.0 T

MR sequence T2WI DWI T2WI DWI T2WI DWI T2WI DWI

Acquisition time (ms) 04:04 01:24 03:12 01:30 02:18 01:21 03:43 01:34

DWI acquisition mode N/A EPI N/A EPI N/A EPI N/A EPI

b Values (s/mm2) N/A 0, 1000 N/A 0, 1000 N/A 0, 1000 N/A 0, 1000

Repetition time (ms) 3906 2000 6350 5900 3664 3514 8040 4900

Echo time (ms) 100 60 93 83 100 81 89 53

Echo train length 21 59 28 1 17 53 19 1

Flip angle (°) 90 90 140 90 90 90 160 90

Slice thickness (mm) 3 4 3 5 3 4 3 4

Imaging frequency (Hz) 127.8 127.8 123.2 123.2 127.8 127.8 123.2 123.2

Number of average 1 2 2 2 2 2 1 1

Percent sampling (%) 100 100 80 80 84 99 80 100

(Pixel) bandwidth 218 2567 260 1628 325 2303 200 1985

Matrix 316 × 314 120 × 118 320 × 256 192 × 115 288 × 228 108 × 106 320 × 240 140 × 104

Field of view (cm) 200 × 200 240 × 240 200 × 200 270 × 360 200 × 200 320 × 320 200 × 200 180 × 320

Wei et al. Insights into Imaging          (2024) 15:163 Page 4 of 14

http://www.itksnap.org/


The PyRadiomics (https://pyradiomics.readthedocs.io/
en/latest/) package with the default setting was used to
extract the radiomic features from the T2WI and DWI
images before and after nCRT (with a fixed intensity bid
width of 25). Each imaging modality yielded 960 radiomic
features, for a sum of 3840 radiomic features extracted for
each patient. The extracted features were: (1) 14 shape-
based features; (2) 18 first-order features; (3) 68 texture
features (gray-level co-occurrence matrix (GLCM), gray-
level dependence matrix (GLDM), gray-level run-length
matrix, and gray-level size zone matrix); (4) 688 wavelet
features; and (5) 172 Gaussian Laplacian features.

Feature selection
To standardize the radiomics features and mitigate the
impact of variability among different MR scanners, Z-

score normalization was applied to the radiomics fea-
tures of each patient. Subsequently, two methodologies
were explored to identify optimal features for predicting
LNM in LARC patients after nCRT. Initially, pairwise
matching analysis was conducted on all features, with
features exhibiting a Spearman correlation coefficient >
0.70 being subjected to significant testing, where the
feature with the lower p-value was retrained for sub-
sequent analysis. Following this, the most predictive
radiomics features were identified using multivariate
logistic regression, with LNM being significantly asso-
ciated with features having a p-value < 0.05. Moreover,
given that homogeneity in the radiomics features can be
influenced by center and protocol/vendor-specific
dependencies, we employed the ComBat harmonization
approach to eliminate batch effects arising from

Fig. 2 Rectal pre-and post-nCRT MRI scans in a 54-year-old man with lymph node metastasis (LNM) proven by pathology after nCRT. Regions of interest
segmentation of the primary tumor on T2WI (a, c) and DWI images (b, d) before and after nCRT. Before nCRT, a suspicious metastatic lymph node (MLN)
is noticed (white arrow), with high intensity in T2WI (a) and DWI (b). The suspicious MLN shrinks (< 3 mm) on T2WI (c) and DWI images (d) after nCRT.
Photomicrograph (hematoxylin-eosin stain, ×100) shows the presence of residual invasive tumor cells in the LN (e)
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variations across the different centers and different MR
modalities [20, 21].

Model construction and evaluation
Random forest (RF) is a machine learning technique that
uses an ensemble approach to combine decision
regression trees and classification methods [22]. Com-
pared to other classification methods, RF demonstrates
enhanced efficacy in handling noisy data and outliers. Its
robustness against overfitting and reduced sensitivity to
input values contribute to heightened discriminative
capabilities and improved precision [23, 24]. In the
study, we used an RF classifier to establish machine
learning models. We first constructed four single-
sequence models based on T2WI or DWI features
before and after nCRT (modelpre_T2, modelpre_DWI,
modelpost_T2, and modelpost_DWI). Then, three combined
radiomic models were produced by combining the fea-
tures of different treatment points, including the com-
binations of T2WI and DWI before nCRT
(modelpre_T2_DWI), T2WI and DWI after nCRT (mod-
elpost_T2_DWI), and T2WI and DWI before and after
nCRT (modelpre_T2_DWI_post). The clinical risk factors
were selected via the least absolute shrinkage and
selection operator (LASSO) method and the penalty

parameters were tuned using ten-fold cross-validation.
Variables with non-zero coefficients were included in
the clinical model.
The model was trained with all the data from the

training cohort and validated with data from the external
validation cohort. The models’ discriminative perfor-
mance was assessed via receiver operating characteristic
curve (ROC) analysis, and quantified by the AUC. Figure 3
illustrates displays the pipeline for constructing and
evaluating various models for predicting LNM after nCRT
in LARC patients.

Statistical analysis
SPSS (version 26.0; IBM, New York, USA) and R software
(version 4.2.1; R Core Team, Vienna, Austria) were used
for statistical analyses. An independent t-test was used to
process continuous variables and the chi-square test or
Fisher’s exact test was used to analyze the classified
variables. DeLong’s test was utilized to evaluate differ-
ences in the predictive performance concerning the AUCs
among clinical models, radiologists’ evaluations, and dif-
ferent radiomic models. All statistical tests were two-
sided. Benjamini and Hochberg-corrected p-values were
used to assess the feature significance for multiple
comparisons.

Fig. 3 The study workflow for predicting LNM after nCRT in LARC patients
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Results
Patient characteristics
A total of 150 patients with LARC from two independent
institutions were enrolled in this study. The training
cohort comprised 100 patients from center A. Fifty
patients from center B were included in the external
validation cohort. Fifty-two patients with LNM status
were confirmed by pathology, with a prevalence of 37%
(37/100) in center A and 30% (15/50) in center B.
A significant difference was found in the CEA level after

nCRT and mrTRG between the training cohort and
external validation cohort (all p < 0.05). There were no

significant differences between the training cohort and
external validation cohort in gender, age, mrT Stage after
nCRT, CEA level before nCRT, tumor differentiation,
tumor location, or chemoradiotherapy regimen
(p= 0.686, 0.417, 0.349, 0.236, 0.785, 0.675, and 0.669,
respectively; Table 2).

Feature selection
From each MRI sequence, 960 radiomic features were
extracted. Pre_T2, Pre_DWI, Post_T2, and Post_DWI were
reduced to 898, 924, 864, and 955 features after excluding
those with low repeatability. After the multivariate logistic

Table 2 Clinicopathological characteristics of patients in training cohort and external validation cohort

Training cohort (N= 100) External validation cohort (N= 50)

LNM (N= 37) Non-LNM (N= 63) p-value LNM (N= 15) Non-LNM (N= 35) p-value p-value

Age (years) (mean ± SD) 54.32 ± 11.10 55.90 ± 10.24 0.472 57.73 ± 11.29 55.37 ± 11.47 0.506 0.686

Gender 0.015* 0.507 0.417

Male 24 (64.9%) 54 (85.7%) 12 (80.0%) 24 (68.6%)

Female 13 (35.1%) 9 (14.3%) 3 (20.0%) 11 (31.4%)

Post-nCRT mrT stage 0.742 0.043* 0.349

T1-2 3 (8.1%) 8 (12.7%) 0 (0%) 9 (25.7%)

T3-4 34 (91.9%) 55 (77.3%) 15 (100%) 26 (74.3%)

mrTRG 0.334 0.010* < 0.001*

1 6 (16.2%) 18 (28.6%) 0 (0%) 8 (22.9%)

2 17 (45.9%) 30 (47.6%) 1 (6.7%) 9 (25.7%)

3 8 (21.6%) 10 (15.9%) 13 (86.7%) 18 (51.4%)

4 6 (16.2%) 5 (7.9%) 1 (6.7%) 0 (0%)

5 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Pre-nCRT CEA level 0.518 0.019* 0.236

< 5 ng/mL 14 (37.8%) 28 (44.1%) 1 (6.7%) 15 (42.9%)

≥ 5 ng/mL 23 (62.2%) 35 (55.6%) 14 (93.3%) 20 (57.1%)

Post-nCRT CEA level 1.000 0.021* < 0.001*

< 5 ng/mL 35 (94.6%) 58 (92.1%) 6 (40.0%) 26 (74.3%)

≥ 5 ng/mL 2 (5.4%) 5 (7.9%) 9 (60.0%) 9 (25.7%)

Tumor differentiation (%) 0.099 0.360 0.785

Well differentiation 8 (21.6%) 8 (12.7%) 5 (33.3%) 5 (14.3%)

Moderate differentiation 23 (62.2%) 51 (81.0%) 9 (60.0%) 25 (71.4%)

Poor differentiation 6 (16.2%) 4 (6.3%) 1 (6.7%) 5 (14.3%)

Tumor location 0.852 0.464 0.675

Low 8 (21.6%) 17 (27.0%) 5 (33.3%) 11 (31.4%)

Middle 21 (56.8%) 34 (54.0%) 9 (60.0%) 16 (45.7%)

Upper 8 (21.6%) 12 (19.0%) 1 (6.7%) 8 (22.9%)

Chemotherapy regimen 0.397 1.000 0.669

Capeox 30 (81.1%) 46 (73.0%) 11 (73.3%) 24 (68.6%)

Capecitabine 1 (2.7%) 6 (9.5%) 2 (13.3%) 4 (11.4%)

mFOLFOX6 5 (13.5%) 6 (9.5%) 1 (6.7%) 4 (11.4%)

5-Fluorouraciland leucovorin 1 (2.7%) 5 (7.9%) 1 (6.7%) 3 (8.6%)

LNM lymph node metastasis, nCRT neoadjuvant chemoradiotherapy, TRG tumor regression grading, p pathological, CEA carcinoembryonic antigen
* p-value < 0.05
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regression, there were five features in Pre_T2, three fea-
tures in Pre_DWI, three features in Post_T2, seven features
in Post_DWI, twelve features in Pre_T2_DWI, seven fea-
tures in Post_T2_DWI, and thirteen features in Pre_-
T2_DWI_Post. Based on the LASSO logistic regression
analysis, mrTRG and gender were identified as clinical risk
factors that are associated with LNM after nCRT (Fig. S1).
Table 3 lists the best radiomic features of the various
models and Fig. 4 depicts the correlation matrices for the
selected features used in the different radiomic models.

Performance of models
The assessment of LNs following nCRT by radiologist’s
interpretation, based on the ESGAR criteria, yielded an
AUC of 0.624 (95% CI: 0.475–0.725) in the training
cohort and 0.556 (95% CI: 0.333–0.714) in the external
validation cohort.
The clinical model was built based on mrTRG and

gender, and the AUC of the clinical model was 0.687 (95%

CI: 0.601–0.774) in the training cohort and 0.623 (95% CI:
0.503–0.742) in the external validation cohort.
For the single-sequence model, the AUC of modelpre_T2

was 0.945 (95% CI: 0.911–0.976) in the training cohort
and 0.601 (95% CI: 0.464–0.737) in the external validation
cohort, respectively. The AUC generated by modelpre_DWI

was 0.956 (95% CI: 0.925–0.983) in the training cohort
and 0.589 (95% CI: 0.435–0.746) in the external validation
cohort. The AUC generated by modelpost_T2 was 0.934
(95% CI: 0.891–0.970) in the training cohort and 0.710
(95% CI: 0.568–0.838) in the external validation cohort.
The AUC generated by modelpost_DWI was 0.978 (95% CI:
0.957–0.993) in the training cohort and 0.756 (95% CI:
0.616–0.877) in the external validation cohort.
For the combined model, the AUC of modelpre_T2_DWI in

the training and external validation cohorts was 0.982 (95%
CI: 0.964–0.995) and 0.602 (95% CI: 0.437–0.767),
respectively. The AUC for modelpost_T2_DWI in the training
cohort was 0.955 (95% CI: 0.907–0.991) and 0.811 (95% CI:

Table 3 Most significant radiomics features of single-sequence models and combined models

Most significant radiomics features of single-sequence models

Model pre_T2 Model pre_DWI Model post_T2 Model post_DWI

wavelet-LLH_glszm_SmallAreaLowGrayLevelEmphasis log-sigma-3-0-mm-3D_gldm_

LargeDependenceLowGrayLevelEmphasis

original_shape_Elongation wavelet-HLL_glszm_SizeZoneNonUniformityNormalized

wavelet-LHH_gldm_LargeDependenceEmphasis original_glcm_Idn wavelet-HHL_firstorder_Median wavelet-LLL_firstorder_Skewness

wavelet-LHL_glszm_

LargeAreaHighGrayLevelEmphasis

wavelet-HLH_firstorder_Skewness original_firstorder_Skewness wavelet-HLH_firstorder_Kurtosis

wavelet-HHH_glszm_

LargeAreaHighGrayLevelEmphasis

wavelet-HLH_firstorder_Median

wavelet-LHL_glcm_Imc2 wavelet-LLH_glcm_DifferenceVariance

wavelet-HLL_glcm_Correlation

log-sigma-5-0-mm-3D_gldm_

LargeDependenceLowGrayLevelEmphasis

Most significant radiomics features of combined models

Model pre_T2_DWI Model post_T2_DWI Model_Pre_T2_DWI_Post

log-sigma-3-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasisa wavelet-HLL_glszm_

SizeZoneNonUniformityNormalizedc
original_shape_Elongationd

original_glcm_Idmna original_shape_Elongationd log-sigma-3-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasisa

wavelet-HLH_firstorder_Skewnessa wavelet-LLL_glcm_ClusterShaded original_glcm_Correlationc

wavelet-LLL_firstorder_Minimumb wavelet-LHL_glcm_Correlationc original_glcm_Idmna

wavelet-HHH_firstorder_Mediana wavelet-LHH_glcm_ClusterProminencec wavelet-HLH_firstorder_Skewnessa

wavelet-LLH_glszm_SmallAreaLowGrayLevelEmphasisb wavelet-HLH_firstorder_Kurtosisc wavelet-LHH_firstorder_InterquartileRangec

wavelet-LLH_glcm_ClusterShadeb wavelet-HHL_firstorder_Mediand wavelet-LLH_firstorder_Meanb

wavelet-LHH_glcm_ClusterShadea wavelet-HLH_glcm_ClusterShadeb

wavelet-LHH_firstorder_Kurtosisa wavelet-HHL_glszm_LargeAreaHighGrayLevelEmphasisb

log-sigma-5-0-mm-3D_glszm_LargeAreaLowGrayLevelEmphasisb wavelet-HHL_gldm_LargeDependenceLowGrayLevelEmphasisa

wavelet-LHL_firstorder_Maximumb wavelet-HHH_firstorder_Medianb

wavelet-HLH_glszm_LargeAreaLowGrayLevelEmphasisa wavelet-LLH_glrlm_LongRunLowGrayLevelEmphasisb

wavelet-HLL_glszm_LargeAreaLowGrayLevelEmphasisc

aIndicates that this feature comes from DWI before nCRT.
bIndicates that this feature is from T2WI before nCRT.
cIndicates that this feature is derived from DWI after nCRT.
dIndicates that this feature comes from T2WI after nCRT.
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0.706–0.902) in the external validation cohort. The AUC
formodelpre_T2_DWI_post was 0.978 (95% CI: 0.956–0.996) in
the training cohort and 0.831 (95% CI: 0.715–0.940) in the
external validation cohort. Table 4 depicts the additional
quantitative indicators for evaluating the performance of
the various models. The ROC curves generated by the
different models are shown in Fig. 5.

Model comparison
For the training cohort, the DeLong test demonstrated that
the AUCs of the radiomic models were superior to the
radiologist’s assessment and clinical model (all p < 0.001;
Fig. 6a). The AUC of modelpre_T2_DWI_post was better than
that of modelpost_T2 (p= 0.049; Fig. 6a). For the external
validation cohort, the AUC of modelpost_T2_DWI was superior
to the radiologist’s assessment, clinical model, modelpre_T2,
and modelpre_DWI (p= 0.026, 0.047, 0.029, and 0.036,
respectively; Fig. 6b). The AUC of modelpre_T2_DWI_post was
superior to that of radiologist’s assessment, the clinical
model, modelpre_T2, modelpre_DWI, and modelpre_T2_DWI

(p= 0.004, 0.036, 0.008, 0.007, and 0.014, respectively;
Fig. 6b). The supplementary material provides a detailed
comparison of various models in the training and external
validation cohorts.

Discussion
In this study, data from two centers were used to build
one radiologist’s assessment model, one clinical model,
four single-sequence radiomic models, and three

combined-sequence radiomic models based on primary
tumors to identify LNM after preoperative nCRT in
LARC. An independent test set was used to assess pre-
dictive performance. To avoid confusion between
pathology-confirmed metastatic LNs and MR-detected
LNs, we extracted radiomic features from the primary
tumor instead of individually delineating LNs. Our find-
ings are consistent with data from previous studies that
reported that the biological characteristics of primary
tumors and metastatic LNs are similar [25, 26]. Our
results demonstrate that the multiparametric model
incorporating MR features before and after nCRT (mod-
elpre_T2_DWI_post) had the best diagnostic performance for
predicting LNM after nCRT in the external set, with a
significantly higher AUC (0.831) than those of radi-
ologist’s assessment, clinical model, modelpre_T2_DWI, and
the single-sequence models (all p < 0.05). These data
indicate that certain MR-based radiomic models have the
potential to guide therapies for LARC patients.
Most previous radiomic studies focused on imaging

data before nCRT to detect LNM [13–15]. However,
tumor heterogeneity changes dynamically during treat-
ment, and thus extracting features from imaging data
before or after nCRT may miss important information
about tumor changes during treatment [27]. We used
both pre- and post-treatment imaging data, including
T2WI and DWI, to investigate the role of radiomic fea-
tures in detecting LNM. To the best of our knowledge,
this is the first study to use preoperative MR data of

Fig. 4 Correlation matrix plot displaying correlations between radiomic features used in different prediction models. a Modelpre_T2. b Modelpre_DWI.
c Modelpost_T2. d Model post_DWI. e Modelpre_T2_DWI. f Modelpost_T2_DWI. g Modelpre_T2_DWI_post
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primary tumors at two-time points to predict LNM in
patients with LARC. Our findings reveal that the radiomic
analysis of the baseline and follow-up MR data obtained
more significant features and information on treatment-
induced tumor changes. Additionally, the features of each
MR sequence can still be found in the radiomic signature
constructed by the Pre_T2_DWI_ Post after feature
selection and eliminating redundant features, which
highlights the significance of MRI parameters of both
before and after nCRT in predicting LNM.
Four features were selected from T2WI and three from

DWI before nCRT. After nCRT, three features were
chosen from T2WI and seven from DWI. The selected
features included shape, GLCM, GLDM, and wavelet
features. Shape features describe the geometry of the
VOI and indicate the degree of tumor complexity.
GLCM and GLDM are texture-based radiomic features
that characterize the intensity relationships between
pairs of neighbor voxels in all spatial directions and
intensity differences between neighbors, respectively
[28]. Wavelet transformation offers a comprehensive
spatial and frequency analysis of low- and high-
frequency signals in tumor regions [29]. Tumors are
biologically heterogeneous, with differences in cells,
microenvironmental factors metabolism, vasculature,
structure, and functions. These radiomic features reveal
tumor heterogeneity at different scales, provide insights
into the tumor microenvironment, and are valuable for
predicting treatment responses in various tumors (non-
small cell lung cancer, breast cancer, cervical cancer,
and LARC).
To explore the impact of multiparametric MR data and

time points on prediction accuracy, we constructed seven
radiomic models, including four single and three
combined-sequence models. Among the single-sequence
models, modelpost_DWI exhibited superior predictive
power, with an AUC of 0.756 in the external validation
set. Our results suggest that radiomic features derived
from DWI might be useful for predicting LN status in
LARC patients. This observation is partially consistent
with data from a previous study, which reported that
texture features extracted from DWI images and ADC
maps can predict pathological N stages in RC, with an
AUC of 0.802 [30]. DWI is a functional technique that
assesses water molecule diffusion in biological tissue. The
usefulness of DWI in discriminating benign from malig-
nant tumors has been demonstrated widely. Furthermore,
there is growing evidence that DWI allows for qualitative
and tumor microenvironment-based quantitative assess-
ment of the post-treatment tumor bed [31]. The histo-
pathological characteristics of primary tumors are closely
related to LNM in RC [32]. Therefore, this might be why
modelpost_DWI could successfully identify the LNM afterTa
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nCRT. In combined-sequence models, the model that
used T2WI and DWI features before and after nCRT had
better performance than modelpre_T2_DWI and the single-
sequence models and had high accuracy and specificity in
both the training and external validation cohorts. The
multi-sequence radiomic model could accurately deter-
mine LN status after nCRT, even in the absence of
surgery-related clinical data. This might be interpreted
that radiomic analysis based on the baseline and follow-

up, therefore, may provide more significant features and
information about changes resulting from treatment.
Despite the accuracy of LN restaging MRI following

nCRT being better than that of baseline staging, chal-
lenges such as size overlap between malignant and reac-
tive LNs, and fibrosis, edema, or inflammatory changes
resembling tumors remain. In our study, the accuracy of
the radiologist’s assessment of LN involvement was 0.578
in the external validation cohort. When constructing the

Fig. 5 ROC curves of radiologist’s assessment and different models for predicting LNM after nCRT. Training cohort (a, c); external validation cohort (b, d)
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clinical model, mrTRG and gender were identified as
factors associated with LNM after nCRT, consistent with
previous research findings [33, 34]. Newton et al devel-
oped a nomogram based on clinicopathological variables
to predict LNM after nCRT in patients with LARC with a
c-index of 0.71 [35], which is in line with our clinical
model (AUC= 0.687). Nevertheless, the predictive per-
formance of the clinical model is still significantly weaker
than modelpre_T2_DWI_ post (p= 0.036). This might be due
to clinicopathological features reflecting the coarse fea-
tures of tumors, which inevitably involve clinicians’ sub-
jective judgments of patients. In contrast, radiomic
features contain multidimensional quantitative informa-
tion that can more objectively and accurately reflect
tumor heterogeneity and biological characteristics.
Our study has several limitations. Firstly, the sample

size was small, which may affect the generalizability of the
findings. Secondly, due to the retrospective nature of our
study, the potential for selection bias remains, and we
were unable to achieve precise alignment between
pathologically confirmed LNs and those detected on MRI
scans. Thirdly, we obtained data from different scanners
at different centers. Although we used data pre-processing
techniques such as resampling and normalization, as well
as the ComBat method to eliminate batch effects, the
heterogeneity of MRI scans from different centers is
unavoidable. Lastly, the manual delineation of primary
tumors was a time-consuming and labor-intensive pro-
cess. Future studies should explore the application of deep
learning for automatic VOI segmentation of RC.
In conclusion, our findings suggest that a multi-

parametric model that incorporates MR radiomic

features before and after nCRT is optimal for predicting
LNM after nCRT in patients with LARC. The model
may help guide therapies and predict prognoses for
LARC patients.
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