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Abstract

Objectives To develop and validate a deep learning (DL) model for automated segmentation of hepatic and portal
veins, and apply the model in blood-free future liver remnant (FLR) assessments via CT before major hepatectomy.

Methods 3-dimensional 3D U-Net models were developed for the automatic segmentation of hepatic veins and
portal veins on contrast-enhanced CT images. A total of 170 patients treated from January 2018 to March 2019 were
included. 3D U-Net models were trained and tested under various liver conditions. The Dice similarity coefficient (DSC)
and volumetric similarity (VS) were used to evaluate the segmentation accuracy. The use of quantitative volumetry for
evaluating resection was compared between blood-filled and blood-free settings and between manual and
automated segmentation.

Results The DSC values in the test dataset for hepatic veins and portal veins were 0.66 ± 0.08 (95% CI: (0.65, 0.68)) and
0.67 ± 0.07 (95% CI: (0.66, 0.69)), the VS values were 0.80 ± 0.10 (95% CI: (0.79, 0.84)) and 0.74 ± 0.08 (95% CI: (0.73, 0.76)),
respectively No significant differences in FLR, FLR% assessments, or the percentage of major hepatectomy patients
were noted between the blood-filled and blood-free settings (p= 0.67, 0.59 and 0.99 for manual methods, p= 0.66,
0.99 and 0.99 for automated methods, respectively) according to the use of manual and automated segmentation
methods.

Conclusion Fully automated segmentation of hepatic veins and portal veins and FLR assessment via blood-free CT
before major hepatectomy are accurate and applicable in clinical cases involving the use of DL.

Critical relevance statement Our fully automatic models could segment hepatic veins, portal veins, and future liver
remnant in blood-free setting on CT images before major hepatectomy with reliable outcomes.

Key Points
● Fully automatic segmentation of hepatic veins and portal veins was feasible in clinical practice.
● Fully automatic volumetry of future liver remnant (FLR)% in a blood-free setting was robust.
● No significant differences in FLR% assessments were noted between the blood-filled and blood-free settings.

Keywords Future liver remnant, Major hepatectomy, Hepatic vein, Portal vein, Deep learning

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Tingting Xie and Jingyu Zhou contributed equally to this work.

*Correspondence:
Yongbin Li
Benliyong@126.com
Guanxun Cheng
18903015678@189.cn
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0009-0003-9224-9937
http://orcid.org/0009-0003-9224-9937
http://orcid.org/0009-0003-9224-9937
http://orcid.org/0009-0003-9224-9937
http://orcid.org/0009-0003-9224-9937
http://creativecommons.org/licenses/by/4.0/
mailto:Benliyong@126.com
mailto:18903015678@189.cn


Graphical Abstract

Fully automated segmentation of hepatic and portal veins and FLR assessment via 
blood-free CT using deep learning before major hepatectomy are accurate and 

applicable in clinical cases.

Fully automated assessment of the future 
liver remnant in a blood-free setting via CT 
before major hepatectomy via deep learning

Insights Imaging (2024) Xie T, Zhou J, Zhang X et al. 
DOI: 10.1186/s13244-024-01724-6

Background
Post-hepatectomy liver failure (PHLF) is regarded as the
primary factor contributing to mortality after major
hepatectomy [1–3]. Its prevalence is variable and up to
12–34% [4]. The future liver remnant (FLR) volume is
considered one of the most important predictors of PHLF
[5], and CT volumetry of the FLR has become an essential
procedure before major hepatectomy in clinical practice.
However, preoperative CT volumetry has been criticized
for under- and overestimating real volumes for several
reasons, including (i) the preoperative assumed planes
used for volumetry differ from the actual resection planes
and (ii) the blood volume contained in the large hepatic
vessels (V blood, i.e., the volume of portal veins and hepatic
veins) in the graft contributes to the difference between
CT volumetry and real liver grafts because volumetry on
CT images is blood-filled while intraoperative measure-
ments are blood-free [4, 6, 7]. Since the blood pool
comprises more than 9% of the whole liver volume [8],
V blood should be taken into account. Considering that the
minimum FLR in normal and diseased liver tissue (i.e.,
steatosis, cholestasis, and cirrhosis) ranges from 20% to
40%, it is worthwhile to segment and volumeter the
hepatic veins and portal veins and to investigate how
much blood content contributes to the error of

preoperative CT volumetry. Therefore, segmentation and
volumetry of hepatic veins and portal veins on CT images,
precise assessment of preoperative FLR in a blood-free
setting, and comparison of FLR between blood-filled
setting and blood-free setting (i.e., FLR B-filled and
FLR B-free) are essential.
Several studies have reported the use of deep learning

(DL) algorithms for volumetry of the right lobe in living
donor liver transplantation; however, the difference in the
volumetry of the FLR B-filled and FLR B-free has not been
investigated [9–13]. Moreover, these studies aimed to
apply DL algorithms in the preoperative planning of living
donor liver transplantation; however, DL models for
preoperative FLR assessment of major hepatectomy have
rarely been reported and remain unknown.
Several authors have developed deep learning (DL)

models for the automated segmentation of hepatic veins
and portal veins, which can potentially be used in pre-
operative FLR assessment prior to major hepatectomy in a
blood-free setting; however, these studies have focused on
the technical feasibility of developing new DL models to
improve segmentation performance, and external valida-
tion via the use of various pathologic livers has been
ignored [14–17]. How these models perform in
real clinical cases, especially under highly variable and
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complex liver conditions, has not been determined.
Severely deformed liver tissue caused by cirrhosis and
vascular invasion caused by hepatic tumors can lead to
smaller and blur veins than in a healthy liver, and seg-
mentation of hepatic vessels is a major challenge. Almost
all these studies mentioned that DL models of hepatic
veins and portal veins assist in the planning of hepatic
resection [14–17]; however, how these DL models per-
form on these pathological livers during real preoperative
planning has not been fully evaluated.
Therefore, we aimed to develop a DL model for the

automatic segmentation and volumetry of hepatic veins
and portal veins, validate the models in an external vali-
dation cohort with various liver conditions, and apply the
model in combination with preoperative FLR B-filled and
FLR B-free assessment prior to major hepatectomy.

Materials and methods
Dataset
The training dataset and test dataset were used for the
development of a DL model for automated segmentation
of Couinaud’s liver segment in a previous study [18].
The training dataset was extracted from 2283 con-

secutive patients who underwent liver contrast-enhanced
CT scans at Medical Center A (Peking University First
Hospital) between January 2018 and March 2019. A total
of 170 patients were included in the training dataset
cohort. A flowchart is presented in Fig. 1.

Two test datasets were used for the external validation
of the DL models. These test datasets were extracted from
1774 consecutive patients who underwent liver contrast-
enhanced CT scans at Medical Center B (Peking Uni-
versity Shenzhen Hospital) between June 2019 and
December 2021. A total of 178 patients were included.
To develop a robust DL model, CT data extracted from

patients with various liver pathologies and obtained by
different CT manufacturers were included. The various
liver pathologies included fatty liver disease secondary to
systemic chemotherapy, alcoholic fatty liver disease,
alcohol-associated cirrhosis, nonalcoholic fatty liver
disease, and hepatic cirrhosis. Patients with focal nodular
hyperplasia, hepatic cysts, hepatic adenoma, heman-
gioma, or hepatocellular carcinoma were included in the
test dataset-1. Patients with large hepatic masses
(including cholangiocarcinoma, hemangioma, hepato-
cellular carcinoma, etc.) who were classified as candi-
dates for major hepatectomy were included in dataset 2.
The characteristics of the three datasets are shown in
Table 1.

Imaging acquisition
CT images were obtained by five CT scanners from three
different manufacturers (summarized in Appendix E1
(supplement)). CT images reconstructed at section
thicknesses of 1.25 mm and 1mm were included in this
study.

Fig. 1 The inclusion criteria, exclusion criteria, and distribution of computed tomography (CT) scans in the data sets used in this study were
demonstrated in flowchart. TACE, transcatheter arterial chemo-embolization
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Imaging processing and labelling
We used ITK Snap version 3.8.0 for imaging processing.
Major hepatic veins (i.e., the right hepatic vein (RHV),
middle hepatic vein, left hepatic vein, superior RHV and
inferior RHV were annotated up to the second branch
ramification. The main portal vein was fully annotated.
The left portal vein and right portal vein were annotated
up to the second branch of the ramification (shown in
Fig. 2).
All the labels were first annotated by a radiologist and

subsequently re-evaluated and corrected by another
radiologist (with 10 years of experience in liver imaging
and 30 years of experience in radiology); these annota-
tions were regarded as the ground truth. All the images
from the training and external validation datasets were
processed via this procedure.

DL models for the automated segmentation of the
entire liver, Couinaud’s liver segments and hepatic mass
were trained in our institution for a precise preoperative
assessment of FLR% B-free, the dataset cohorts and per-
formances are summarized in Appendix E1 (supplement).
Three-dimensional visualization and quantitative

assessment of FLRs were proposed. The key steps are
demonstrated in Fig. 3.

Model development
The 3D U-Net network described by Çiçek Ö et al [19]
was used for the development of DL models of hepatic
veins and portal veins. Another three 3D U-Net frame-
works were trained for the segmentation of the entire
liver, Couinaud’s segments, and hepatic mass (Appen-
dix E1 (supplement)).

Fig. 2 Major hepatic veins including right hepatic vein (RHV), middle hepatic vein (MHV), left hepatic vein (LHV), superior RHV (SRHV) and inferior RHV
(IRHV)) were annotated. Main portal vein (MPV), Left portal vein (LPV)) and right portal vein (RPV) were annotated. Inferior vena cava (IVC) was labelled as
a reference landmark of the hepatic veins

Table 1 Characteristic of training and test datasets

Parameters Training Dataset Test Dataset-1 Test Dataset-2

No. of patients 170 146 32

No. of male patients (n, %) 106 (62.35) 84 (57.53) 25 (78.13)

Age (year) 50.23 ± 13.77 49.04 ± 13.15 54.59 ± 14.29

Average Volume of intrahepatic lesions (cm3) 2.02 ± 4.13 (0.00–49.40) 1.87 ± 7.92 (0.00–86.05) 448.80 ± 608.60 (9.14–2426.10)

Liver conditions (n, %)

Reported healthy liver 61 (35.88) 50 (34.25) 27 (84.38)

Fatty liver 62 (36.47) 47 (32.19) 3 (9.38)

Hepatic cirrhosis 47 (27.65) 49 (33.56) 2 (6.25)
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For the development of 3D U-Net models for hepatic
and portal veins, 3D contrast-enhanced CT images were
inputted with manual annotation of all veins and bran-
ches with a diameter larger than 2 mm, and the output
was produced with the predicted annotation. Training,
validation, and test data were combined at an 8:1:1 ratio
for the development dataset. We use the Dice loss
function as the loss function. The prediction accuracy of
the DL models was checked on the validation dataset
during the training process. We stopped our training
when the prediction accuracy started to decrease to
prevent overfitting. The resolution of the CT images was
128 × 192 × 256. Image amplification methods, including
translation, affine transformation, and random noise
were adopted. During the model training, the ADAM
gradient descent optimization algorithm was adopted,
with a batch size of 2, an initial learning rate of 0.0001
and 400 epochs. We used Python as the programming
language. The software used was PyTorch 0.4.1, Python
3.6, Numpy, OpenCV and SimpleITK, and the hardware

used was an NVIDIA Tesla P100 16 G GPU for model
training.

Model evaluation and qualitative assessment

a. For classification of trunks and branches of hepatic
and portal veins. The automated results were
regarded as accurate when 3/4 of the length of the
main portal veins and hepatic veins and 1/2 of the
length of the primary branches were accurately and
continuously annotated.

b. For segmentation of hepatic and portal veins, we used
Dice similarity coefficient (DSC) and volumetric
similarity (VS) to evaluate the segmentation
performance. The DSC was calculated as the voxel
overlap between the ground truth (G) and the
prediction masks (p).

DSC ¼ 2jP \ Gj
jPj þ jGj

Fig. 3 Key steps in 3D visualization and quantitative future liver remnant (FLR) assessment for preoperative planning
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The VS is used to measure the volumetric difference
between the ground truth and prediction masks
(i.e., VG and Vp).

VS ¼ 1� jVG � VPj
jVG þ VPj

c. Calculation of the FLR% The total liver volume (TLV),
FLR and hepatic lesion (VLesion) were measured on CT
images. The ratio of FLR to the nontumor-bearing liver
volume was defined as FLR% [20].

FLR% ¼ FLR
TLV � VLesion

´ 100%

FLR% B�free ¼ FLRB�free

TLVB�free � VLesion
´ 100%

FLR% B�filled ¼ FLRB�filed

TLVB�filled � VLesion
´ 100%

FLRs were calculated in the settings of blood-free
(FLR% B-free) and blood-filled (FLR% B-filled) for each
patient in test dataset-2.

d. The prediction of resection based on the FLR% B-free

status and FLR% B-filled status The optimal minimal
FLR% varies for different liver pathologies, and FLR
% values larger than 20%, 30%, and 40% in patients
with healthy livers, hepatic steatosis, and cirrhosis,
respectively, were classified as candidates for major
hepatectomy in this study [21–23].

Statistical analysis
For the DL models of hepatic and portal veins, to evaluate
the accuracy of trunk and branch classification, the
automated and manually labelled classification results
were compared. To assess the accuracy of the segmenta-
tion and volumetry, the DSC and VS values between the
automated and manual segmentation methods were
compared. To evaluate the ability of the DL models to
assess the preoperative FLR, the differences in FLR%
between automated and manual segmentation and

between blood-filled and blood-free settings were com-
pared via Bland–Altman analysis. The differences in the
prediction of resection between the model and human
doctors and between blood-filled and blood-free settings
were compared using McNemar’s test. Commercially
available software (GraphPad Prism, version 7.00; IBM
SPSS Statistics for Mac, version 22.0) was used to perform
the statistical analysis, and a p value less than 0.05 was
considered to indicate statistical significance.

Results
Classification accuracy of trunks and branches of hepatic
and portal veins
The results of test datasets 1+ 2 show that our model is
capable of accurately classifying the input contrast-
enhanced liver CT images into hepatic veins and portal
veins, including trunks and branches. The classification
accuracy for the trunks and branches ranged from 81.46%
(145/178) to 98.88% (176/178) (shown in Table 2).
Unsatisfactory classifications and the accuracy of acces-
sory right hepatic veins were shown in Appendix E2
(supplement).

The accuracy of the segmentation of hepatic and portal
veins in test dataset 1+ 2
The average DSCs for the segmentation of hepatic veins
and portal veins were 0.66 ± 0.08 (95% CI: (0.65, 0.68))
and 0.67 ± 0.07 (95% CI: (0.66, 0.69)), respectively, and the
average VS was 0.80 ± 0.10 (95% CI: (0.79, 0.84)) and
0.74 ± 0.08 (95% CI: (0.73, 0.76)), respectively.
According to the DSC results, the differences in the

segmentation of hepatic veins between healthy livers and
cirrhotic livers, healthy livers and candidates for major
hepatectomy, fatty livers and cirrhosis, and fatty livers and
candidates for major hepatectomy were statistically sig-
nificant (p < 0.0001), but no significant differences in
portal vein segmentation were found among the sub-
groups (p= 0.689). For the VS results, no significant dif-
ferences in segmenting hepatic veins or portal veins were
found among the subgroups (p= 0.749 for hepatic veins,
p= 0.932 for portal veins) (Fig. 4).

Table 2 Accuracy of deep learning model in the classification of trunk and branches of hepatic and portal veins in test dataset 1+ 2
(%, 95% confidence intervals)

RHV MHV LHV SRHV IRHV MPV RPV LPV

Trunk 98.88

(97.31, 100.00)

96.63

(93.95, 99.31)

97.75

(95.55, 99.95)

96.07

(93.18, 98.95)

95.51

(92.43, 98.58)

88.20

(83.42, 92.99)

88.20

(83.42, 92.99)

87.64

(82.76, 92.52)

Branches 98.31

(96.41, 100.00)

96.07

(93.18, 98.95)

97.19

(94.74, 99.64)

94.38

(90.97, 97.80)

94.94

(91.69, 98.19)

NA 82.58

(76.96, 88.21)

81.46

(75.70, 87.23)

RHV right hepatic vein, MHV middle hepatic vein, LHV left hepatic vein, SRHV superior right hepatic vein, IRHV inferior right hepatic vein, MPV main portal vein, LPV left
portal vein, RPV right portal vein
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For segmentation performance, our results were com-
pared with those of similar studies (Table 3). We validated
our models by using the largest test dataset, which

included data from most liver conditions. For segmenta-
tion of hepatic veins, we obtained similar results to those
of Tong [15], Tong [17] and Oh [24], with differences of
less than 0.3 in DSC. For the segmentation of portal veins,
we obtained the highest DSC values.

Volumetric accuracy of large blood vessels in test
dataset 1+ 2
The average volumes of the hepatic veins and portal veins
obtained by automated and manual segmentation are
shown in Table 4. Volumetry of hepatic veins obtained by
automated methods underestimated manual results in all
patients (bias was −12.93 mL and −8.67 mL, p < 0.05; 95%
limits of agreement (LoA) were −27.25 mL and 1.40 mL;
and −29.62 mL and 12.29 mL in test dataset-1 and test
dataset-2, respectively). Volumetry of the portal veins
obtained by automated methods underestimated the
manual results in all patients (bias was −19.69 mL and
−14.36 mL, p < 0.05; 95% LoA were −39.53 mL and
0.15 mL; and −28.42 mL and −0.30 mL in test dataset 1
and test dataset 2, respectively) (Fig. 5).

Volumetric accuracy of FLR and FLR% in test dataset 2
The FLR and FLR% assessments are shown in Fig. 6,
respectively. No significant differences FLR in B-free or
FLR B-filled values were noted between the manual and
automated methods using the Mann–Whitney U test
(p= 0.67 and 0.66, respectively) (Fig. 6). No significant
differences FLR % in B-free or FLR % B-filled were noted
between the manual and automated methods using the
Mann–Whitney U test (p= 0.59 and 0.99, respectively).
In the blood-filled setting, the volumetry of the

FLR B-filled and FLR% B-filled samples ranged from 309.87
to 1277.00 mL (mean volume, 725.99 mL ± 253.09) and
32.82% to 89.67% (mean value, 59.19% ± 16.56%),
respectively. In the blood-free setting, the FLR B-free and
FLR% B-free volumes ranged from 294.63 to 1256.10 mL
(mean volume, 703.89 mL ± 251.06) and from 32.77% to

Fig. 4 Box and whisker plot shows the medians of DSC values ranged
from 0.62 to 0.70 in subgroups of healthy liver, fatty liver, hepatic cirrhosis
and candidates for major hepatectomy in the segmentation of hepatic
veins, respectively. For the results of DSC, the differences between
subgroups were statistically significant (all p < 0.0001), but no significant
differences in the segmentation of portal veins segmentation were found
among groups (p= 0.689). For the results of VS, the median values ranged
from 0.75 to 0.86, no significant differences among subgroups in both
segmenting hepatic veins and portal veins were found (p= 0.749 for
hepatic veins, p= 0.932 for portal veins, respectively)

Table 3 Segmentation performance of hepatic vein (HV) and portal vein (PV) compared with literature

First Author/

Year

Modality Segmentation

Methodology

Test Dataset

Size

Liver Diseases DSC in test

Dataset (HV/PV)

Vessels

Tong/2023 < 15 > CT CM U-Net 80 NA 0.70/NA Only HV

Tong/2023 < 17 > CT SDA U-Net 80 Liver tumors and calcification 0.71/NA Only HV

Zbinden/

2022 < 28 >

MR 3D nnU-Net 30 With/without chronic liver disease 0.532 /0.634 HV/PV

Oh/2023 < 24 > MR 3D Residual U-Net 12 Liver tumors 0.70/0.61 HV/PV

Proposed CT 3D U-Net 178 Healthy livers, hepatic steatosis, cirrhosis

and candidates for major hepatectomy

0.67/0.68 HV/PV
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91.87% (mean value, 60.61% ± 17.43%), respectively
(Fig. 6).
FLR assessments obtained by the blood-free setting

slightly underestimated the FLR B-filled by using manual
and automated methods (bias=−22.1 mL, −23.04 mL,
p < 0.01; 95% LoA=−35.80 mL and −8.40 mL;
−37.32 mL and −8.78 mL, respectively); FLR assess-
ments obtained by the blood-free setting slightly over-
estimated the FLR% B-filled by using manual and
automated methods (bias= 1.42%, 0.05%, p < 0.05; 95%
LoA were −0.71% and 3.55%, −1.59% and 1.68%,
respectively) (Fig. 6).
For the volumetric volume of the FLR, we compared our

results with those of similar studies via volumetry of the
right lobe (shown in Appendix E2 (supplement)). We
obtained similar results with Kim’s [8] and Kalshabay’s
[10] methods, with differences of less than 45mL
(accounting for 5.59% of the TLV). However, our results
were quite different from those of Gündoğdu’s [25] and
Park’s [9] studies, in which the difference was more than
450mL (accounting for 55.90% of the TLV). The differ-
ences in the volumes of the right lobe may be related to
the differences in the study population and the differences
in the calculation methods used for the FLR in these
studies. Patients enrolled in Gündoğdu’s [25] and Park’s
[9] studies were living liver donors with no hepatic disease
or mild fatty liver disease; these findings are quite differ-
ent from our study population.

Qualitative analysis results
Comparison of the prediction of resection in test dataset 2
A total of 10 patients, 21 patients and 1 patient underwent
complete left hepatectomy, complete right hepatectomy
and extended right hepatectomy, respectively. A total of
128 (32 × 2 × 2) FLR% measurements were obtained and
compared. The number of patients categorized as candi-
dates for resection is shown in Table 5. All patients were
permitted to undergo major hepatectomy via manual
or automated segmentation, based on FLR% B-free or
FLR% B-filled assessment results. No significant differences
in the prediction of resection were found between the
human doctors and the automatic segmentation model
(p > 0.99) or between the FLR% B-free assessment and the
FLR% B-filled assessment (p > 0.99) according to McNe-
mar’s test.

Discussion
Preoperative CT volumetry of FLR has been criticized for
under- and over-estimating real FLR mainly because
volumetry on CT images is blood-filled while intrao-
perative volumetry is blood-free [4, 6, 7]. The larger the
volume of the blood vessels, the greater the difference
between measured FLR and real FLR will be. Blood vesselsTa
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account for 9% of total liver volume [8], a proportion that
has the potential to change the prediction of resection
based on FLR% because the minimum FLR% which
required to preserved ranged from 20% to 40% before
major hepatectomy. So, a precise FLR calculation in a
blood-free setting, and a comparison between FLR B-filled

and FLR B-free are essential. In this study, we developed
and validated DL models for the automatic segmentation
of hepatic veins and portal veins and applied this tech-
nique for presurgical FLR% assessment both in a blood-
filled setting and a blood-free setting prior to major
hepatectomy. The key contributions of this study were
that preoperative FLR% assessments and predictions of
resection in blood-filled and blood-free settings were fully
compared with quantitative and qualitative results, mul-
tiple types of hepatectomy were included, and the vali-
dation dataset included patients with various liver
conditions in clinical practice and candidates who
underwent major hepatectomy.
The current results indicated that our model allowed

fully automatic segmentation of hepatic veins and portal
veins and fully automatic volumetry of FLR% in a blood-

free setting and was robust for different pathological
livers, even in a spatial external validation dataset.
Our models obtained slightly higher DSC values than

Zbinden et al [26] and Oh et al [24] (Table 3). For the
segmentation of hepatic veins, our models obtained DSC
values similar to those of Tong et al [15] and Tong et al
[17]. We obtained higher DSC values in patients with
healthy livers and fatty livers than in patients with hepatic
cirrhosis and large liver tumors (shown in Fig. 4). This was
primarily because the hepatic veins in patients with cir-
rhosis and liver tumors were smaller, more blurred and
more difficult to distinguish than those in patients with
healthy livers, which increased the difficulty in segment-
ing hepatic veins.
For the calculations of both the FLR and FLR%, similar

studies have focused on the correlations between FLR
weight and remnant liver weight [8, 27]; however, the
differences between FLR B-filled and FLR B-free weight have
rarely been analyzed. Our study demonstrated that auto-
mated preoperative assessment of FLRs that are B-free
and FLR % B-free is feasible, and both results could be used
in the prediction of major hepatectomy.

Fig. 5 Bland-Altman plots for agreement between manual and automated method in volumetry of hepatic veins (A, D, E, F, G), portal veins (B, H, I, J, K)
and large hepatic veins (C). The segmentation models slightly underestimated manual segmentations in healthy liver, fatty liver, hepatic cirrhosis and
candidates for major hepatectomy
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Limitations in our study should be noted. First, for the
external validation of the preoperative FLR B-free assess-
ment, the validation would be stronger if the volume of
the actual liver remnant after hepatectomy was obtained
and regarded as a reference. Second, validation on unseen
pathologies was lacking, and the FLR was validated in 32
patients who underwent three types of major hepa-
tectomy. Further validation in a larger dataset involving
unseen pathologies more types of major hepatectomy is
needed. In conclusion, fully automated preoperative
assessments of FLRs in blood-free settings are feasible

Fig. 6 Box and whisker plot shows preoperative FLRB-free and FLR B-filled (A), FLR%B-free and FLR% B-filled (B) in candidates for major hepatectomy obtained by
using manual and automated methods. The central boxes, the middle lines in the central boxes represent the values from 25th to 75th percentile, the
medians, respectively. Vertical lines under and upper the boxes extended from the minimum values to the maximum values. Bland-Altman plots for
agreement between FLR B-free and FLR B-filled by using manual (C) and automated (D) method; Bland-Altman plots for agreement between FLR% B-free and
FLR% B-free by using manual (E) and automated (F)

Table 5 Number of cases categorized as candidates for major
hepatectomy

Methods Based on

FLR% B-free

Based on

FLR% B-filled

Manual segmentation 32 32

Automated segmentation 32 32

FLR% B-free: the ratio of future liver remnant to total liver volume measured in
blood free setting; FLR% B-filled: the ratio of future liver remnant to total liver
volume measured in blood filled setting

Xie et al. Insights into Imaging          (2024) 15:164 Page 10 of 12



prior to major hepatectomy, even for different types of
resection and various liver conditions. Compared to those
of human doctors, the DL models demonstrated similar
performance in the final prediction of resection in a
spatial external validation dataset.

Abbreviations
3D 3-dimensional
95% LoA 95% limits of agreement
DL Deep learning
DSC Dice similarity coefficient
FLR B-filled Future liver remnant in a blood-filled setting
FLR B-free Future liver remnant in a blood-free setting
FLR Future liver remnant
G Ground truth
IRHV Inferior right hepatic vein
P Prediction masks
PHLF Posthepatectomy liver failure
RHV Right hepatic vein
SRHV Superior right hepatic vein
TLV Total liver volume
V blood Volume of portal veins and hepatic veins
VG Volume of the ground truth
VLesion Volume of hepatic lesion
VP Volume of the prediction masks
VS Volumetric similarity
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