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Abstract

Objectives This systematic review and meta-analysis aimed to assess the stroke detection performance of artificial
intelligence (AI) in magnetic resonance imaging (MRI), and additionally to identify reporting insufficiencies.

Methods PRISMA guidelines were followed. MEDLINE, Embase, Cochrane Central, and IEEE Xplore were searched for
studies utilising MRI and AI for stroke detection. The protocol was prospectively registered with PROSPERO
(CRD42021289748). Sensitivity, specificity, accuracy, and area under the receiver operating characteristic (ROC) curve
were the primary outcomes. Only studies using MRI in adults were included. The intervention was AI for stroke
detection with ischaemic and haemorrhagic stroke in separate categories. Any manual labelling was used as a
comparator. A modified QUADAS-2 tool was used for bias assessment. The minimum information about clinical
artificial intelligence modelling (MI-CLAIM) checklist was used to assess reporting insufficiencies. Meta-analyses were
performed for sensitivity, specificity, and hierarchical summary ROC (HSROC) on low risk of bias studies.

Results Thirty-three studies were eligible for inclusion. Fifteen studies had a low risk of bias. Low-risk studies were
better for reporting MI-CLAIM items. Only one study examined a CE-approved AI algorithm. Forest plots revealed
detection sensitivity and specificity of 93% and 93% with identical performance in the HSROC analysis and positive and
negative likelihood ratios of 12.6 and 0.079.

Conclusion Current AI technology can detect ischaemic stroke in MRI. There is a need for further validation of
haemorrhagic detection. The clinical usability of AI stroke detection in MRI is yet to be investigated.

Critical relevance statement This first meta-analysis concludes that AI, utilising diffusion-weighted MRI sequences,
can accurately aid the detection of ischaemic brain lesions and its clinical utility is ready to be uncovered in clinical
trials.

Key Points
● There is a growing interest in AI solutions for detection aid.
● The performance is unknown for MRI stroke assessment.
● AI detection sensitivity and specificity were 93% and 93% for ischaemic lesions.
● There is limited evidence for the detection of patients with haemorrhagic lesions.
● AI can accurately detect patients with ischaemic stroke in MRI.
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AArtificial intelligence utilising diffusion-weighted MRI sequences, can accurately aid the detection 
of ischaemic brain lesions; its clinical utility is ready to be uncovered in clinical trials.
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• There is a growing interest for 

artificial intelligence solutions for 

detection aid. 

• AI detection sensitivity and 

specificity was 93% and 93% for 

ischaemic lesions.

• There is limited evidence for 

detection of patients with 

haemorrhagic lesions.

Introduction
Stroke is an acute onset of focal neurologic symptoms due
to of vascular origin from the central nervous system. It is
a clinical diagnosis and brain imaging is needed to dif-
ferentiate between ischaemic and haemorrhagic aetiology.
Computed tomography (CT) has for years been the de
facto standard imaging modality due to its availability and
speed with current guidelines recommending intravenous
thrombolysis for ischaemic stroke within 4.5 h of known
onset [1, 2]. Presently, many advanced institutions are
shifting towards magnetic resonance imaging (MRI) even
in the acute diagnosis of stroke. MRI has superior sensi-
tivity and can identify acute ischaemia with unknown
stroke onset that is potentially reversible with revascu-
larisation, e.g. by demonstrating a mismatch between
diffusion-weighted imaging (DWI) and fluid-attenuated
inversion recovery (FLAIR) negative sequences [1–4].
MRI is also highly useful in cases of uncertainty as to a
stroke diagnosis. Moreover, MRI optimisation has
enabled patient treatment flows similar to those achieved
using brain CT regarding, e.g. door-to-needle time [5].
There is increased use of medical imaging including MRI
in the healthcare system [6, 7], a trend that is expected to

continue in the future [8]. The increasing burden on
radiological departments is not predicted to be backed
with an equivalent increase in radiologists and it is
therefore highly likely that increased MRI use will lead to
longer response times or increased error rates [9, 10]. To
counterbalance this for stroke diagnosis, artificial intelli-
gence (AI) has been proposed as a technology to enhance
the radiology workflow [11–13].
The detection properties of AI can be used in a multitude

of workflows including triaging, detection aid, MRI protocol
selection, and contrast agent admission decisions. Several
studies have reviewed AI for stroke imaging, but these are
either applied to CT, are unsystematic, or with a scope too
wide to properly elucidate stroke detection in MRI [11–20].
This systematic review aims to assess the performance

of AI for automated stroke detection in brain MRI. The
objectives of the review are to: (1) estimate the current
detection performance for clinically representative stu-
dies, (2) characterise the studies, their respective AI
algorithms, and whether they have received the European
Conformity mark (CE) or received the US Food and Drug
Administration (FDA) approval, and (3) utilise the mini-
mum information about clinical artificial intelligence
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modelling (MI-CLAIM) checklist to characterise report-
ing trends [21]. For this study, only lesions confirmable in
images and compatible with stroke lesions are examined
and will onward be mentioned as either ischaemic stroke
type or haemorrhagic stroke type depending on their
radiological appearance.

Materials and methods
The review was performed according to the Preferred
Reporting of Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [22]. The protocol was
prospectively registered with the International Prospective
Register of Systematic Reviews (PROSPERO) on 16th
November 2021 (CRD42021289748) [23]. Eligibility criteria
for inclusion were formed using the participants-inter-
vention-comparator-outcome-study (PICOS) design [24].

Eligibility criteria
Studies with MRI and AI for stroke assessment, encom-
passing retrospective, prospective, and diagnostic test stu-
dies were included. Participant recruitment strategies were
classified as outlined in the Cochrane Handbook [25, 26].
Studies were included if participants were aged 18 years

or older, the target condition was stroke or any of its
subcategories, and non-stroke patients were used as
comparators. At least one of the following had to be
reported: (1) sensitivity and specificity, (2) accuracy, or (3)
area under the ROC (AUROC) curve.

Search strategy and information sources
A systematic search was conducted in MEDLINE (Ovid),
Embase (Ovid), Cochrane Central, and IEEE Xplore. The
search strategy was defined in close cooperation with an
information specialist at the local institutional research
library. No limitations were made for publication date or
language. Subject headings and free text terms relating to
the categories MRI, stroke and AI were used. Search
blocks were identified for both MRI [27] and stroke [28]
through reviews in the Cochrane Library. The reviews
from the Cochrane Library were also translated to cover
all databases but IEEE Xplore. Due to the restrictions of
the IEEE Xplore search machine, the search string was
translated to only cover free text terms for this database.
Complete search strings for all databases are provided in
the online supplementary Table S1. Conference posters
and abstracts identified in the search were also eligible.
Conference and poster abstracts that were not excluded in
the initial screening were followed up by an email enquiry
to the corresponding authors for a full record. A reminder
e-mail was sent one week after the first if no response was
obtained. If no response was obtained after one additional
week, they were assessed solely on the information con-
tained in the conference poster or abstract and included

based on this if deemed eligible. The systematic searches
were updated on 1st November 2023.

Selection and extraction
All studies were uploaded to EndNote 20 (Clarivate,
Philadelphia, PA, USA) and managed with Covidence
systematic review software (Veritas Health Innovation,
Melbourne, Australia). Duplicates were removed auto-
matically after importation to Covidence. Eligibility was
based on the PICOS model as seen in Table 1. Two
independent reviewers (J.A.B. and M.T.E.) completed
title-abstract and full-text screening and performed bias
assessment and data extraction. Any disagreement was
resolved through discussion along with arbitration by a
third reader (B.S.B.R.). Full-text exclusions were done
with reason in categorical order as illustrated in the
PRISMA flow chart (Fig. 1). Descriptive data, risk of bias,
and results were extracted and handled in consensus
between the two primary readers. Risk of bias assessments
were performed prior to the assessment of the results to
reduce bias in the review. The results collected were
sensitivity, specificity, accuracy, and AUROC. Descriptive
data collected included Study ID, Study design, Number
of participants, Index test, Use of neural network, and
FDA approval and CE marking. FDA approval and CE
marking status were in addition cross-checked using the
Radiology Health AI Register list [29]. Two reviewers
(J.A.B. and M.T.E.) independently extracted all data.

Risk of bias analysis
For risk of bias analysis, a modified version of the quality
assessment for diagnostic accuracy studies 2 (QUADAS-

Table 1 PICOS components for the systematic review of AI for
MRI stroke detection

Component Description

Participants Patients 18 years of age or older having undergone a

brain MRI

Intervention MRI utilising AI for stroke detection including any stroke

subtypes

Comparator Any manual labelling of stroke or non-stroke MRI

diagnosis including any stroke subtypes

Outcome At least one of the following:

-Sensitivity and specificity

-Accuracy

-AUROC

Study design Diagnostic test studies utilising either:

-A cross sectional design

-A case-control design

-A cohort design

-A randomised trial design
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2) tool was used [30]. Modification was done to the index
test domain to better accommodate AI. The modified
QUADAS-2 tool along with the changes made are illu-
strated in the online supplementary Table S2.

Data analysis
Descriptive analysis was done on all included reports.
Synthesis of detection results was only performed on
reports with an overall low risk of bias. Data on AI per-
formance was abstracted from included studies, or, if not
reported, corresponding data were calculated based on
available information. A meta-analysis of proportions on
true positives (sensitivity) and true negatives (specificity)
was performed. A bivariate random effects model with
restricted maximum likelihood was used to account for
relative heterogeneity. To estimate the general state of AI
for detection, a hierarchical summary ROC (HSROC)
model was made using the STATA metandi module [31].
The MI-CLAIM checklists [21] were quantitatively syn-
thesised for each study to identify trends in insufficiency
in reporting. Trends were analysed overall and for each
part, i.e. study design, data and optimisation, model

performance, model examination, and reproducibility.
Analyses were done using STATA 18 (StataCorp, College
Station, TX, USA).

Results
After duplicate removal, 1738 records were screened by
their title and abstract of which 152 were eligible for full-
text reading. The total number of included reports was 33
[32–64]. The complete flow of records including reasons
for exclusion is illustrated in the PRISMA flow chart
(Fig. 1). Full-text reports excluded with reasons for
exclusion are listed in Table S3.

Study characteristics
Twenty-six of the reports were published in 2020 or
later. Five reports collected more than one dataset for
analysis. Eighteen reports used a case-control design, 12
a cohort design, one collected two datasets of which one
set was a cohort and the other a case-control [39], and
two reports did not describe their design. No reports
used a randomised controlled trial design. Twenty-six
studies collected data retrospectively, one study pro-
spectively, and five did not report the method of data
collection. One study collected two datasets; one set was
retrospective, and no information was provided for the
other [37]. For stroke type, 24 reports studied ischaemic
stroke, one studied haemorrhagic stroke [63], two had a
dataset for both ischaemic and haemorrhagic stroke
[40, 49], one studied cerebral venous sinus thrombosis
[63], and five reports did not elaborate on stroke type.
Four studies performed multicentre data collection
[36, 37, 39, 40], but none of them had an external
multicentre test set. Descriptive study characteristics for
each study are found in Table 2.

Setting characteristics
Ten studies had a timeframe setting for stroke onset of
24 h or “acute” with no further specification. Liu et al [39]
had longitudinal scan data with patients scanned within
both 3 h of symptom onset and again 24 h after symptom
onset. None of the other studies utilised a timeframe
within 4.5 h, “hyper-acute”, or “FLAIR negative” corre-
sponding to current time or tissue criteria for treatment
with thrombolysis. Fourteen studies did not report any
definition or specification of the timeframe from onset
until the scan. The most used MRI-sequence was FLAIR,
T2, T1, and DWI. Two studies utilised functional MRI
(fMRI) sequences for assessment [42, 51] and one used
time-of-flight [34]. The comparators used in the studies
were heterogeneous. Overall, eight studies compared with
known normal scans, and three compared with known
other pathology. The remaining studies were compared

Fig. 1 PRISMA chart for the systematic review of AI for MRI stroke
detection
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with a mix of patient MRI scans including no pathology,
degenerative disorders, and inflammatory disorders.
Eighty-five per cent of included studies used a neural
network AI with a range of different network architecture
backbones. For ten studies, data origin was available in
online databases. Of all the studies, only one AI algorithm
had received CE marking and none had received FDA
approval. The setting characteristics are presented in the
online supplementary Table S4.

Bias assessment
The risk of bias assessment resulted in 15 reports with
an overall low risk of bias, out of the 33 included reports.
The patient selection domain and the index test domain
were responsible for the largest introduction of bias.
Seven reports did not describe their reference standard.
Although heterogeneous, all studies that reported their
reference standard were considered reliable reference
standards. Table 3 presents the risk of bias assessment

Table 3 Risk of bias evaluation for the systematic review of AI for MRI stroke detection

Reference Year and first author Risk of bias

/w QUADAS-2

Patient selection Index test Reference standard Flow and timing

Overall low risk of bias [32] 2023 Krag, C + + + +

[33] 2023 Lee, K + ? + +

[34] 2023 Yang, X + + + +
[35] 2023 Wu,Y + + + +

[36] 2022 Bridge, C + + + +

[37] 2022 Tasci, B ? + ? +

[38] 2022 Qiu, J + + + +

[39] 2021 Liu, C + + + +

[40] 2021 Nael, K ? + + +

[41] 2020 Duan, Y + ? + +

[42] 2020 Dørum, E + − + +
[43] 2020 Federau, C ? ? + +

[44] 2020 Herzog, L + − + +

[45] 2019 Bizzo, B + ? + +

[46] 2007 Uchiyama, Y + + + +

Overall high risk of bias [47] 2023 Yaman, S − − ? +

[48] 2022 Arnold, T − ? + +

[49] 2022 Eshmawi, A − − ? +

[50] 2022 Guo, Y − − ? +
[51] 2022 Li, J − − + +

[52] 2021 Cetinoglu, Y − ? + +

[53] 2021 Cui, L ? − + +

[54] 2021 Hossain, S − ? ? -

[55] 2021 Kadry, S − ? ? +

[56] 2020 Liu, S − − ? +

[57] 2020a Nayak, D − ? ? +

[58] 2020b Nayak, D − − ? +
[59] 2020 Nazari-Farsani, S − ? + +

[60] 2019 Gaidhani, B − ? ? ?

[61] 2019 Nayak, D − ? ? +

[62] 2019 Ortiz-Ramon, R − − ? +

[63] 2019 Phan, A − ? + +

[64] 2013 Saritha, M − ? ? +

+: Low risk of bias for category
?: Unclear risk of bias for category
−: High risk of bias for category
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and Table S5 further specifies category bias for each
study.

MI-CLAIM assessment
None of the included studies reported to follow the MI-
CLAIM checklist, although 17 studies were published in
the years after the release of the MI-CLAIM paper from
2020 [21]. Only two studies [32, 34] claimed to follow a
reporting standard which was the Standards for Reporting
of Diagnostic Accuracy Studies (STARD) guideline [65]
and one of those studies [32] additionally followed the
Checklist for Artificial Intelligence in Medical Imaging
(CLAIM) [66]. The total percentage of reported items was
72%. This was found to be higher in the low risk of bias
studies (84% vs 63%). Low-risk and high-risk categories
varied significantly in the study design part and in the data
and optimisation part with the overall completion rates
100% vs 72% (Chi-squared 13.75; p= 0.008) and 93% vs
78% (Chi-squared 7.61; p= 0.02), respectively. Only five
studies reported all items (except the sharing of code part)
[39, 40, 42–44]. The model performance and model
examination parts had generally lower rates in reported
items with an overall of 64% and 66%, respectively. Five
studies, hereof four with a low risk of bias, reported
sharing of their code for reproducibility, while the
remaining studies did not offer any option to reproduce
their results. MI-CLAIM assessment results are presented
in the online supplementary Table S6.

Detection results
The most frequently reported measurements were sensi-
tivity and specificity. Nine of the 33 studies reported
AUROC of which four were low risk of bias. Missing values
(e.g. accuracy) could be calculated based on other reported
values for most studies. Performance ranged from, 51 to
100% for sensitivity, 57 to 100% for specificity, 68 to 99% for
accuracy, and 0.83 to 0.98 for AUROC. Liu et al [39] had
lower detection rates in the 3-h scans with 96% as com-
pared to 99% in the 24-h scans. Dørum et al [42] utilising
fMRI reached random chance detection performance. The
single AI examining haemorrhagic stroke from Nael et al
[40] performed generally worse than those examining
ischaemic stroke. Results for all studies are reported in
Table 4. Further notes and clarifications for the results are
found in the online supplementary Table S7.

Meta-analysis
To reduce heterogeneity among the low-risk-bias studies,
Yang et al [34], Dørum et al [42], and Uchiyama et al [46]
were excluded from the meta-analyses since these studies
did not use DWI sequence to detect acute ischaemic
stroke lesions. Wu et al [35] were excluded due to
insufficient reporting. Forest plot meta-analyses of studies

(Fig. 2) revealed an ischaemic stroke detection sensitivity
of 93% (CI 86–96%) and specificity of 93% (CI 84–96%). in
the HSROC meta-analysis (Fig. 3), the summary point had
identical sensitivity and specificity values to correspond-
ing measures in the forest plots. The positive and negative
likelihood ratios were 12.6 (CI 5.7–27.7) and 0.079 (CI
0.039–0.159), respectively. The STATA data output from
both analyses is presented in Table S8. The literature was
not extensive enough to support the conduct of meta-
analyses on haemorrhagic stroke.

Discussion
This systematic review found 33 studies in total assessing
AI detection for stroke in MRI. The studies were found to
have heterogeneity in the data collection and study design.
Most studies examined ischaemic stroke with only a few
examining the utility of AI in haemorrhagic stroke. Only
one AI algorithm among the included studies had
obtained CE marking. The MI-CLAIM assessment
revealed insufficiencies in current reporting practice.
Based on the nine studies included in the meta-analysis,
both ischaemic sensitivity and specificity were 93% with
strong likelihood ratios in detecting DWI-positive stroke.
The detection sensitivity in two studies [33, 41] was

significantly lower compared to the remaining studies in
the meta-analysis. One of them [41] only examined sub-
cortical infarcts which are small vessel based and hence
also smaller in lesion volume, which could be the cause,
whereas the other [33] separated their stroke scans in
single images, which has likely led to some image slices
with only a few voxels of actual stroke.
One study [43] achieved significantly lower detection

specificity than the remaining studies in the meta-analysis.
In this study, the best specificity was obtained by creating
synthetic images for training and their algorithm trained
without use of the synthetic image was lower at 48%. This
could indicate that they had an insufficient amount of
available data to train the algorithm to obtain optimum
detection performance. The lower detection specificity in
another study [39] could likely be due to the set threshold, as
they also present a significantly higher detection sensitivity.
One study [37] achieved significantly higher results both

in terms of sensitivity and specificity. The most likely
reason for this was their utilisation of multiple AI algo-
rithms in a combined iterative majority voting. This
practice may be better in terms of raw performance,
however costly in terms of computational power requiring
much more time to process and large expensive computer
setups, which can be difficult to obtain in a clinical setup.

Reporting of AI studies
Sensitivity, specificity, and accuracy were the most
reported outcomes. A measurement of AUROC was not
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available for most studies. Although FDA-approved and/
or CE-marked solutions do exist [29], this systematic
review only found one report of such a solution. There-
fore, the performance of these commercial AI solutions in
clinical practice cannot be extrapolated. The MI-CLAIM
checklist was applied to collect the minimum information
needed to compare the capabilities of AI and reproduce
the results. However, several other relevant reporting
guidelines exist, such as the CLAIM guideline, which is a
more comprehensive checklist, and the specific AI version
of the STARD guideline, which is in the works [65–67].

Given that only five of the 33 reports managed to inform
on all MI-CLAIM fields, future studies should follow a
relevant checklist for their studies to ensure good
reporting practice in research.

Clinical relevance
Current stroke AI solutions are intended for decision
support, as opposed to replacing medical staff [29, 68].
Another task of dismissing the AI false positive scans will
be needed, which could prove time-consuming. Addi-
tionally, the impact of AI on the decisiveness of

Table 4 Performance results for the systematic review of AI for MRI stroke detection

Year and first author Reference N Accuracy Sensitivity Specificity AUROC

Overall low risk of bias 2023 Krag, C [32] 995 89% 89% 90% nr

2023 Lee, K [33] 636 85%c 83%c 86%c nr

2023 Yang, X [34] 100 92%b 96%b 88%b 0.96b

2023, Wu, Y [35] 150 93%c 90%c 94%c nr

2022 Bridge, C [36] 247 92%c 96% 87% 0.98

2022 Tasci, B [37] 444 99% 99% 99% nr

2022 Qiu, J [38] 120 64% 79% 61% nr

2021 Liu, C [39] 639 81%c 98% 74% nr

2021 Nael, K [40] 1072 95%, 87%a 90%, 72%a 97%, 88%a 0.97, 0.83a

2020 Duan, Y [41] 30 77%c 76%c 100%c nr

2020 Dørum, E [42] 144 nr 51% 57% nr

2020 Federau, C [43] 192 84%c 91% 75% nr

2020 Herzog, L [44] 102 96% nr nr 0.89

2019 Bizzo, B [45] 378 97%c 96% 97% nr

2007 Uchiyama, Y [46] 1056 72%c 97% 70%c nr

Overall high risk of bias 2023 Yaman, S [47] 444 99% 97% 99% nr

2022 Arnold, T [48] 1401 nr nr nr 0.94

2022 Eshmawi, A [49] 178 99%c, 97%a 99%c, 80%a 100%c, 100%a nr

2022 Guo, Y [50] 156 nr nr nr 0.93

2022 Li, J [51] 70 80% 61% 93% 0.86

2021 Cetinoglu, Y [52] 200 96% 96% 96% nr

2021 Cui, L [53] 38 85%c 85%c 84%c 0.86

2021 Hossain, S [54] 25 96% 92% 100% nr

2021 Kadry, S [55] 400 99% 100% 99% nr

2020 Liu, S [56] 37 90% nr nr nr

2020a Nayak, D [57] 200 99% 100% 98% nr

2020b Nayak, D [58] 200 97%c 88% 99%c nr

2020 Nazari-Farsani, S [59] 192 73% 84% 69% nr

2019 Gaidhani, B [60] 122 97%c 94%c 100%c nr

2019 Nayak, D [61] 200 99% 95% 99% nr

2019 Ortiz-Ramon, R [62] 236 68%c 72%c 65%c 0.83

2019 Phan, A [63] 69 99%c 100% 96%c nr

2013 Saritha, M [64] 23 91% 67% 100% nr

nr not reported
aHaemorrhagic stroke
bCerebral venous sinus thrombosis
cValue calculated from reported outcomes
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radiologists has been investigated in other fields of med-
ical imaging. Mehrizi et al [69] piloted a study for AI
support in mammography showing radiologists' evalua-
tions were more prone to be erroneous when the AI made
erroneous suggestions.
To assist the assessment before the implementation of

an AI solution in a clinical setting, the recently developed
model for assessing AI in medical imaging (MAS-AI)
could be useful [70]. MAS-AI uses a holistic approach to
match different AI algorithms and intended usage sce-
narios to help support decision-making. How AI affects
patient prognosis and the diagnostic work-up routine of
stroke patients has not been the scope of this review, but
clinical trials examining such are needed prior to
implementation.

Clinical stroke vs radiologically confirmed stroke
Stroke is a clinical diagnosis and occasionally the
pathology of interest is invisible on MRI [71]. Further-
more, patients could be suffering from a transient
ischaemic attack, where ischaemic lesions often are not
visible. Considering the findings in this review, all the
included studies utilised image evaluation by one or more
medical doctors or the radiology report as their reference
standard. It would be of interest to evaluate whether AI
possesses the ability to detect strokes not apparent on
MRI for the reporting radiologist.

Limitations
A large proportion of the included studies applied a case-
control design, and none were randomised controlled
trials. Furthermore, only a small proportion of the studies
underwent analysis on external data, which introduces
selection bias. We identified only five studies using

external datasets for testing [32, 36, 37, 39, 40]. Systematic
reviews for AI in other radiological fields have shown that
AI performance decreases when tested on externally
collected data [72, 73]. Therefore, it is preferable for
future AI validation studies to incorporate externally
collected, clinically representable datasets and this step is
crucial for any AI prior to clinical use.
Limited data was available for evaluating the influence

of time from stroke onset to scan on AI detection per-
formance. However, data from the one study available
suggests caution must be made for scans with a time of

Fig. 3 HSROC curve for AI in MRI ischaemic stroke detection

Fig. 2 Sensitivity and specificity forest plots for AI in MRI ischaemic stroke detection
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onset below 3 h, as it could negatively affect the AI
detection performance.
This systematic review is possibly affected by reporting

bias from selected outcome reporting and publication
bias. Ideally, the QUADAS-AI tool would have been fit-
ting in this context, but it is still under development [74].
Instead, we used the currently available QUADAS-2,
which we modified in an effort to address established
shortcomings of this tool in the context of evaluating AI
[74, 75]. However, it is possible our modifications reduced
the validity of QUADAS-2. Lastly, the topic of this sys-
tematic review is under rapid development, as illustrated
by the fact that a large proportion of the studies included
were published within the last three years. Major devel-
opments in the field in the near future are foreseeable
which will necessitate updates of this meta-analysis.

Conclusion
The current AI detection performance of ischaemic stroke
in MRI is usable as a diagnostic test. Further investigation
is needed to elucidate AI detection of haemorrhagic
stroke. Most AI technologies are based on neural net-
works. There are reporting gaps, mainly in the reporting
of AI model performance and examination, and future AI
studies should utilise a reporting guideline to improve
validity. The clinical usability is yet to be investigated.
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