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Molecular subtypes of breast cancer
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Lina Zhang1,4*

Abstract
Objectives To compare the diagnostic performance of intratumoral and peritumoral features from different contrast
phases of breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by building radiomics models
for differentiating molecular subtypes of breast cancer.

Methods This retrospective study included 377 patients with pathologically confirmed breast cancer. Patients were divided
into training set (n= 202), validation set (n= 87) and test set (n= 88). The intratumoral volume of interest (VOI) and
peritumoral VOI were delineated on primary breast cancers at three different DCE-MRI contrast phases: early, peak, and
delayed. Radiomics features were extracted from each phase. After feature standardization, the training set was filtered by
variance analysis, correlation analysis, and least absolute shrinkage and selection (LASSO). Using the extracted features, a
logistic regression model based on each tumor subtype (Luminal A, Luminal B, HER2-enriched, triple-negative) was
established. Ten models based on intratumoral or/plus peritumoral features from three different phases were developed for
each differentiation.

Results Radiomics features extracted from delayed phase DCE-MRI demonstrated dominant diagnostic performance over
features from other phases. However, the differences were not statistically significant. In the full fusion model for differentiating
different molecular subtypes, the most frequently screened features were those from the delayed phase. According to the
Shapley additive explanation (SHAP) method, the most important features were also identified from the delayed phase.

Conclusions The intratumoral and peritumoral radiomics features from the delayed phase of DCE-MRI can provide additional
information for preoperative molecular typing. The delayed phase of DCE-MRI cannot be ignored.

Critical relevance statement Radiomics features extracted and radiomics models constructed from the delayed phase of
DCE-MRI played a crucial role in molecular subtype classification, although no significant difference was observed in the test
cohort.

Key Points
● The molecular subtype of breast cancer provides a basis for setting treatment strategy and prognosis.
● The delayed-phase radiomics model outperformed that of early-/peak-phases, but no differently than other phases or
combinations.

● Both intra- and peritumoral radiomics features offer valuable insights for molecular typing.
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Graphical Abstract
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Background
Breast cancer is the most frequently occurring malignancy
in women [1], with complex biological behaviors and
different molecular subtypes. The classification of mole-
cular subtypes provides a basis for setting the treatment
strategy and prognosis for breast cancer patients. Cur-
rently, preoperative determination of molecular subtypes
relies on immunohistochemical analysis of biopsy sam-
ples, but small specimens may not fully represent the
entire tumor. Therefore, there is a need for a non-invasive
and reliable diagnostic method that can provide a com-
prehensive assessment of the tumor’s pathological status
to aid in treatment decisions.
Dynamic contrast-enhanced magnetic resonance ima-

ging (DCE-MRI) is useful to quantitatively assess the
permeability and perfusion of subtle microvascular
environment. Radiomics involves high-throughput
computing to extract many quantitative features from
medical imaging, allowing the prediction of the tumor
phenotype through mathematic models built with
selected radiomics features [2]. Prior studies have
reported that DCE-MRI based texture analysis can be

used to detect Ki-67 [3, 4] and human epidermal growth
factor receptor 2 (HER2) status [3], determine molecular
subtypes [5, 6], identify sentinel lymph node metastasis
[7, 8], and evaluate the response to neoadjuvant che-
motherapy [9, 10]. However, these studies only extracted
intratumoral features from the first phase [4, 5, 7, 11] or
the peak phase [3, 12] following enhancements. Due to
the variability of different scan machines and technolo-
gies, no consensus has been reached on which phase
could offer the best performance for the molecular
subtype determination.
Tumor cell-induced peritumoral microenvironment is

involved in tumor spread and development [13, 14], with
peritumoral cells exhibiting a more critical role than
intratumoral cells in the clinical outcome of breast cancer
[15]. Previous studies have found that molecular subtypes
of cancer distinguished by radiomics analysis, extracting
peritumoral features, exhibit comparability and com-
plementarity compared to intratumoral features [3].
However, the extraction of these peritumoral features
always accompanies the extraction of intratumoral features,
which is based on the early phase [16] or peak phase [3].
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It is also crucial to comprehensively evaluate the value
of peritumoral features based on different phases of
DCE-MRI.
This study extracted comprehensive intratumoral and

peritumoral features under different DCE-MRI phases.
Multiple radiomics models were established and com-
pared using two regions (intratumoral and peritumoral)
and three phases (early, peak, and delayed). The study
aims to disclose the most favorable phase and radiomics
features for molecular subtype differentiation.

Materials and methods
Study population
The hospital ethics committees approved the design of
this study. Due to the study’s retrospective nature, the
requirement for patient approval or written informed
consent was waived. From October 2018 to September
2022, 395 consecutive patients with core needle-biopsy-
proven breast cancer underwent preoperative breast
DCE-MRI examinations within two weeks before mas-
tectomy or lumpectomy in our hospital. The exclusion
criteria included: (1) occult cancers or small lesions less
than 1.0 cm in diameter (n= 7); (2) large lesions more
than 10.0 cm in diameter (n= 5); (3) patients with body-
movement artifacts on DCE-MRI (n= 6). Only the largest
lesion was selected for analysis for patients with multiple
lesions in the unilateral breast. Patients from October
2018 and March 2021 were included as training set
(n= 202) and validation set (n= 87). From April 2021 to
September 2022, the eligible patients were included in the
test set (n= 88). The flowchart of patients’ selection and
process of dataset construction are shown in Fig. 1. This
dataset was not investigated in our previous paper, and no
public datasets were used in the study. The CLEAR
checklist was used to guide reporting (see the checklist in
Supplementary Table S1).

Acquisition of clinicopathological features
Clinical information for each patient included age, lesion
size, menstrual status, histology, lymph node metastasis,
and histological grade. Estrogen receptor (ER), proges-
terone receptor (PR), and HER2 were evaluated according
to the ASCO/USCAP guidelines [17, 18] using an avidin-
biotin immunohistochemistry technique for biopsy spe-
cimens. Additionally, Ki-67 expression was classified as
high if the staining positivity was more than 20% and low
if it was equal to or less than 20% [19]. The molecular
subtypes of breast cancer were divided into (1) Luminal:
ER+ and/or PR+, which includes Luminal A (ER+ and/or
PR+, HER2− and low Ki-67 expression) and Luminal B
(ER+ and/or PR+ and HER2+ or high Ki-67 expression);
(2) HER2-enriched: ER− and PR−, HER2+; (3) TNBC:
ER−, PR−, HER2−.

MRI acquisition
Breast MRI examinations were performed using a a 3-T
MR scanner (SIGNATM Pioneer, GE Healthcare, Mil-
waukee, WI, USA) in the prone position with an
8-channel breast coil. After conventional sequences,
including T1WI, T2WI, and diffusion-weighted imaging
(DWI), differential subsampling with cartesian ordering
(DISCO) technology with fat suppression was used to
obtain the T1-weighted DCE-MRI sequence. Following
the first pre-contrast scanning followed by a pause of 20 s,
the contrast agent (Gadodiamine, GE Healthcare) was
injected intravenously as a bolus (0.1 mmol/kg) followed
by flushing with 20mL of saline, both at a rate of 2 mL/s.
A total of 18 phases (temporal resolution= 19.4 s/phase)
were subsequently acquired without interruption. Scan-
ning parameters are reported in Supplementary Table S2.
All images in this study were downloaded from our

institutional picture archiving and communication sys-
tem. Images from three phases were collected for analysis,
including the early phase (5th post-contrast phase), peak
phase (9th post-contrast phase), and delayed phase (18th
post-contrast phase), as demonstrated in Fig. 2.

Tumor segmentation and feature extraction
DCE-MRI data from all patients were converted from
DICOM into NIFTI format for tumor segmentation using
ITK-SNAP software (http://www.itksnap.org/) and for
feature extraction using Artificial Intelligent Kit (A.K.)

Fig. 1 The flowchart of patients’ selection
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software (GE Healthcare, Shanghai, Version 3.0.1). The
processing workflow encompasses three sequential steps
(Fig. 3).
Step 1. Intratumoral volume of interest (VOI) delinea-

tion. Each tumor VOI on the peak phase of DCE-MRI was
created by threshold-based, seed point driven, semi-
automatic segmentation using ITK-SNAP [20]. Radi-
ologist A with five years’ experience in breast imaging
performed VOI delineation on the peak phase of DCE-
MRI, then copied to the early and delayed phase images
and performed manual adjustment. Radiologist B with ten
years’ experience in breast imaging independently seg-
mented tumor masks on 40 randomly selected samples
using the same method. Intraclass correlation coefficient

(ICC) was utilized for evaluating the interobserver
agreement in terms of VOI-based radiomics features
extraction. An ICC value of 0.75 or greater was con-
sidered an excellent interobserver reproducibility and was
retained. To fully mask the tumor heterogeneity, cystic
and necrotic areas of the tumor were included.
Step 2. Peritumoral VOI delineation. Annular intratu-

moral regions (not containing the lesion area) of 5 mm
were obtained automatically by dilating the delineated
lesion contours using A.K. software. A morphologic
dilation operation was also performed to capture the
perilesional region [21]. If the contours from intratumoral
areas were beyond the parenchyma of the breast after
expansion, the portion beyond the parenchyma was

Fig. 2 The process of DCE-MRI used in this study. Figure 2A A total of 18 phases of DCE-MRI was scanned in this study, but images from three phases
were selected for feature extraction: the early phase (5th post-contrast phase), peak phase (9th post-contrast phase), and delayed phase (18th post-
contrast phase). Figure 2B A 22-year-old woman with Luminal B breast cancer confirmed by pathological immunohistochemistry. Shown is the time-
signal intensity curve for this patient
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Fig. 3 Workflow of the radiomics analysis
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manually removed. Interobserver agreement of peritu-
moral features of each phase was also assessed.
Step 3. Feature extraction. 106 intratumoral and 106 peri-

tumoral radiomics features were extracted from each DCE-
MRI phase. These features were defined by PyRadiomics
(http://pyradiomics.readthedocs.io/en/latest/index.html),
including 14 shape features, 17 first order (FO) features, 24
Gray Level Co-occurrence Matrix (GLCM) features, 14 Gray
Level Dependence Matrix (GLDM) features, 16 Gray Level
Run Length Matrix (GLRLM) features, 16 Gray Level Size
Area Matrix Gray Level Size Zone Matrix (GLSZM) features,
5 Neighboring Gray Tone Difference Matrix (NGTDM)
features.

Feature selection
We used the stratified random sampling method to
divide development set into a training and a validation
set at a 7:3 ratio. The synthetic minority oversampling
technique (SMOTE) was used in the training set to
overcome data imbalance in the training set, and over-
sampled the number of patients with HER2-enriched
and TNBC to twice their own. The same step-by-step
process was used for feature standardization, feature
selection, and model construction in the training set for
each model.
Feature selection was conducted in the following steps:

(1) Z-Score feature standardization using the following
equation: Standardized value= (original value− average
value) / standard deviation; (2) variance analysis to
eliminate features with variance less than 1; (3) corre-
lation analysis to retain one feature when the correlation
coefficient between multiple features was greater than
0.7; (4) the least absolute shrinkage and selection
operator (LASSO) method with 5-fold cross-validation
was used to select the optimal subset of distinguishable
features.

Model establishment and comparisons
Logistic regression models were built to distinguish one
subtype from the others (Luminal vs. the others, HER2-
enriched vs. the others, TNBC vs. the others). The
Luminal subtype was further distinguished as the
Luminal A and Luminal B subtype. For each differ-
entiation, we established six radiomics models for the
one-to-one analysis of phase and region, three combined
models using intratumoral plus peritumoral features,
and one full fusion model. Models for single phase
analysis included: the intratumoral region from the early
phase (E_Intra), the peak phase (P_Intra), the delayed
phase (D_Intra); the peritumoral region from the early
phase (E_Peri), the peak phase (P_Peri), the delayed
phase (D_Peri). Models for combined analysis included:
the intratumoral and peritumoral region from the early

phase (E_Intra+Peri), the peak phase (P_Intra+Peri), the
delayed phase (D_Intra+Peri). The full fusion model was
the intratumoral and peritumoral region from full pha-
ses (Full_Intra+Peri). The test data only be used once
for evaluation of the final model to prevent optimistic
biases.
The diagnostic abilities of the training and validation set

were evaluated by receiver operator characteristics (ROC)
curves. The Shapley additive explanation (SHAP) method
was utilized to explain the models by evaluating the
contribution of each feature to the differentiation.

Statistical analysis
All statistical analyses, feature selection, and model build-
ing in this study were performed using R 3.5.1 and Python
3.5.6. Continuous variables are described by median
(interquartile range), and categorical variables are descri-
bed by frequency. Continuous variables were compared
using a Mann–Whitney U test or the Kruskal–Wallis test.
For categorical variables, Chi-square and Fisher exact tests
were performed appropriately. The AUC values of different
models were compared using the Delong test. A p-value <
0.05 was considered statistically significant. SHAP values
were computed with the Python package SHAP (https://
github.com/slundberg/shap).

Results
Patient characteristics
The molecular subtype of the 377 patients included in the
study was as follows: Luminal (n= 224, Luminal A n= 73
and Luminal B n= 151), HER2-enriched (n= 78), and
TNBC (n= 75). The detailed characteristics of the
patients are summarized in Table 1. Tumor size
(p < 0.001), lymph node metastasis (p < 0.001), histological
type (p= 0.012) and grade (p < 0.001) significantly dif-
fered among the Luminal, HER2-enriched and TNBC
subtypes. No significant differences were observed in term
of age (p= 0.487), menopausal status (p= 0.381).

Repeatability analysis
Excellent interobserver agreement in tumor masking and
radiomics feature extraction was attained, with an ICC
value exceeding 0.90 for intratumoral and peritumoral
features on different phases of DCE-MRI between the
masks generated by the two radiologists.

Analysis of phase and region one-to-one model
Selected features of each model can be found in Supple-
mentary Tables S3–S6. In the test set, the D_Intra model
had the highest performance (AUC= 0.735, 95% CI:
0.606–0.864) in differentiating the HER2-enriched sub-
type, with a sensitivity of 0.654, specificity of 0.845, and
accuracy of 0.796. The D_Intra model also had the highest
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performance in differentiating the Luminal subtype
(AUC= 0.712, 95% CI: 0.603–0.821), TNBC (AUC=
0.668, 95% CI: 0.536–0.800) from the others, and distin-
guishing between Luminal A and Luminal B within the
Luminal subtype (AUC= 0.682, 95% CI: 0.458–0.863).
However, the comparison of ROC curves verified by the
DeLong test showed no statistical difference. The AUCs
of various models in the training set, validation set and
test set are shown in Tables 2–4.

Analysis of intra- plus peri-tumoral combination model
Tables S7–S10 presented the selected features of each
intra- plus peri-tumoral combination model. The AUCs
of combined intratumoral and peritumoral features from
the delayed-phase model (D_Intra+Peri) were higher
than the early-phase and peak-phase model in training,
validation and test set. In the test set, the AUCs were
0.779 (95% CI: 0.669–0.888) for HER2-enriched, 0.703
(95% CI: 0.593–0.813) for Luminal subtype, 0.718 (95%

CI: 0.570–0.866) for TNBC differentiation from the
others, and 0.691 (95% CI 0.512–0.870) for Luminal A
and Luminal B differentiation using D_Intra+Peri
model. D_Intra+Peri model had similar diagnostic
performance with Full_Intra+Peri model (AUC= 0.786,
0.721, 0.741, and 0.718, respectively) and no significant
statistical difference was observed in the validation
set (all Delong p > 0.05, Table 5). Figure 4 shows
the ROC curves in the training set, validation set and
test set.

Analysis of the full fusion model
The selected features of the full fusion model (Full_Intra
+Peri model) are provided in Table S11. The AUC value
of Full_Intra+Peri model was the highest among all
models for HER2-enriched, TNBC and Luminal subtype
differentiating from the others and Luminal A and
Luminal B differentiation within the Luminal subtype
(Table 5).

Table 1 Clinical and pathological characteristics

Characteristics All (n= 377) Luminal A (n= 73) Luminal B (n= 151) Her2-enriched (n= 78) TNBC (n= 75) p-value

Age, years 52 (44, 58) 52 (42, 59) 51 (44, 57) 52 (44, 57) 53 (45, 60) 0.487

Size, mm 28 (20, 40) 20 (15, 29) 28 (20, 42) 33 (24, 46) 30 (23, 42) < 0.001

Menopausal 0.381

Premenopausal 183 (48.54) 37 (50.68) 72 (47.68) 40 (51.28) 45 (60.00)

Postmenopausal 194 (51.46) 36 (49.32) 79 (52.32) 38 (48.72) 30 (40.00)

ER < 0.001

Negative 151 (40.05) 0 (0.00) 3 (1.99) 75 (96.15) 73 (97.33)

Positive 226 (59.95) 73 (100.00) 148 (98.01) 3 (3.85) 2 (2.67)

PR < 0.001

Negative 145 (38.46) 1 (1.37) 12 (7.95) 67 (85.90) 65 (86.67)

Positive 232 (61.54) 72 (98.63) 139 (92.05) 11 (14.10) 10 (13.33)

HER-2 < 0.001

Negative 233 (61.80) 73 (100.00) 85 (56.29) 0 (0.00) 75 (100.00)

Positive 144 (38.20) 0 (0.00) 66 (43.71) 78 (100.00) 0 (0.00)

Ki67 status < 0.001

≤ 20% 99 (26.26) 73 (100.00) 12 (7.95) 10 (12.82) 4 (5.33)

> 20% 278 (73.74) 0 (0.00) 139 (92.05) 68 (87.18) 71 (94.67)

Histology 0.012

IDC 314 (83.29) 53 (72.60) 129 (85.43) 63 (80.77) 69 (92.00)

Others 63 (16.71) 20 (27.40) 22 (14.57) 15 (19.23) 6 (8.00)

LN metastasis < 0.001

Negative 176 (46.68) 51 (69.86) 56 (37.09) 44 (56.41) 25 (33.33)

Positive 201 (53.32) 22 (30.14) 95 (62.91) 34 (43.59) 50 (66.67)

Histological grade < 0.001

I 19 (5.04) 11 (15.07) 3 (1.99) 3 (3.85) 2 (2.67)

II 251 (66.58) 59 (80.82) 112 (74.17) 50 (64.10) 30 (40.00)

III 107 (28.38) 3 (4.11) 36 (23.84) 25 (32.05) 43 (57.33)

Continuous variables are described by median (interquartile range); categorical variables are described by numbers (percentages)
ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, TNBC triple-negative breast cancer, IDC invasive ductal carcinoma,
LN lymph node
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A total of 17 features were selected in the Full_Intra
+Peri model for differentiating the HER2-enriched sub-
type, with most features coming from the delayed phase
(9/17). Among the top five features with the highest
SHAP value, three features came from the delayed phase,
and the most important feature was D_Intra_glcm_MCC
(Fig. 5). Likewise, features from the delayed phase pre-
dominated in the models of TNBC (7/20), Luminal (6/13)
differentiation from the others and Luminal A and
Luminal B (5/10) differentiation within the Luminal
subtype. In these models, the most important features
were identified from the delayed phase and most of the
top five important features came from the delayed phase.

Discussion
In this work, we built and compared multiple models for
differentiating molecular subtypes by extracting intra- and
peri-tumoral features from multiple phases of DCE-MRI.
Radiomics features from the delayed phase were proposed
with better performance for HER2-enriched, TNBC,
and Luminal subtype differentiation from the others and

Luminal A and Luminal B differentiation within the Luminal
subtype. The outperformance of the delayed contrast phase
was also applicable to the intra- plus peri-tumoral combina-
tion model. The comprehensive integration of multi-phase
and multi-region DCE-MRI radiomics model demonstrated
superior performance in differentiating molecular subtypes,
with no statistically significant difference observed when
compared to the delayed phase radiomics model. Using the
SHAP method, most of the top five features in Full_Intra
+Peri model were derived from the delayed phase, while the
most critical features also came from the delayed phase.
Therefore, this result indicated that the delayed contrast phase
of DCE-MRI played a non-negligible role in preoperative
molecular typing.
The present study constitutes the first attempt to use

multiphase DCE-MRI to distinguish the molecular typing
of breast cancer and explore the impact of different
contrast enhancement phases. An optimized DCE-MRI
sequence with high temporal and spatial resolution
accurately captured the contrast agent’s retention state
and spatial distribution. Due to technical variables,

Table 2 Performance of differentiating HER2-enriched using phase and region one-to-one model

Model Training Validation Test

AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC

E_Intra 0.713 (0.662, 0.764) 0.500 0.852 0.744 0.632 (0.507, 0.752) 0.312 0.831 0.736 0.666 (0.526, 0.807) 0.539 0.871 0.773

E_Peri 0.755 (0.708, 0.799) 0.713 0.697 0.702 0.731 (0.624, 0.834) 0.625 0.718 0.701 0.694 (0.557, 0.830) 0.506 0.897 0.784

P_Intra 0.666 (0.617, 0.714) 0.815 0.529 0.616 0.612 (0.471, 0.744) 0.688 0.521 0.552 0.617 (0.460, 0.774) 0.423 0.899 0.807

P_Peri 0.786 (0.741, 0.828) 0.796 0.693 0.724 0.728 (0.587, 0.855) 0.625 0.775 0.747 0.696 (0.572, 0.820) 0.498 0.855 0.750

D_Intra 0.763 (0.717, 0.807) 0.676 0.738 0.719 0.740 (0.625, 0.846) 0.562 0.775 0.736 0.735 (0.606, 0.864) 0.654 0.845 0.796

D_Peri 0.718 (0.668, 0.765) 0.593 0.783 0.724 0.716 (0.603, 0.821) 0.375 0.845 0.759 0.690 (0.561, 0.820) 0.519 0.919 0.796

No statistically significant difference was observed (Delong test)
E_Intra intratumoral region from the early phase, E_Peri peritumoral region from the early phase, P_Intra intratumoral region from the peak phase, P_Peri peritumoral
region from the peak phase, D_Intra intratumoral region from the delayed phase, D_Peri peritumoral region from the delayed phase, AUC area under the ROC curve, CI
confidence interval, SEN sensitivity, SPE specificity, ACC accuracy

Table 3 Performance of differentiating TNBC using phase and region one-to-one model

Model Training Validation Test

AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC

E_Intra 0.682 (0.634, 0.730) 0.803 0.515 0.611 0.656 (0.539, 0.763) 0.833 0.536 0.598 0.657 (0.530, 0.785) 0.893 0.429 0.534

E_Peri 0.695 (0.645, 0.740) 0.692 0.617 0.642 0.563 (0.423, 0.699) 0.500 0.522 0.517 0.606 (0.467, 0.745) 0.833 0.386 0.477

P_Intra 0.623 (0.573, 0.671) 0.692 0.519 0.577 0.523 (0.409, 0.644) 0.611 0.522 0.540 0.681 (0.454, 0.783) 0.523 0.814 0.750

P_Peri 0.651 (0.602, 0.696) 0.966 0.315 0.531 0.610 (0.474, 0.737) 0.833 0.232 0.356 0.632 (0.470, 0.794) 0.510 0.829 0.761

D_Intra 0.763 (0.718, 0.806) 0.744 0.694 0.710 0.694 (0.574, 0.811) 0.611 0.623 0.621 0.668 (0.536, 0.800) 0.561 0.743 0.705

D_Peri 0.660 (0.611, 0.708) 0.615 0.651 0.639 0.630 (0.500, 0.752) 0.556 0.609 0.598 0.640 (0.495, 0.784) 0.556 0.686 0.659

No statistically significant difference was observed (Delong test)
E_Intra intratumoral region from the early phase, E_Peri peritumoral region from the early phase, P_Intra intratumoral region from the peak phase, P_Peri peritumoral
region from the peak phase, D_Intra intratumoral region from the delayed phase, D_Peri peritumoral region from the delayed phase, AUC area under the ROC curve, CI
confidence interval, SEN sensitivity, SPE specificity, ACC accuracy
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Table 5 Comparison of prediction performance on the validation set of combined image feature model

Model Training AUC (95% CI) p value* Validation AUC (95% CI) p value* Test AUC (95% CI) p value*

HER2-enriched vs. Other

E_Intra + Peri 0.787 (0.741, 0.830) < 0.001 0.766 (0.663, 0.862) 0.396 0.753 (0.634, 0.871) 0.614

P_Intra + Peri 0.781 (0.735, 0.828) < 0.001 0.764 (0.656, 0.863) 0.466 0.750 (0.618, 0.883) 0.601

D_Intra + Peri 0.844 (0.805, 0.882) 0.041 0.773 (0.672, 0.867) 0.599 0.779 (0.669, 0.888) 0.115

Full_Intra + Peri 0.880 (0.847, 0.911) … 0.800 (0.701, 0.891) … 0.786 (0.681, 0.891) …

TNBC vs. Other

E_Intra + Peri 0.791 (0.749, 0.829) 0.833 0.635 (0.513, 0.750) 0.274 0.667 (0.524, 0.809) 0.578

P_Intra + Peri 0.709 (0.662, 0.753) 0.004 0.618 (0.478, 0.754) 0.241 0.698 (0.576, 0.821) 0.735

D_Intra + Peri 0.743 (0.699, 0.787) 0.034 0.652 (0.531, 0.775) 0.309 0.718 (0.570, 0.866) 0.784

Full_Intra + Peri 0.797 (0.754, 0.838) … 0.699 (0.590, 0.804) … 0.721 (0.571, 0.870) …

Luminal vs. Other

E_Intra + Peri 0.726 (0.679, 0.773) 0.194 0.699 (0.592, 0.796) 0.528 0.697 (0.587, 0.809) 0.512

P_Intra + Peri 0.734 (0.685, 0.781) 0.428 0.680 (0.577, 0.775) 0.436 0.674 (0.560, 0.787) 0.339

D_Intra + Peri 0.755 (0.708, 0.797) 0.794 0.728 (0.634, 0.818) 0.965 0.703 (0.593, 0.813) 0.206

Full_Intra + Peri 0.761 (0.717, 0.807) … 0.730 (0.635, 0.821) … 0.741 (0.638, 0.845) …

Luminal A vs. Luminal B

E_Intra + Peri 0.722 (0.620, 0.824) 0.888 0.638 (0.484, 0.791) 0.477 0.656 (0.455, 0.857) 0.366

P_Intra + Peri 0.716 (0.610, 0.821) 0.238 0.631 (0.473, 0.788) 0.562 0.662 (0.461, 0.863) 0.408

D_Intra + Peri 0.724 (0.623, 0.826) 0.956 0.652 (0.415, 0.889) 0.917 0.691 (0.512, 0.870) 0.745

Full_Intra + Peri 0.730 (0.623, 0.823) … 0.711 (0.569, 0.852) … 0.718 (0.535, 0.895) …

E_Intra + Peri intratumoral and peritumoral region from the early phase, P_Intra + Peri intratumoral and peritumoral region from the peak phase, D_Intra + Peri
intratumoral and peritumoral region from the delayed phase, Full_Intra + Peri intratumoral and peritumoral region from full phases, HER2 human epidermal growth
factor receptor-2, TNBC triple-negative breast cancer, AUC area under the ROC curve, CI confidence interval
* The delong test was used to compare with the Full_Intra + Peri model, and a p < 0.05 was considered statistically significant
Statistically significant p < 0.05 values are in bold

Table 4 Performance of differentiating Luminal form the others and Luminal A form Luminal B within the Luminal using phase and
region one-to-one model

Model Training Validation Test

AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC

Luminal vs. Other

E_Intra 0.682 (0.632, 0.73) 0.732 0.578 0.634 0.681 (0.580, 0.773) 0.755 0.500 0.655 0.672 (0.559, 0.785) 0.648 0.500 0.796

E_Peri 0.688 (0.639, 0.737) 0.488 0.822 0.702 0.684 (0.577, 0.784) 0.585 0.676 0.621 0.681 (0.566, 0.797) 0.773 0.614 0.693

P_Intra 0.643 (0.588, 0.693) 0.748 0.471 0.571 0.549 (0.440, 0.655) 0.660 0.412 0.563 0.703 (0.594, 0.812) 0.636 0.727 0.682

P_Peri 0.694 (0.645, 0.742) 0.717 0.609 0.648 0.669 (0.562, 0.768) 0.868 0.412 0.690 0.676 (0.560, 0.792) 0.705 0.682 0.693

D_Intra 0.726 (0.678, 0.772) 0.748 0.609 0.659 0.714 (0.621, 0.806) 0.736 0.588 0.678 0.712 (0.603, 0.821) 0.614 0.773 0.693

D_Peri 0.689 (0.640, 0.736) 0.567 0.707 0.656 0.674 (0.576, 0.765) 0.660 0.500 0.598 0.697 (0.583, 0.810) 0.773 0.636 0.705

Luminal A vs. Luminal B

E_Intra 0.621 (0.508, 0.734) 0.641 0.591 0.599 0.583 (0.423, 0.744) 0.718 0.688 0.562 0.615 (0.410, 0.819) 0.865 0.264 0.432

E_Peri 0.632 (0.517, 0.746) 0.640 0.631 0.625 0.601 (0.450, 0.752) 0.882 0.405 0.537 0.629 (0.411, 0.848) 0.520 0.824 0.750

P_Intra 0.570 (0.451, 0.690) 0.490 0.694 0.617 0.565 (0.403, 0.728) 0.636 0.563 0.574 0.522 (0.376, 0.768) 0.489 0.794 0.705

P_Peri 0.686 (0.577, 0.796) 0.563 0.784 0.692 0.569 (0.406, 0.732) 0.688 0.553 0.500 0.582 (0.407, 0.758) 0.896 0.441 0.546

D_Intra 0.711 (0.606, 0.815) 0.592 0.775 0.699 0.637 (0.450, 0.881) 0.778 0.638 0.668 0.682 (0.458, 0.863) 0.469 0.871 0.841

D_Peri 0.658 (0.550, 0.767) 0.685 0.627 0.639 0.620 (0.452, 0.788) 0.625 0.684 0.611 0.635 (0.427, 0.843) 0.386 0.892 0.796

No statistically significant difference was observed (Delong test)
E_Intra intratumoral region from the early phase, E_Peri peritumoral region from the early phase, P_Intra intratumoral region from the peak phase, P_Peri peritumoral
region from the peak phase, D_Intra intratumoral region from the delayed phase, D_Peri peritumoral region from the delayed phase, AUC area under the ROC curve, CI
confidence interval, SEN sensitivity, SPE specificity, ACC accuracy
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Fig. 4 Receiver operating characteristic (ROC) curves of combined model and full fusion model. E_Intra + Peri, intratumoral and peritumoral region from
the early phase; P_Intra + Peri, intratumoral and peritumoral region from the peak phase; D_Intra + Peri, intratumoral and peritumoral region from the
delayed phase; Full_Intra + Peri, intratumoral and peritumoral region from full phases
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DCE-MRI in previous studies [4, 5, 12] has a poor tem-
poral resolution (about 60–100 s) and comparable spatial
resolution. Thus, the radiomics features in these studies
were usually extracted from the first enhancement phase
of primary tumors [4, 5] and the phase with the most
intense contrast enhancement for malignant character-
ization [12]. The early phase of DCE-MRI can reliably
evaluate the presence of invasive cancer after neoadjuvant
chemotherapy. In contrast, the delayed phase often better
assessed the size of additional carcinoma in situ [22]. The
delayed phase is particularly important for residual tumor
extent outline in invasive lobular cancer, non-mass
enhancement at MRI, and hormone receptor-positive/
HER2–negative tumors [22]. Early enhancement on DCE-
MRI manifested tumor vascularization and increased
malignancy, which is considered to focus on the nature of
tumor cells. In the delayed phase, the contrast agent
slowly infiltrated and distributed to interstitial tumor
tissue, which tended to show the nature of the tumor
matrix [23]. The tumor stroma surrounding cancer cells
provides a microenvironment for tumor genesis [14],
tumor-stimulating inflammation [24], metabolism [25],
metastasis [26], chemoresistance [27], and immune escape

mechanisms [28]. The tumor interstitial phenotype varies
among different molecular subtypes: TNBC was more
frequently observed among tumors of inflammatory and
normal-like types, whereas Luminal A was prominent in
desmoplastic and sclerotic types [29]. The combination of
high-throughput imaging features of delayed DCE-MRI
reflecting tumor stroma may quantify the difference
between different molecular subtypes. The content dif-
ference of tumor-infiltrating lymphocytes (TILs) may be
another biological explanation. TNBC and HER2-
enriched subtypes often recruit more TILs, while only
6% of Luminal subtypes were detected [30]. A previous
study [31] compared the multiphase DCE-MRI radiomics
model to evaluate the level of TILs in breast cancer.
Their results indicated that radiomics features extracted
from delayed phase DCE-MRI could help evaluate
TIL levels optimally. Feature extraction from the
delayed phase achieved better predictability in immune
microenvironment analysis. Given our results, the value
of the delayed phase in molecular typing may come
from the differences in the tumor microenvironment.
However, the definitive mechanism needs to be further
clarified.

Fig. 5 The selected feature sets of the Full_Intra + Peri model were evaluated through the shapley additive explanations (SHAP). The features are listed
in descending order according to their contribution to the predict of the molecular subtype of breast cancer
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In addition to quantifying intratumoral heterogeneity,
peritumoral areas have received increasing attention in
tumor imaging. Notably, the expanded annular peritu-
moral region is regarded as a substitute for the tumor
microenvironment. Likewise, the added peritumoral fea-
tures provide additional value for the differentiation of
benign and malignant lesions [32], breast cancer mole-
cular typing [6], and treatment response prediction [33].
Based on the DCE-MRI pharmacokinetic parameters, Li
et al [3] found that intra- and peri-tumoral radiomics
models yield similar diagnostic performance in differ-
entiating HER2 and Ki67 status. Alternatively, combining
intra- and peri-tumoral features significantly improved
the model performance [3, 6]. In our study, the separate
peritumoral model based on each contrast phase showed
equivalent performance compared with the single intra-
tumoral model, especially for the HER2-enriched subtype.
We also observed the superiority of the intra- and peri-
tumoral combined models. The full fusion model using
two-region plus three-phase obtained better performance
but was not statistically significant in the validation set.
The accuracy of the delay-phase model was the closest to
the full fusion model in identifying each molecular sub-
type. Despite the additional value of the delayed phase, the
diagnostic efficiency of radiomics for molecular typing is
still not optimistic. The performance of our models was
similar to that of established models in most studies, with
no significant breakthrough [3, 6, 34]. This may likely be
due to the overlap of the various metrics that define
molecular subtypes and the complex relationships among
receptors hidden behind the images. Although the delayed
phase of DCE-MRI showed no significantly improved
performance, they still helped amplify distinction in dif-
ferent molecular subtypes.
The high spatiotemporal resolution of DCE-MRI

positions it as the foremost technology for accurately
capturing tumor interstitial information in conventional
imaging sequences. Tang et al [31] and our study
emphasized the importance of delayed DCE-MRI in
distinguishing TILs level and molecular typing of breast
cancer, respectively. Likewise, our publication [9] sug-
gested early DCE-MRI was more useful in predicting
neoadjuvant treatment response. Therefore, the DCE-
MRI phase should be selected based on different
research purposes in the radiomics analysis. The devel-
opment of specific standards for different DCE-MRI
techniques will also promote its clinical application, such
as phase selection criteria, available criteria for temporal
and spatial resolution, length of delayed scanning
time, etc.
There are several noted limitations in our study. First,

the radiomics model in this study was established based
on single-center and retrospective data with imbalanced

sample size, and prospective multicenter studies are
needed to further validate our results. Second, this study
only employed DISCO DCE-MRI technology to investi-
gate three distinct contrast phases for radiomics analysis,
thereby constraining the reproducibility and general-
izability of our findings. Our results should be further
validated in the standard-of-care MRI protocols as
recommended by European Society of Breast Imaging
(EUSOBI) guidelines [35] or in the time-resolved MRI
techniques from the other vendors [36]. Finally, the
extracted features from the delayed contrast phase of
DCE-MRI provided valuable information, but there is no
clear biological explanation. It is essential to deepen the
biological interpretability of intra- and peri-tumoral
radiomics features.

Conclusion
The better performance of radiomics features and
models using the delayed phase of DCE-MRI suggests
its additional value for preoperative molecular typing,
thus the delayed phase of DCE-MRI cannot be ignored
in the differentiation of molecular subtypes in breast
cancer.
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