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Abstract
Objectives Achieving a consensus on a definition for different aspects of radiomics workflows to support their
translation into clinical usage. Furthermore, to assess the perspective of experts on important challenges for a
successful clinical workflow implementation.

Materials and methods The consensus was achieved by a multi-stage process. Stage 1 comprised a definition
screening, a retrospective analysis with semantic mapping of terms found in 22 workflow definitions, and the
compilation of an initial baseline definition. Stages 2 and 3 consisted of a Delphi process with over 45 experts hailing
from sites participating in the German Research Foundation (DFG) Priority Program 2177. Stage 2 aimed to achieve a
broad consensus for a definition proposal, while stage 3 identified the importance of translational challenges.

Results Workflow definitions from 22 publications (published 2012–2020) were analyzed. Sixty-nine definition terms
were extracted, mapped, and semantic ambiguities (e.g., homonymous and synonymous terms) were identified and
resolved. The consensus definition was developed via a Delphi process. The final definition comprising seven phases
and 37 aspects reached a high overall consensus (> 89% of experts “agree” or “strongly agree”). Two aspects reached
no strong consensus. In addition, the Delphi process identified and characterized from the participating experts’
perspective the ten most important challenges in radiomics workflows.

Conclusion To overcome semantic inconsistencies between existing definitions and offer a well-defined, broad,
referenceable terminology, a consensus workflow definition for radiomics-based setups and a terms mapping to
existing literature was compiled. Moreover, the most relevant challenges towards clinical application were
characterized.
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Critical relevance statement Lack of standardization represents one major obstacle to successful clinical translation
of radiomics. Here, we report a consensus workflow definition on different aspects of radiomics studies and highlight
important challenges to advance the clinical adoption of radiomics.

Key Points
● Published radiomics workflow terminologies are inconsistent, hindering standardization and translation.
● A consensus radiomics workflow definition proposal with high agreement was developed.
● Publicly available result resources for further exploitation by the scientific community.

Keywords Image processing, Computer-assisted, Workflow, Terminology, Consensus development conference

Graphical Abstract

Lack of standardization hinders clinical translation of radiomics. A consensus workflow
definition and important challenge identification advance the clinical adoption of radiomics.
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Introduction
Substantial biomedical and technological progress during
the past decades in capturing health-related character-
istics such as molecular, genetic, metabolic, or morpho-
logical traits has facilitated increasingly personalized
approaches towards disease management [1]. A key to
personalized medicine is the detection of discriminating
trait constellations, which may for instance be provided by
imaging modalities such as computed tomography, mag-
netic resonance imaging, or positron emission tomo-
graphy [2–5]. By exploiting software-based image analysis,
multiple pattern extraction, and large-scale bioinformatics
correlation analyses, advanced image post-processing
and interpretation approaches (often, including this

publication, also subsumed under the term ‘radiomics’)
may allow for a more comprehensive image analysis [6]
and trait detection.
However, while radiomics-derived imaging biomarkers

may provide new insights, their traditional clinical role is
merely limited to providing crude information such as the
size, shape, or density of apparent disease processes. Thus,
despite significant recent research efforts and accumu-
lating evidence of their value for diagnostic, therapeutic,
prognostic, and preventive schemes, these approaches
have not been widely implemented into clinical workflows
and radiological services yet [7].
The lack of translation of radiomics research into

practical clinical applications can be attributed to various
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factors and still exists, despite existing initiatives such as
the image biomarker standardization initiative (IBSI) [8],
Radiomics Quality Score (RQS) [7], Quantitative
Imaging Biomarker Alliance (QIBA; https://www.rsna.
org/research/quantitative-imaging-biomarkers-alliance),
CheckList for Evaluation of Radiomics Research (CLEAR)
[9], Assessment of Radiomics research (ARISE) [10], and
guideline framing. Some studies, like CLEAR and ARISE,
provide essential checklists aimed at ensuring thorough
and reproducible reporting in radiomics research. One
reason for this still existing lack is the absence of a unified
set of common definitions of workflow terms to ensure
comparability and correct classification of workflows.
It is hindering, i.a., correct application of guidelines
(like RQS) or comparison/reproducibility of experimental
setups and therefore ultimately successful clinical trans-
lation. Therefore, the need for collaborative efforts
within the scientific community to establish such a con-
sensus terminology becomes apparent in addressing these
challenges.
To address this within the framework of the

German Research Foundation (DFG, Deutsche
Forschungsgemeinschaft) Priority Program “Radiomics”,
we analyzed existing workflow definitions and conducted
a Delphi process [11] to achieve the following: (i) a
semantic analysis and mapping of existing definitions, (ii)
a proposal for a workflow definition with high consensus
to improve comparability and explainability of work-
flows, and (iii) an identification of the most important
challenges that currently hinder the translation of such
workflows into clinical routine.

Methods
Study design
This study was divided into three stages (see Fig. 1). In a
retrospective definition screening (stage 1) we collected
workflow items and terminologies used in published
radiomics studies as well as reported translational chal-
lenges to establish a starting point for the consensus-
building Delphi process (stages 2 & 3, prospective). In this
Delphi process, domain experts (for details see “DFG
Priority Program 2177 Radiomics” below) rated the
workflow items and refined the terminology towards a
consensus (stage 2). In a third (prospective) study stage
the challenges were characterized and ranked by our
experts using the same Delphi process as in stage 2. The
details of each stage are given in the following.

Definition screening and analysis (stage 1)
A definition screening was conducted with two screening
goals: (i) determine the existence of controversial/
ambiguous definitions and (ii) provide input for the
baselines of the Delphi process. Its search strategy was as

follows. A PubMed search was conducted using the
search string “radiomic”[All Fields] OR “radiomics”[All
Fields] and Best-Match sorting. Furthermore, two queries
were made to the Google search engine using (i) the term
“radiomics”, and (ii) the terms “radiomics” and “FAIR” to
see if radiomics standardization approaches exist in the
context of FAIR principles (www.go-fair.org). In addition,
reference sections in the retrieved publications as well as
similar publications suggested by PubMed were reviewed.
The searches were conducted on February 15, 2021 with
no filters to narrow the search. Publications were included
if they provided relevant content (workflow definitions or
challenges). The inclusion was stopped by the core team
when enough content was extracted to find evidence for
controversial/ambiguous definitions and provide input for
a baseline definition.
The included publications were examined for text

passages that mentioned steps of a radiomics workflow.
A coding system was created inductively from the
text passages, by conducting the text research and
building a terminology using the software MAXQDA
2020 [12], a widespread tool for qualitative data analysis.
A new category was created for each newly named
workflow step in the initial version of the coding
system. Subsequently, an initial draft for a radiomics
workflow was created based on the extracted steps
(see supplement 1). In this process, all steps were
mapped into a semantic hierarchy (including synon-
ymous and homonymous steps).

Workflow definition consensus process (stage 2)
A consensus decision was derived utilizing a structured
Delphi process [11], aiming to achieve an agreement
for a specific topic among a panel of experts. A Delphi
process comprises several rounds in which a core team
presents several hypotheses or assumptions in the form
of questionnaires to the expert panel which are then
voted upon. The core team members are exempted
from the votes. The feedback from the panel is incor-
porated by the core team and made transparent to the
experts in the following rounds, in which the process
is repeated. The assumptions are thus incrementally
refined based on the expert agreement (measured on a
5-level Likert scale) until a consensus is reached. In this
study, consensus was reached if at least 75% of the
experts agreed.
The Delphi process in this study was composed of five

rounds of questionnaires. Three rounds (rounds 1, 2 and
4) focused on resolving terminology conflicts and
achieving a consensus definition for different aspects of a
radiomics workflow. The process began with an initial
definition proposal derived from the definition screening
and analysis results.
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Challenge characterization process (stage 3)
The aforementioned Delphi process was also used to iden-
tify the most important current roadblocks to the clinical
translation of radiomics workflows.
Two rounds (rounds 3 and 5) of this process focused on

achieving consensus about the importance of different
challenges and on establishing a first characterization.
The priority was deduced by (i) allowing each expert to
make a priority selection and (ii) evaluating the frequency
with which each challenge was picked. The baseline was a
list of 32 challenges mentioned in the screened literature.
Round 3 involved selection from the literature-based
challenges or a proposal of additional challenges (up to
seven prioritized challenges in total). Round 5 involved

the (i) selection of up to three challenges from a shortlist
(top ten literature-based and four expert-proposed chal-
lenges) and (ii) the characterization of the shortlisted
challenges.

DFG priority program 2177 radiomics
The Priority Program (SPP) 2177 includes 16 different pro-
jects withmore than 45 experts from the interdisciplinary field
of radiomics and is funded by the DFG to advance the diag-
nostic and prognostic value of medical imaging by imple-
menting radiomics (including advanced image interpretation
approaches such as deep learning algorithms) in different
clinical scenarios (https://gepris.dfg.de/gepris/projekt/
402688427?language=en). The program provides national,

Fig. 1 Flowchart depicting all steps of the study from preparation (stage 1) to the Delphi process (stage 2). The different rounds of the Delphi process
are also indicated (blue dashed line boxes). The actions taken by the experts panel in the Delphi process are marked by red boxes
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coordinated, competitive funding for and rigorous
selection of independent research projects within its
scientific objective coming from 19 research institutes of
15 locations in Germany. It creates added value by fos-
tering collaboration among different disciplines and
locations. As such, it provides a unique formation of
national experts in the field of radiomics and is used in
this study for fostering standardizations and problem
statements to support clinical translation.
The experts for the Delphi process were recruited from

the projects participating in SPP 2177. There were no
other selection criteria for experts than their affiliation
with a SPP 2177 radiomics project. For each round,
invitations for participation were sent out to all project
teams. The participation was voluntary and it was possible
to participate anonymously.

Availability of data and materials
The survey data conducted during the current study
are available in the RadiomicsOntologySPP repository,

https://github.com/MIC-DKFZ/radiomics-workflow-
definition.

Results
Participating experts
Over the course of the Delphi process, on average 39
experts (standard deviation+/− 3.5) participated per
round and 45 named experts participated at least in one
round. As anonymous participation was possible, the total
number of participating individual experts cannot be
determined. Figure 1 depicts the flow chart of the study
including the Delphi process and Fig. 2 shows the overall
participation trend throughout the process. The topic-
related working experience of all participating experts
ranges from less than one year to up to 20 or more years.
For the Delphi process, the percentage of senior experts
(5 years and more of experience) ranged from 56% to 74%
(see Fig. 2).
The field of expertise of the participants can be grouped

into medicine (including radiology), computer science

Fig. 2 a Numbers of participants (separated in known participants and anonymous participants) over the course of the Delphi process (Delphi rounds).
b Experience (in years) of participants over the course of the Delphi rounds. c Representation of fields of expertise over the course of the Delphi rounds.
Multiple selections of fields of expertise per participant were possible. Rounds marked with a “(C)” (rounds 3 and 5) were rounds that focused on the
challenge prioritization and characterization
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(including medical image computing), physics (including
medical physics) and mathematics/statistics. The two
most represented fields were medicine (ranging from 36%
to 42%) followed by computer science (ranging from 28%
to 38%); for further details and trends see Fig. 2.

Definition screening and analysis (stage 1)
A total of 51 publications were screened for relevant
content: 30 publications from PubMed; 5 publications
from Google search and 16 publications from searching in
references, supplemental material, and similar studies.
Radiomics workflow definitions were found in 22 pub-
lications [7, 8, 13–32], and 95 workflow step terms were
extracted (for details see supplement 1 - List of extracted
step terms and mapping). The most frequently mentioned
terms are listed in Table 1.
Forty-five conflicts concerning synonyms, homonyms,

hierarchy, and semantic ambiguity were detected during
validation (see supplement 1). Synonyms occurred when
different terms were used for the same step (e.g., “feature
calculation” or “quantification” for “feature extraction”).
Homonyms were found when identically named steps
were defined differently (e.g., “ROI extraction” in Murray
et al [25] corresponds to “segmentation”, whereas in
Zwanenburg et al [32] it corresponds to a substep of
“feature extraction”). Hierarchy conflicts occurred when a
step was mentioned as a main step in one publication,
while it was a substep in another publication (e.g., “model
building” in Avanzo et al [13] was identical to the main
step “modeling”, whereas “model building” in Ibrahim
et al [19], Lee et al [21], and Yang et al [31] was identified
to be a substep of “modeling”). Semantic ambiguities

occurred where definitions could not be clearly assigned
to a step (e.g., “choice of imaging protocol” is described
in Lambin et al [7] as possibly being a substep of both
“data selection” and “data acquisition”). After creating a
hierarchy and addressing the conflicts, a baseline for the
consensus was modeled. This generic radiomics workflow
consists of eight main steps and 28 substeps, called phases
and aspects throughout the Delphi process and the results
(see supplement 1).

Workflow definition consensus (stage 2)
The consensus version of the workflow definition pre-
sented here was structured as follows: the top-level con-
sists of up to seven phases (study design; data acquisition;
data management; image processing and segmentation;
feature extraction; modeling; reporting). Phases represent
different fundamental workflow steps and can therefore,
to a certain extent, be found in every radiomics workflow.
Between most phases, there is a logical dependency and
therefore the order is not arbitrary (e.g., the study design
is supposed to be the starting point and reporting to be
the last phase).
A phase may contain one or more aspects. Aspects are

activities that take place within a phase. Aspects are often
optional and have, per se, no fixed order of execution or
count, as these can be highly study-specific. In the pre-
sented version of the definition, 37 aspects were defined
(taken from literature or defined in the Delphi process).
The phases and their aspects are depicted in Fig. 3.
Even though the overall finalization of the definition

reached a high consensus (89.7% agree or strongly agree
vs. 7.7% disagree or strongly disagree; 2.6% neither
agree nor disagree), two aspects remain controversial.
First, the question of whether the aspect “Data format
conversion” should be kept separately (60%) or merged
with the aspect “Data transfer and import” (33.3%) could
not be answered conclusively. Second, the aspect “Image
quality assessment” was discussed very controversially
regarding phase association (35.9% “Image processing
and segmentation” phase vs 53.9% “Data management”
phase; 10.3% neither agree nor disagree) and obligation
(43.6% mandatory vs 33.3% optional; 23.1% neither agree
nor disagree).
The detailed version of the workflow definition (comprising

names and descriptions in English and German language;
compulsoriness; machine learning applicability) can be found
in supplement 2 (Consensus RadiomicsWorkflowDefinition)
and a first proposal for a formal representation as an OWL
ontology (W3C Web Ontology Language; https://www.w3.
org/TR/2004/REC-owl-features-20040210/) will be made
publicly available through https://github.com/MIC-DKFZ/
radiomics-workflow-definition. In addition, we provide sup-
plement 3, a mapping table between the consensus definition

Table 1 Most frequent workflow step terms found in the
Radiomics workflow definition screening (see supplement 1-List
of extracted step terms and mapping)

# Term Frequency

1 Feature extraction 12

2 Image acquisitiona 12

3 Segmentation 9

4 Feature selection 9

5 Validation 6

6 Image segmentation 4

7 Analysis 4

8 Reconstruction 3

9 Modeling 3

Column “Frequency” displays the number of publications that used the given
term. In total, we analyzed 22 publications that define Radiomics workflow
terminology
aThe term “Image acquisition” was used with two different semantics. Eight
times it was used for data acquisition in general; encompassing not just the
images but all data needed. Four times the term was used just for the
acquisition of images
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Fig. 3 The figure shows all phases and aspects of the consensus workflow definition. The phases are shown on the left side in their logical sequence (from
top to bottom). The associated aspects are shown on the right side. The aspects are sorted alphabetically and their indention is just for better readability
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and analyzed literature terms to support the translation
between terms used in different publications.We included the
radiomics standardization guidelines ARISE [10], CLEAR [9],
IBSI [8], and RQS [7] in this mapping and observed that only
the phase “Feature extraction” is represented in all four
guidelines. On average 3 of these 4 guidelines are mapping to
aspects of the seven defined consensus phases, but no aspect is
covered by all of the guidelines.

Challenge characterization (stage 3)
The ten most important challenges regarding the clinical
application of radiomics workflows and the perspective of
the participating experts, as identified by the consensus
process, are shown in Table 2. Those challenges consist of
four challenges proposed by the expert panel (importance
rank #2, #3, #4, and #7) and six that were derived from the
screened literature (importance rank #1, #5, #6, #8, #9 and
#10). From the initial seven challenge categories, five are
represented in this list (A Lack of guidelines, B Lack of
standardization, C Problems related to radiomics studies,
D Problems related to radiomics pipelines, G Problems
related to data sharing). A detailed list of all categories
and challenges is provided in supplement 4 (List of
challenges).
Besides importance, the experts also rated the relevance

of different solution domains to address the respective
challenge. Each expert was allowed to choose multiple
domains (technological; methodological; social/organiza-
tional; political/regulatory; others; N/A) and in addition
could indicate high uncertainty about their response.
The details of this characterization are displayed in
Fig. 4. In general, most challenges were anticipated to
require solutions that strongly involve multiple domains.
Only three challenges (#1 and #2: methodological; #7:

political/regulatory) were anticipated to have a clear
domain focus (one domain > 80%).
The challenges were further characterized by the

anticipated time frame required to overcome them. Each
expert was allowed to choose one of the following cate-
gories: short-term (≤ 2 years), medium-term (≤ 5 years),
long-term (> 5 years) and N/A. Figure 5 shows the dis-
tribution of anticipated timeframe categories. Most chal-
lenges were assumed to have medium-term solution time
frames. Two challenges (#7 and #9) were anticipated to be
short-term and challenge #5 was anticipated to be long-
term.

Discussion
We conducted an analysis of existing radiomics workflow
definitions followed by a Delphi process to achieve con-
sensus on a common workflow definition (including an
ontology) and identify the participating experts’ ten most
important translation-hindering challenges. The review
revealed controversial/ambiguous definitions and semantic
conflicts (in total 45) in the 22 workflow definitions of the
screened publications. That supports the need of a stan-
dardized workflow definition based on a broad consensus.
Via the Delphi process, we achieved a radiomics workflow
definition proposal with high consensus (89.7% agree or
strongly agree). Further, the Delphi process allowed us to
identify the challenges that were deemed most pressing by
the participating experts.
Our results support the hypothesis that, while important

endeavors to improve clinical translation such as IBSI, RQS,
QIBA, or guideline framing are underway, there currently
exists no consensus on standardized workflow definitions.
Most analyzed papers include aspects of the defined
consensus phases “Modelling” (96%, 23 publications) and

Table 2 Challenge importance ranking regarding clinical translation after the consensus process (displaying the 10 highest ranked
challenges) (see supplement 3 - List of Challenges)

# Challenge Importance agreement Category

1 Problems related to reproducibility/generalizability 51.4% (18) Problems related to radiomics studies

2 Problem related to uncertainty/trustability of models [expert proposal] 40.0% (14) Problems related to radiomics pipelines

3 Lacking workflow integration [expert proposal] 31.4% (11) Problems related to radiomics pipelines

4 Lack of evidence gained by prospective evaluation [expert proposal] 28.6% (10) Problems related to radiomics studies

5 Legal and privacy problems 28.6% (10) Problems related to data sharing

6 Problems related to use of routine data 25.7% (9) Problems related to radiomics studies

7 Lack of quality ensuring guidelines for reviewers (and editors) [expert

proposal]

20.0% (7) Lack of guidelines

8 Lack of standardized computation methods 17.1% (6) Lack of standardization

9 Lack of homogeneous evaluation criteria 11.4% (4) Lack of standardization

10 Problems related to image acquisition 11.4% (4) Problems related to radiomics pipelines

Column “#” displays the final importance rank. Column “Importance agreement” displays the percentage of experts who picked the challenge as important, and in
brackets the absolute number of selections. Challenges proposed by the expert panel in round 3 are marked by “[expert proposal]”
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“Feature extraction” (92%, 22 publications). Looking only at
well-known radiomics standardization guidelines (ARISE
[10], CLEAR [9], IBSI [8], and RQS [7]) the phase coverage
overlap improves (all phases are covered to some extent by
at least 3 guidelines; “Feature extraction” is covered by all).
But even in this focused set of analyzed literature, the
lack of definition overlap becomes evident as none of the

consensus aspects is covered by all 4 guidelines. Therefore,
such a standardized definition and common terminology
would also support translation as it allows, i.a., a better
comparability of radiomics studies. Further, such a
definition would directly help to tackle two identified top
challenges (#1 reproducibility/generalizability and #3
workflow integration). Some challenges have previously

Fig. 4 The figure shows for each challenge the percentage of experts anticipating a specific solution domain (technological, methodological, social/
organizational, political/regulatory, others, and N/A) as relevant. Experts were allowed to choose multiple domains as relevant. In addition, for each
challenge the percentage of experts indicating high uncertainty with regard to their selection is provided

Fig. 5 The figure shows for each challenge the anticipated time frame (short-term (≤ 2 years), medium-term (≤ 5 years), long-term (> 5 years), and N/A)
to meet the respective challenge. Experts had to choose one time frame. The light red boxes show the “mean” anticipated time frame (excluding N/A
selections) for each challenge
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been addressed, e.g., IBSI addresses challenges #8 and #9.
Nevertheless, the top five challenges are currently not suf-
ficiently addressed; neither is challenge #7 (guidelines for
reviewers). We would like to emphasize that our finding
that IBSI addresses challenges of “lower” importance does
not imply wrong targeting by IBSI. On the contrary, we see
it as an indicator of the effectiveness and importance of
efforts such as IBSI, as the challenges it addressed became
less pressing over the last years, which resulted in lower
ranks in our study.
This study has limitations. Our definition of screening is

not a systematic review as it was limited by the stopping
criterion employed. However, these limitations proved
irrelevant for the purpose of our study. The screening
served to (i) determine the presence of controversial/
ambiguous definitions and (ii) provide input for the
baselines of the Delphi process. Both aims were suffi-
ciently met with the analyzed literature.
Furthermore, our team of experts was geographically

limited to Germany, as they were recruited from the SPP
2177. Nevertheless, as shown in the results section, they
covered a broad range of scientific fields and expertise in
radiomics. Therefore, we don’t expect relevant biases
in the definition consensus, but assume them more likely
in the challenge prioritization. This is due to high reg-
ulatory requirements and other factors in Germany which
might lead to higher prioritization of data availability and
data protection challenges by our expert panel compared
to experts coming from countries with less restrictive
conditions. Moreover, this study represents the first
consensus on workflow definition. We envision it to be a
starting point for a larger community process that would
address these issues. Also, for future applications, the
scope of the proposed definition could be too narrow, as
the consensus process began with a focus on rather
classical radiomics workflows to build image feature-
based prediction models. However, consensus defini-
tions for (i) workflows that do not focus on model
building but on model application (inferencing) and (ii)
emerging machine learning (ML)-based workflows are
missing. The former has not been addressed yet and
represents a desirable goal for future iterations of
the definition. The latter is covered only briefly. These
ML-based approaches are only emerging and therefore,
their role in a radiomics workflow is not settled yet
[33, 34]. They might replace individual aspects of our
consensus or, in the case of an end-to-end approach,
even entire sequences of workflow phases. Therefore, we
limited our scope to only indicating which phases and
aspects could, given sufficient methodological progress,
potentially be replaced by ML. Nevertheless, as stated
above, further revisions of this consensus might address
ML approaches in more depth.

Even after multiple rounds in the Delphi process, not all
aspects have reached consensus yet. As the current ver-
sion already offers significant value due to an overall very
high consensus rate, and we envision further iterations
with a larger expert panel in the future, we decided to
make the remaining controversies transparent and pub-
lish the current status to initiate a broader scientific
discussion.
In summary, we identified and ranked the ten most

important challenges in translating radiomics into the
clinic from the perspective of the participating experts.
We further propose a standardized definition of terms
describing phases of radiomics workflows consisting of
seven major phases and 37 associated aspects that
achieved high consensus among our experts. This stan-
dardized definition (supplement 2) is provided with a
translation table (supplement 3) that maps the terms
against the analyzed literature. As the results of this study
are seen as a starting point for further developments and a
broader international consensus discussion, this definition
(and ontology) is publicly available online. We have pre-
pared the resources for a future open structured definition
development process (https://github.com/MIC-DKFZ/
radiomics-workflow-definition) and experts from outside
our network are very welcome to adapt, contribute to this,
and make it their own. Standardizing the terminology
in radiomics workflows can only constitute a first step
towards clinical translation, with further research
addressing major challenges and roadblocks urgently
required. The SPP 2177 is committed to building upon
the results of this study to address these challenges.
By providing a common ontology for radiomics workflow
definitions and identifying which challenges should be
targeted with the highest priority, the presented study
serves as an important foundation for future advances in
the field.
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