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Abstract
Objectives The simplified endoscopic score of Crohn’s disease (SES-CD) is the gold standard for quantitatively
evaluating Crohn’s disease (CD) activity but is invasive. This study aimed to develop and validate a machine learning
(ML) model based on dual-energy CT enterography (DECTE) to noninvasively evaluate CD activity.

Methods We evaluated the activity in 202 bowel segments of 46 CD patients according to the SES-CD score and
divided the segments randomly into training set and testing set at a ratio of 7:3. Least absolute shrinkage and selection
operator (LASSO) was used for feature selection, and three models based on significant parameters were established
based on logistic regression. Model performance was evaluated using receiver operating characteristic (ROC),
calibration, and clinical decision curves.

Results There were 110 active and 92 inactive bowel segments. In univariate analysis, the slope of spectral curve in
the venous phases (λHU-V) has the best diagnostic performance, with an area under the ROC curve (AUC) of 0.81 and
an optimal threshold of 1.975. In the testing set, the AUC of the three models established by the 7 variables to
differentiate CD activity was 0.81–0.87 (DeLong test p value was 0.071–0.766, p > 0.05), and the combined model had
the highest AUC of 0.87 (95% confidence interval (CI): 0.779–0.959).

Conclusions The ML model based the DECTE can feasibly evaluate CD activity, and DECTE parameters provide a
quantitative analysis basis for evaluating specific bowel activities in CD patients.

Critical relevance statement The machine learning model based on dual-energy computed tomography
enterography can be used for evaluating Crohn’s disease activity noninvasively and quantitatively.

Key Points
● Dual-energy CT parameters are related to Crohn’s disease activity.
● Three machine learning models effectively evaluated Crohn’s disease activity.
● Combined models based on conventional and dual-energy CT have the best performance.
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Graphical Abstract

The machine learning model based on DECT enterography (DECTE) can evaluate CD activity, and 
DECTE parameters provide a quantitative basis for evaluating specific bowel activities in CD patients.

Establishing a machine learning model based on 
dual-energy CT enterography to evaluate Crohn’s 
disease activity
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• All dual energy CT 
(DECT) parameters 
were related to Crohn’s 
Disease (CD) activity.

• Three machine learning 
models effectively 
evaluated CD activity.

• Combined models based 
on conventional and 
DECT had the best 
performance.

Introduction
Crohn’s disease (CD) is a chronic, recurrent inflammatory
bowel disease (IBD), and its global incidence rate has been
increasing, resulting in an extreme economic burden [1, 2].
Progressive inflammation-based stimulation may result in
serious complications such as strictures, perforation, or
fistulas that require surgery [3]. It is important to monitor
the treatment response continuously to adjust medication
and guide clinical treatment decisions [4].
The simplified endoscopic score of Crohn’s disease

(SES-CD) is the most mature and quantitative scoring
system for CD activity; it is limited by its invasiveness,
with a risk of serious complications and difficulty in
evaluating segments with severe strictures [5, 6]. CT, MR,
and intestinal ultrasound have successfully become non-
invasive assessment methods for CD due to their ability to
visualise the full intestine [7–9]. Some quantitative scor-
ing systems have been developed based on these cross-
sectional imaging methods, such as the magnetic reso-
nance activity index, Clermont score, and London score,
which mainly reference qualitative parameters [10–12].
However, their clinical practicality has been limited by

poor observer consistency and complex calculation
methods.
Dual-energy CT enterography (DECTE) is an imaging

technique based on two different energy settings for data
acquisition that has been widely used in vascular imaging,
tumour differentiation, and prognosis in recent years and is
now gradually being applied to IBD [13–15]. The Dane
team assessed inflammation activity with the iodine con-
centration (IC) from DECTE and compared it with the
results of pathological analysis, indicating that the IC can
serve as a radiological marker of CD activity [16]. In addi-
tion, some studies have found that the IC, normalised
iodine concentration (NIC), and slope of the energy spec-
trum curve (λHU) are related to CD activity [17–19]. Forty
kiloelectron-volt (keV) DECTE contributes to distinguish-
ing wall enhancement between normal and diseased
intestinal segments and can improve image quality [20].
Currently, most studies use DECTE to evaluate activity by
comparing it with the Crohn’s disease activity index
(CDAI) or pathological analysis, with only a few studies
comparing it with SES-CD score and finding that NIC and
λHU help differentiate CD activity [21, 22]. This study
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aimed to analyse and establish an ML model based on
DECTE to noninvasively evaluate CD activity with the SES-
CD score as the gold standard.

Materials and methods
Ethics
This retrospective study was approved by the Ethics Com-
mittee of Chongqing General Hospital and exempted from
the requirement for written informed consent from patients.

Patients
Patients suspected as CD at Chongqing General Hospital
from July 2021 to 2023 were included, and all subjects
underwent DECTE scans. The inclusion criteria
for candidate patient selection were as follows: (1) age
18–65 years old, (2) confirmed Crohn’s disease, and (3)
endoscopy segmented score obtained within ± 14 days of
DECTE scan. The exclusion criteria were as follows: (1)
no DECTE image at the postprocessing workstation, (2)
poor image quality, such as an intestinal wall that was too
thin or had poor fullness, and (3) incomplete clinical data.
Clinical data included patient age, sex, course of the dis-
ease, disease behavior, drug treatment method (traditional
or biological therapy), C-reactive protein (CRP), albumin
(ALB), and erythrocyte sedimentation rate (ESR). Finally,
46 CD patients were included, and a total of 202 segments
were evaluated. According to the principle of hierarchical
randomisation, the data were divided into a training set
(N= 141) and a testing set (N= 61) at a 7:3 ratio.
The flow chart of the study population is shown in Fig. 1.

Endoscopic evaluation
One gastroenterologist who was blinded to the clinical
data of each patient performed the endoscopy, divided the

whole intestinal segment into five segments (the ileum,
right colon, transverse colon, left colon, and rectum), and
then assessed inflammation with the SES-CD criteria [23].
Next, they calculated the total score for each bowel, with a
score of 0–12 points for each segment. SES-CD < 3 was
considered to indicate inactive disease, and SES-CD ≥ 3
was considered to indicate active disease.

CT scanning
All patients fasted for 8 h before intestinal CTE examina-
tion and took 2000mL 2.5% mannitol solution orally 1 h
before examination. All patients were scanned with a dual-
energy CT scanner (IQon spectral CT, Philips Healthcare,
China). The tube voltage was fixed at 120 kVp, tube current
145mAs, pitch 1.2, rotation speed 0.5 s, and reconstruction
layer thickness 1.00mm. The contrast agent (Ioversol,
350mg(I)/mL, Jiangsu Hengrui medicine CO., LTD, China)
was administered via a peripheral vein at 1.5mL/kg and a
rate of 3.0mL/s with a high-pressure syringe. The scanning
time was monitored using a monitoring method. The
abdominal aorta was detected 10 s after injection of con-
trast agent, and the threshold was automatically triggered
when it reached 150 HU. The arterial and venous phases of
DECTE were collected approximately 30 s and 80 s after
injection of contrast agent, respectively. We reconstructed
dual-energy images at a Philips postprocessing workstation,
obtained conventional images at 120 keV, examined
decomposed images of water and iodine based on the
materials, and obtained monochromatic images within the
energy range of 40 to 120 keV.

Image processing and evaluation
Two radiologists with more than 5 years of expertise in
diagnostic abdominal imaging, and who were blinded to

Fig. 1 Follow diagram of the study population
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the patient information reviewed the traditional CT and
DECTE images. The images were evaluated and analysed
using the Philips postprocessing workstation. A circular
area of interest (ROI) was ideally defined to capture as
much of the highly enhanced part of the lesion in the
intestinal wall as possible, with a minimum value set at
5 mm2 (range: 5 mm2–10 mm2), and the IC in an artery in
the same layer was measured (abdominal aorta or iliac
artery). Then, the NIC was calculated as IC in the affected
intestinal segment/IC in the artery in the same layer, and
the λ HU was calculated as (HU40 keV–HU100 keV)/60 [24].
The thickness of the intestinal wall, segmental mural
hyperenhancement, strictures, upstream dilation, comb
sign, fibrofatty proliferation, inflammation, and regional
lymph node size were assessed on conventional CT ima-
ges. To ensure consistency in the results, all measure-
ments were taken three times at different locations on the
same layer, and the average value was calculated. Quan-
titative parameters are ultimately displayed as the arith-
metic mean of the value obtained by two radiologists.
When qualitative parameters were inconsistent, dis-
agreements were resolved by consensus [25]. The con-
sistency analysis between observers is shown in
Supplementary Tables 1 and 2.

Model construction
The model was constructed with the training set to
compare and analyse the clinical, routine imaging, and
quantitative parameters of DECTE representing active
and inactive intestinal segments. Features with p < 0.05
were screened using LASSO regression combined with
10-fold cross validation. We developed three ML models
based on conventional image features (model 1), DECTE
parameters (model 2), and all significant parameters
(model 3) by a logistic regression algorithm and per-
formed parameter tuning by using 5-fold cross validation.
Finally, model performance was tested in the testing set.

Statistical analysis
Python software 3.8 and SPSS 23.0 statistical software
were applied to analyse the data. p < 0.05 was considered
statistically significant. Continuous variables conforming
to a normal distribution are expressed as the mean ±
standard deviation (SD), and the groups were compared
using Student’s t test. Continuous variables that did not
conform to a normal distribution are presented as med-
ians and interquartile ranges based on their distribution
and were compared by the Mann‒Whitney U test. Clas-
sification data are represented as frequencies (percen-
tages) and were compared using the chi-square test or
Fisher’s exact test. Receiver operating characteristic
curves, calibration curves and decision curves were used
to evaluate model performance.

Results
Clinical findings
The demographic and clinical characteristics of the par-
ticipants are shown in Table 1. This study included 46 CD
patients, including 19 males and 27 females, with an
average age of 27.50 years [23.00, 33.00]. A total of
202 segments of the intestine were included: 110 seg-
ments were active, and 92 segments were inactive. Table 2
shows the distribution of variables in the training and
testing sets, indicating that there were no significant dif-
ferences between the two groups (p > 0.05).

Diagnostic performance of DECTE parameters
Comparing the DECTE parameters of the active and
inactive segments in the total sample, it was found that all
parameters of the active intestinal segments were higher
than those of the inactive intestinal segments (p < 0.001).
As demonstrated in Table 3, all DECTE parameters per-
formed well in evaluating CD activity (AUC value > 0.75).
λ HU in the venous phase (λ HU-V) had the greatest per-
formance in evaluating the activity of CD, with an AUC

Table 1 Patient characteristic

Characteristics Result (n= 46)

Gender

Female 19

Male 27

Mean age (y) 27.500 [23.000, 33.000]

Course of disease (m) 35.000 [21.250, 60.000]

Current medication

Traditional 5

Biologics 41

Crohn Montreal classification: age at diagnosis

< 17 y 6

17–40 y 36

> 40 y 4

Crohn Montreal classification: location of disease

Ileal 2

Colonic 9

Ileocolonic 35

Crohn Montreal classification: behavior

Nonstricturing, nonpenetrating 20

Stricturing 22

Penetrating and perianal disease 4

Perianal disease

Yes 24

No 22

C-reactive protein (mg/L) 4.855 [2.180, 16.248]

Erythrocyte sedimentation rate (mm/h) 16.500 [7.750, 28.250]

Albumin (g/L) 43.100 [40.500, 45.400]
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value of 0.81. When λ HU-V ≥ 1.975, its sensitivity and
specificity in diagnosing active intestinal segments were
0.800 and 0.783, respectively. According to this result, the
ROC curves were plotted in Fig. 2a. Examples of typical
images of active and inactive patients are shown in
Figs. 3 and 4.

Model variable selection
A comparison between the active and inactive bowels
groups in the training set is shown in Table 4, and the

results show significant differences (p < 0.05) except for
age, sex, upstream dilation, and engorged vasa recta. The
LASSO algorithm combined with 10-fold cross validation
was used to further screen the characteristics when the
minimum mean square error (λ was 0.032). Finally, three
DECTE parameters and four radiographic features were
significant difference: λ HU in the arterial phase, λ HU-V,
and NIC in the arterial phase, wall thickness, stricture,
segmental mural hyperenhancement, and regional lymph
node size (Fig. 5).

Diagnostic performance of the machine learning model
The performance indicators of each model in the test set
are shown in Table 5, among which model 2 and model
3 had a more balanced overall performance. The three
ML models performed well in evaluating CD activity
(AUC > 0.80), with the combined model having the
highest AUC of 0.87(95% confidence interval (CI):
0.779–0.959) (Fig. 2b). However, the DeLong test
showed no statistically significant difference in the AUC
among the three models in the test set (the p value range
of the three models was approximately 0.071 to 0.766,
p value > 0.05), as detailed in Supplementary Table 3.
The calibration curves showed that the fitting curves of
the three models almost coincided with the diagonal,
indicating a good fit with the actual data (Fig. 2c).
Decision curve analysis showed that within the range of

Table 2 Comparison of baseline characteristic between train set and test set

Parameters Train (n= 141) Test (n= 61) p value

Age (years) 28.000 [23.000, 33.000] 27.000 [21.000, 31.000] 0.116

Sex (F/M) 61/80 25/36 0.764

Wall thickening (mm) 5.000 [3.000, 7.000] 4.000 [3.000, 6.000] 0.299

Segmental mural hyperenhancement (Stratified/Homogeneous) 114/27 48/13 0.723

Strictures (Yes/No) 32/109 12/49 0.204

with upstream dilation (Yes/No) 8/133 7/54 0.149

Fibrofatty proliferation 38/103 20/41 0.400

Engorged vasa recta (Yes/No) 30/101 17/44 0.309

inflammation (Yes/No) 22/119 7/54 0.442

Regional Lymph node (diameter ≥ 0.5) (Yes/No) 57/84 19/42 0.211

Arterial Phase

Zeff 8.200 [7.780, 8.470] 8.220 [7.860, 8.410] 0.895

IC (mg/mL) 1.580 [0.850, 2.190] 1.670 [0.930, 2.070] 0.759

NIC 0.129 [0.079, 0.180] 0.143 [0.074, 0.197] 0.706

λ HU 1.880 [1.070, 2.618] 2.060 [1.088, 2.563] 0.802

Venous Phase

Zeff 8.240 [8.000, 8.380] 8.150 [7.890, 8.360] 0.194

IC (mg/mL) 1.710 [1.170, 2.010] 1.480 [1.060, 1.970] 0.257

NIC 0.366 ± 0.106 0.335 ± 0.119 0.092

λ HU 2.120 [1.465, 2.495] 1.850 [1.323, 2.452] 0.269

Zeff Z-effective, λ HU slope of the energy spectrum curve, IC iodine concentration, NIC normalised iodine concentration

Table 3 Evaluation performance of all spectral parameters

Parameters N AUC (95% CI) SEN SPE YI Cut-off

Arterial Phase

Zeff 202 0.785 0.755 0.761 0.515 8.180

IC (mg/mL) 202 0.794 0.773 0.772 0.544 1.550

NIC 202 0.780 0.718 0.793 0.512 0.140

λ HU 202 0.787 0.736 0.783 0.519 1.920

Venous Phase

Zeff 202 0.808 0.800 0.761 0.561 8.190

IC (mg/mL) 202 0.803 0.791 0.772 0.563 1.590

NIC 202 0.777 0.709 0.793 0.503 0.366

λ HU 202 0.810 0.800 0.783 0.583 1.975

Zeff Z-effective, IC iodine concentration, NIC normalised iodine concentration,
λ HU slope of the energy spectrum curve, AUC area under the curve, SEN
sensitivity, SPE specificity, YI Youden’s index, CI confidence interval
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approximately 10% to 90%, the clinical net benefits of
three models were higher than those of all and none,
indicating that all three models had clinical net benefits
within a certain threshold probability. Among them, the
net benefits of model 2 and model 3 were higher than
that of model 1 in the probability range of approximately
38% to 82% (Fig. 2d).

Discussion
This study explored the value of DECTE quantitative
parameters in evaluating CD activity and developed ML
models for evaluating inflammation in CD patients,
including a conventional CT model, a DECTE model, and a
combined model. Although there was no significant dif-
ference in the AUC among the three models, the DECTE
model and the combined model were more balanced in
overall performance than the conventional CT model and

exhibited better diagnostic performance than individual
DECTE quantitative parameters alone.
Among the identified variables, wall thickness and seg-

mental mural hyperenhancement had been previously
identified as characteristic parameters in the traditional CT
evaluation of CD activity [26, 27]. Literature reports that
strictures can also distinguish CD activity [28], and our
research confirms these results. Previous studies have
shown that lymph node enlargement (length ≥ 1 cm) can be
considered a sign of the active stage of CD, but it is more
prominent in severely active intestinal segments [27, 29].
We found that there was statistical significance in the size
of regional lymph nodes between active and inactive
intestinal segments, which could be reactive hyperplasia of
mesentery lymph nodes caused by CD activity. This result
is contrary to the conclusion of Amir [30], who found that
there was no significant difference in the size of regional

Fig. 2 The performance of single DECTE parameters and machine learning models. Receiver operating characteristic curves of single parameters in all
sample (a). Receiver operating characteristic curves of machine learning models in the test set (b). Calibration curves for the three model in testing sets
(c). Decision curve analysis for the three model in testing sets (d)
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Fig. 3 Dual energy CT examination in a 40-years-old female patient with rectum SES-CD score 0. Endoscope, rectum (a), iodine centration in the arterial
phase (b), iodine concentration in the vein phase (c), Z-Effective in the arterial phase (d), Z-effective in the vein phase (e), Slope of the energy spectrum
curve in the arterial phase (f), Slope of the energy spectrum curve in the vein phase (g)
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lymph nodes (diameter > 3mm) between the active and
inactive groups. We believe that this may be firstly due to
different reference standards for defining activity–clinical
activity scores are nonspecific and cannot represent a
certain inflammatory segment or clarify the contribution of

the affected segment. Secondly, the included lymph nodes
were too small, resulting in statistical insignificance.
Although ulceration is an important parameter for CD
activity, this study did not evaluate it due to the lower soft
tissue resolution of CT compared to MRE.

Fig. 4 Dual energy CT examination in a 20-years-old female patient with left colon SES-CD score 6. Endoscope, Left colon (a), iodine centration in the
arterial phase (b), iodine concentration in the vein phase (c), Z-effective in the arterial phase (d), Z-effective in the vein phase (e), Slope of the energy
spectrum curve in the arterial phase (f), Slope of the energy spectrum curve in the vein phase (g)
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Zhu et al [21] and Dane et al [16] suggested that NIC is
a radiological marker for differentiating active and inac-
tive bowels with SES-CD, which is consistent with the
results of our study. We assumed that the outcome may
be caused by inflammatory congestion, inflammatory cell
infiltration, and noncaseous granulomas in CD patients.
λHU represents the attenuation changes within the lesion
during the passage of contrast agent. We found that λ HU-
V and λ HU-A were significantly correlated with CD
activity, consistent with previous studies [22, 31], indi-
cating that the amount of contrast agent increases as the
blood vessels increase when CD is in the active phase. Our
results show that λ HU-V had better diagnostic efficacy
(AUC 0.81 vs 0.79) than λ HU-A, which is consistent with
previous research results [31, 32]. This may be because
when active inflammation occurs, although the vasa recta
expands and increases, the arterial imaging is too early
and the contrast agent does not fully enter the lesion.
During the venous phase, the contrast agent is fully filled.
In addition, when the contrast agent seeps into the
extravascular space, the interstitial fibrous tissue can
reduce the outflow rate of the contrast agent.
Machine learning is a subset of artificial intelligence.

Using feature selection to reduce the dimensions of the
data and adjust the hyperparameters can produce a more
powerful and generalizable ML model. In recent years,
ML in IBD has mainly been used for phenotype diagnosis,

gene classification of gut microbiota, and prediction of
postoperative recurrence [33–35]. A few studies have
constructed ML models to evaluate CD activity and
severity. Recently, all ML models constructed by Cai et al
[36] performed well in predicting activity in CD test sets.
Their study used the CDAI score as the assessment cri-
terion for grouping, while we used the SES-CD as the
standard, which displayed the activity of the affected
intestinal segment more intuitively compared to CDAI.
The Guez [37] team established a multimodal ML model
to evaluate CD endoscopic activity by integrating MR
information and biochemical indicators. The results
showed that the length of diseased intestinal segments
and the biochemical indicators were the most informative
parameters. In summary, previous research results indi-
cate the potential of ML to accurately and noninvasively
assess intestinal activity. Our research also confirms this
result. The use of DECTE to establish a ML model pro-
vides a new method for non-invasive quantitative eva-
luation of CD activity, which does not require complex
calculations, and the parameters are intuitive and easily
acquired. In addition, DECTE scans can reduce scan
duration and radiation exposure because of their unique
hardware design [38]. The model in this study follows the
approach of gastroenterologists in evaluating diseases and
specific intestinal segments, revealing the role of different
features on the activity of diseased intestinal segments and

Table 4 Difference between active and inactive segment in training set

Parameters None-active (n= 64) Active (n= 77) p value

Age (years) 28.000 [23.000, 33.000] 29.000 [23.000, 37.000] 0.382

Sex (F/M) 27/37 34/43 0.814

Wall thickening (mm) 3.000 [2.000, 5.000] 7.000 [5.000, 8.000] < 0.001

Segmental mural hyperenhancement (Stratified/Homogeneous) 6/58 21/56 0.007

Stricture (Yes/No) 3/61 29/48 < 0.001

with upstream dilation (Yes/No) 0/64 8/69 nan

Fibrofatty proliferation 10/54 28/49 0.006

Engorged vasa recta (Yes/No) 0/64 30/47 nan

Inflammation (Yes/No) 3/61 19/58 0.001

Regional Lymph node (diameter ≥ 0.5 cm) (Yes/No) 14/50 43/34 < 0.001

Arterial Phase

Zeff 7.900 [7.700, 8.160] 8.360 [8.160, 8.535] < 0.001

IC (mg/mL) 1.030 [0.680, 1.500] 2.010 [1.550, 2.350] < 0.001

NIC 0.095 [0.065, 0.129] 0.160 [0.120, 0.188] < 0.001

λ HU 1.272 [0.910, 1.775] 2.433 [1.745, 2.923] < 0.001

Venous Phase

Zeff 8.076 ± 0.237 8.305 ± 0.191 < 0.001

IC (mg/mL) 1.377 ± 0.481 1.851 ± 0.427 < 0.001

NIC 0.318 ± 0.098 0.405 ± 0.096 < 0.001

λ HU 1.691 ± 0.603 2.322 ± 0.515 < 0.001

Zeff Z-effective, IC iodine concentration, NIC normalised iodine concentration, λ HU slope of the energy spectrum curve
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providing an effective tool for precise clinical diagnosis
and treatment decision-making. In addition, compared to
traditional statistical methods, machine learning models
can usually be rigorously validated.
There are a few limitations that should be noted in this

study. First, we used manual ROIs to measure DECTE
parameters; in the future, semiautomatic or fully auto-
mated methods should be developed to ensure measure-
ment accuracy. Second, our study did not evaluate the
correlation between biochemical biomarkers and CD
activity, as the relative contribution of each inflammatory
segment to the overall biochemical biomarker (such as
CRP and ESR, etc.) is unknown. Third, false positive

results are a concern in the model. Increasing sample size
and using multiple algorithms may be a key factor
in reducing false positive rates and improving diagnostic
accuracy in the future. Fourth, deep learning is a
branch of machine learning and the mainstream
trend of future artificial intelligence development. Due to
sample size and time constraints, we will further explore
the application value of deep learning in Crohn’s disease
in the future. Finally, this was a single-centre study whose
conclusions require additional validation with multi-
centre data before future clinical applications.

Conclusion
Our machine learning model based on DECTE can fea-
sibly evaluate intestinal segment activity in CD patients,
and the DECT parameters provide a quantitative analysis
for the evaluation of specific intestinal segment activity in
CD patients.

Abbreviations
AUC Area under the curve
CD Crohn’s disease
CDAI Crohn’s disease activity index
CI Confidence interval
CRP C-reactive protein

Fig. 5 LASSO feature screening pattern diagram. LASSO coefficients for machine learning features (a). A coefficient profile plot was generated at the
selected log λ value using a tenfold cross-validation, seven machine learning features with the best coefficients were selected. Standard parameters (λ)
selection in LASSO model used tenfold cross-validation with a minimum criterion (b). The optimal λ values are indicated by the vertical black lines, and a
λ value of 0.032 was selected

Table 5 The performance of three models in testing set

Phase AUC

(95% CI)

Cut off ACC SEN SPE PPV NPV F1

Model 1 0.808 0.526 0.721 0.909 0.571 0.808 0.657 0.855

Model 2 0.858 0.485 0.803 0.788 0.857 0.839 0.767 0.813

Model 3 0.869 0.596 0.77 0.848 0.786 0.852 0.706 0.85

AUC area under the curve, ACC accuracy, SEN sensitivity, SPE specificity,
PPV positive predictive value, NPV negative predictive value, YI Youden’s index,
CI confidence interval, F1 F1 score
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DECTE Dual-energy CT Enterography
ESR Erythrocyte sedimentation rate
HU Hounsfield unit
IBD Inflammatory bowel disease
IC Iodine concentration
keV Kiloelectron volt
LASSO Least absolute shrinkage and selection operator
NIC Normalised iodine concentration
ROC Receiver operating characteristic
ROI Region of interest
SES-CD Simplified endoscopic scoring of Crohn’s disease
Zeff Effective atomic number
λ HU Slope of energy spectrum curve
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