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Abstract

Aim To determine the effectiveness of functional stress testing and computed tomography angiography (CTA) for
diagnosis of obstructive coronary artery disease (CAD).

Methods and results Two-thousand nine-hundred twenty symptomatic stable chest pain patients were included in
the international Collaborative Meta-Analysis of Cardiac CT consortium to compare CTA with exercise
electrocardiography (exercise-ECG) and single-photon emission computed tomography (SPECT) for diagnosis of CAD
defined as ≥ 50% diameter stenosis by invasive coronary angiography (ICA) as reference standard. Generalised linear
mixed models were used for calculating the diagnostic accuracy of each diagnostic test including non-diagnostic
results as dependent variables in a logistic regression model with random intercepts and slopes. Covariates were the
reference standard ICA, the type of diagnostic method, and their interactions. CTA showed significantly better
diagnostic performance (p < 0.0001) with a sensitivity of 94.6% (95% CI 92.7–96) and a specificity of 76.3% (72.2–80)
compared to exercise-ECG with 54.9% (47.9–61.7) and 60.9% (53.4–66.3), SPECT with 72.9% (65–79.6) and 44.9%
(36.8–53.4), respectively. The positive predictive value of CTA was ≥ 50% in patients with a clinical pretest probability of
10% or more while this was the case for ECG and SPECT at pretest probabilities of ≥ 40 and 28%. CTA reliably excluded
obstructive CAD with a post-test probability of below 15% in patients with a pretest probability of up to 74%.
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Conclusion In patients with stable chest pain, CTA is more effective than functional testing for the diagnosis as well
as for reliable exclusion of obstructive CAD. CTA should become widely adopted in patients with intermediate pretest
probability.

Systematic review registration PROSPERO Database for Systematic Reviews—CRD42012002780.

Critical relevance statement In symptomatic stable chest pain patients, coronary CTA is more effective than
functional testing for diagnosis and reliable exclusion of obstructive CAD in intermediate pretest probability of CAD.

Key Points
● Coronary computed tomography angiography showed significantly better diagnostic performance (p < 0.0001) for
diagnosis of coronary artery disease compared to exercise-ECG and SPECT.

● The positive predictive value of coronary computed tomography angiography was ≥ 50% in patients with a clinical
pretest probability of at least 10%, for ECG ≥ 40%, and for SPECT 28%.

● Coronary computed tomography angiography reliably excluded obstructive coronary artery disease with a post-test
probability of below 15% in patients with a pretest probability of up to 74%.

Keywords Computed tomography angiography, Functional stress testing, Exercise-ECG, Single-photon emission
computed tomography, Diagnostic accuracy

Graphical Abstract

IIn symptomatic stable chest pain patients,
coronary computed tomography angiography is
more effective than functional testing for
diagnosis and reliable exclusion of obstructive
coronary artery disease in intermediate
pretest probability of coronary artery disease.
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CTA was significantly more accurate 
compared to exercise-ECG and SPECT. 

Introduction
Coronary computed tomography angiography (CTA) is
increasingly used to diagnose coronary artery disease
(CAD). Indeed, clinical guideline 95 of the National
Institute for Health and Care Excellence with chest pain
of recent onset recommends CTA as the first diagnostic
test in all patients with possible angina [1]. Functional
stress testing, including exercise electrocardiography

(exercise-ECG) or single-photon emission computed
tomography (SPECT), is recommended in uncertainty
about whether chest pain is caused by myocardial ischae-
mia in patients with known CAD. In contrast, the recent
ESC guideline on chronic coronary syndrome (CCS)
recommends coronary CTA as the first-line diagnostic
imaging test with a low pretest probability for CCS, whereas
functional cardiac imaging is recommended in patients
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having a high pretest probability for CCS [2]. The
ISCHEMIA trial showed that an invasive interventional
strategy was not superior to a conservative strategy in
patients with stable chest pain and test-based ischaemia [3].
Results of the SCOT-HEART trial showed a significant

reduction of fatal and non-fatal myocardial infarction by
CTA compared with diagnostic standard of care in
patients with recent onset stable chest pain [4]. However,
there is a lack of large diagnostic comparison studies of
CTA for coronary stenosis evaluation with functional
stress testing for ischaemia evaluation for the detection of
obstructive CAD. Previous investigations have suggested
that coronary CT may have higher sensitivity and speci-
ficity than functional stress testing for the detection of
anatomically defined CAD with invasive coronary angio-
graphy (ICA) as the reference standard [5–7]. Within the
Collaborative Meta-Analysis of Cardiac CT (COME-
CCT) [8] of patients with symptomatic stable chest pain,
we compared the effectiveness of functional stress testing
using exercise-ECG or SPECT with CTA for diagnosis of
CAD using ICA as the reference standard. Further, the
association of non-invasive diagnostic tests and pretest
probability was assessed for evaluation of the ability to
exclude obstructive CAD.

Methods
Patients
Seven-thousand eight-hundred thirteen patients with
stable chest pain and suspected CAD were included in the
COME-CCTConsortium with a clinical indication for ICA,
who were also prospectively enrolled to undergo cardiac
CT. The study protocol of the COME-CCT collaborators
was previously published including detailed information on
search strategy, inclusion, and exclusion criteria for this
individual patient data (IPD) data meta-analysis [8].
Patients with stents or bypasses, unstable angina, and non-
diagnostic were excluded as well as patients with incom-
plete information for pretest probability calculation. Data
was available on the per-patient level. The study was pro-
spectively registered in the PROSPERO Database for Sys-
tematic Reviews (CRD42012002780). Obstructive CAD
was defined as at least diameter stenosis of ≥ 50% by ICA
with 81% of patients receiving quantitative coronary ana-
lysis (QCA). Specifically important for the present sub-
group analysis, studies were excluded if datasets did not
include results on either exercise-ECG or SPECT for at
least 5% of the patients. All participants gave written
informed consent to participate in the local studies, which
were approved by the local ethics committees of the par-
ticipating centres. For quality assessment and compar-
ability, an additional questionnaire regarding exercise-ECG
and SPECT was sent to all participating sites. For this
subanalysis, for those studies eligible for inclusion, patients

with data on functional testing were included, but studies
with < 5% of patients receiving functional testing with
regard to the site cohort were excluded from further ana-
lysis to avoid inclusion bias.

Statistical analysis
Raw datasets were merged in an Excel spreadsheet and
exported as comma-separated values for statistical ana-
lysis using “R” [9]. Continuous data are reported as mean
(standard deviation (SD)) and categorical variables as
percentages (absolute numbers). Diagnostic accuracy of
all tests using obstructive CAD defined by ICA as the
reference standard was modelled using generalised linear
mixed models (GLMM), i.e. multivariable logistic
regression model with a study-specific random intercept
to take heterogeneity between studies into account [10] by
extending the method suggested by Coughlin et al with
random effects, which provides a one-step approach for a
diagnostic IPD meta-analysis [11]. The current model is a
univariate logistic regression model extended by incor-
porating a random effect for the study and a random slope
for ICA results, respectively, which is equivalent to a
bivariate generalised linear mixed model [12]. Based on
this model using the test result as the dependent variable,
mean logit sensitivity and specificity, the estimates of the
between-study variability in logit sensitivity and specifi-
city, and the covariance between them were estimated.
These estimates quantify heterogeneity between studies
and patients within studies and investigate the effect of
covariates such as type of diagnostic procedure. Covari-
ates were: the reference standard ICA and the type of
non-invasive diagnostic method and their interactions.
Post-test probabilities (positive (PPVs) and negative pre-
dictive values (NPVs)) of the respective diagnostic pro-
cedures for the presence of CAD as a function of the
pretest probability of CAD were analysed by a generalised
linear mixed model as described above. In a similar way,
models were applied when studies with a high risk of bias
were analysed in a sensitivity analysis. In another analysis,
we compared the diagnostic accuracy of CT in the 2920
patients from studies with functional tests performed with
2412 patients who were included in studies in which no
functional tests were performed (Fig. 1) applying the
covariate test performed (yes/no). Using an intention-to-
diagnose approach, we implemented the worst-case sce-
nario in which non-diagnostic CTA results were con-
sidered false positive if ICA was negative and false
negative if ICA was positive [13]. Clinical pretest prob-
ability was calculated using a validated prediction tool,
which was an updated version of the Diamond and For-
rester model [14, 15]. Clinical pretest probability was
estimated based on patient age, gender, and clinical pre-
sentation. We also performed a statistical prediction for a
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new cohort following the ideas presented by Skrondal and
Rabe-Hasketh [16].
Diagnostic performance was evaluated using a complete

case analysis (basic generalised linear model) while the
role of potential covariates was investigated using multiple
imputations of missing data in patients who did not
undergo functional test results in the original studies as a
sensitivity analysis. Statistical analysis was performed with
“R” (R-package lme4) [17]. For the reduction of missing
data bias, multiple imputation was performed. Post-test
probabilities were obtained with STATA 14 (packages
GLLAMM, GLLAPRED). Cross-hair plots which show a
scatter plot per-study sensitivity and false-positive rate
with corresponding confidence intervals were produced
with the R package mada [18, 19].

Results
Study characteristics
Pooled data on the per-patient level from 31 eligible
studies with data from 2920 patients from 21 sites in 16

countries for analysis (Fig. 1) [5–7, 20–46]. Results of
consensus reviewer judgments of the methodological
quality of included studies regarding risk of bias and
applicability can be found in the Appendix
(Figs. 1 and 2). The risk of bias was high in eight studies
and high applicability concerns were not present
[7, 25, 30, 33, 37, 40, 41, 45]. Included participant data
varied in size from 3 to 243 participants (mean (SD) of
91.2 (53.9)); 67% were male (Table 1). All patients
included underwent clinically indicated ICA, (81% with
QCA) as the reference standard for detection of
obstructive CAD.

Imaging test characteristics
Fifty-three percent of the patients had an additional
exercise-ECG (1540/2920), 37% had no functional test
(1066/2920) and 18% had an additional SPECT (532/
2920). Approximately 7% of patients underwent all three
non-invasive tests and ICA (218/2920). The study popu-
lation had a high number of cardiovascular risk factors,

12712 studies 

identified through 

database searching

9598 studies after 

duplicates removed

76 studies for which 

IPD were provided,

7813 participants

78 studies for which 

IPD were not provided,

6684 participants

12 additional studies 

identified through 

contact with authors

9598 studies screened 

for eligibilty

9445 studies excluded

9019 titles/abstracts did not match

117 no original research articles

75 no patient-level data available

52 no 50%-cut-off for CAD detection

39 retrospective patient enrolment

28 CT + ICA not in all patients

26 CT-scanners <12 slices

25 ICA not the reference standard

25 not published in English or German

21 overlap with other studies

14 not performed in native vessels

4 incl. patients with atrial fibrillation

154 eligible studies, 

IPD sought for all

56 authors did not respond

3 mail addresses did not work

19 reasons for not participating given

7 no access to original data

2 no possibility to participate

2 response after deadline

2 no willingness to participate

1 health issues

1 changed research focus

1 insufficient data

1 no eligibilty stated

1 technical issues

1 time constraints

76 studies for which 

aggregate data were 

available,

6077 participants

Aggregate data
6077 participants from

76 studies

IPD for this analysis
2920 participants from

31 studies

4893 participants excluded*

4516 no functional test data+

1610 no angina classification 

or missing data for PTP 

calculation

513 with stents or bypasses

343 unstable angina

37 No CT or ICA data

10 non-diagnostic ICA

*multiple reasons per participant possible +studies in which <5% of patients received functional tests were excluded from further analysis

Fig. 1 Flow chart for study selection. Part of the study flow referring to the COME-CCT main analysis paper as published by Haase et al [70]. In this
subanalysis of the international COME-CCT Consortium, only patients with functional testing data were included, and studies for pooled analysis were
only available if at least 5% of the patients of each of the 31 included studies received functional testing in order to avoid inclusion bias
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with a cumulative of 0.2 (0.4) risk factors per patient
(Table 1) while the average pretest probability was 47.9%
(22.2%). The prevalence of obstructive CAD in the 31
eligible studies varied between 22 and 90% (Appendix
Table 8) depending on the type of patients included as
well as local patient selection for ICA and conduct of
functional testing (Appendix Tables 5 and 6).

Effectiveness of CTA and functional testing for the
diagnosis of obstructive CAD: individual-patient data
analysis
For CTA, the sensitivity of 2072 patients with CT and
functional test results in comparison to ICA as the
reference standard in a generalised linear model was
94.6% (95% CI (92.7–96) and specificity was 76%
(72.2–80) Table 2). The sensitivity of exercise-ECG was
54.9% (47.9–61.7) and specificity was 60.9% (55.2–66.3)
while the sensitivity of SPECT was 72.9% (65–79.6) and
specificity was 44.9% (36.7–54.4). Table 2 additionally
shows all characteristics in 10%-steps of pretest prob-
ability. The sensitivity and specificity of CTA and

functional stress testing differed significantly (p < 0.0001
for all, see Table 3). Excluding the eight studies with
a high risk of bias Appendix Table 2) [7,
25, 30, 33, 37, 40, 41, 45] in a sensitivity analysis, results
remained similar for all three tests (Fig. 3 and Appendix
Table 11). When comparing the diagnostic accuracy of
CTA in the 2920 patients included from 31 studies with
functional tests performed with the 2412 patients who
were included in studies without functional tests per-
formed we found no differences indicating no relevant
selection bias (Appendix Table 12).
There was better diagnostic differentiation using CTA

compared with both exercise-ECG and SPECT (Fig. 2).
Reliably excluding CAD with an NPV of 85% was possible
in case of a negative CTA in patients presenting a pretest
probability of up to 74% whereas negative exercise-ECG
and SPECT excluded CAD only up to pretest probabilities
of 7% and 11%, respectively (Fig. 2), with variability
between studies (Table 3). Gender comparison showed
similar results of women and men of CTA and functional
tests in women and men (Appendix Tables 7, 9, 10).

Fig. 2 Analysis of diagnostic performance for CTA, Exercise-ECG, SPECT. The lines represent the positive and negative predictive values of CAD after a
positive (solid lines) or negative (dashed lines) diagnostic test result for obstructive (obstructive) coronary artery disease defined as a patient with at least
50% coronary diameter stenosis. CTA was significantly more accurate than exercise-ECG and SPECT. Predictive values including 95% confidence intervals
for all three tests are provided in Appendix Figs. 3–5
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Effectiveness of CTA and functional testing for the
diagnosis of obstructive CAD: study-level analysis
On the study level, the sensitivity and specificity of CT,
exercise-ECG, and SPECT are reported in Fig. 4. At a
pretest probability of 10%, the positive predictive value
(PPV) of CTA was 50.9% (95% CI 40.9–60.2) while the
PPV of exercise-ECG was 19.1% (95% CI 12.8%–27.5%)
and that of SPECT was 32.2 (95% CI 22.5–45.2). At a
pretest probability of 74%, the NPV of CTA was 85.2%
(95% CI 78.0–90.4) while the NPV of exercise-ECG was
41.9% (95% CI 32.5–0.50.6) and that of SPECT was 34.8%
(95% CI 24.6–49.0).

Multiple imputation analysis and covariates
Results of the multiple imputation analysis based on all
2920 patients (Appendix Table 7) revealed a significant
influence of the covariates Agatston Score, heart rate, and
chest pain on the specificity of CTA and functional test
results with CTA outperforming SPECT and ECG in
terms of sensitivity and specificity. Patients with an
increased heart rate and higher Agatston Score with lower
specificity using all diagnostic tests. The type of chest pain
mainly influenced the specificity of all (functional and

anatomical) diagnostic tests, which were best in patients
with typical angina pectoris. Higher heart rates led to
lower sensitivity of all tests. Models investigating test-
specific effects of the covariates failed to converge so that
only the overall influence of these covariates is reported.

Discussion
In this pooled analysis of patient-level data, we show that
both the sensitivity, as well as specificity of coronary CTA,
are higher than that of exercise-ECG and SPECT for the
diagnostic assessment of CAD using ICA as the reference
standard. The findings are not applicable to the detection
of myocardial ischaemia, which was not included in the
COME-CCT protocol. Across a wide range of clinical
pretest probabilities, the diagnostic performance of CTA
was better than that of functional stress testing. Results
were consistent across populations from 21 different sites
in 16 countries suggesting that the benefit of CTA is
generalisable, and that CTA should be more widely
adopted in patients with suspected CAD based on stable
chest pain. This adds clear evidence to previous small
studies that indicated CTA might outperform functional
testing for the diagnosis of obstructive CAD [5–7]. Thus,

Table 1 Patient characteristics

Continuous characteristics

Overall Women Men

Mean (SD) Range Missings, % Mean (SD) Range Missings, % Mean (SD) Range Missings, %

Age 61.7 (10) 26–92 0 62.9 (10.2) 26.9–91 0 61.1 (9.9) 26–92 0

BMI 26.6 (3.7) 15.5–45.2 0.03 26.6 (4.3) 16.7–45.2 0.1 26.7 (3.4) 15.5–41.8 0

Pre-test probability 47.9% (22.2) 5–93% 0% 19.2% 5–77% 0% 55.7% (19.3) 15–93% 0%

Binary characteristics

Overall Women Men

N Percentage Missings, % N Percentage Missings, % n Percentage Missings, %

Total 2920 0 963 33 0 1957 67 0

Diabetes 582 19.9 0.03 159 16.5 0 423 21.6 0.05

Dyslipidaemia 1603 54.9 0.24 529 54.9 0.62 1074 54.9 0.05

Hypertension 1581 54.1 0 535 55.6 0 1046 53.4 0

Slightly obese (BMI 25–30) 1470 50.3 0.03 441 30 0.1 1029 70 0

Obesity class I (BMI 30–35) 413 14.1 0.03 139 33.7 0.1 274 66.3 0

Obesity class II or above

(BMI > 35)

68 2.3 0.03 39 57.3 0.1 29 42.6 0

Family history of CAD 898 30.8 10.7 317 32.9 16.7 581 29.7 7.7

Active smoker 745 25.5 0.03 195 20.2 0.1 550 28.1 0

Former smoker 575 19.7 7.7 190 19.7 8.3 385 19.7 7.4

BMI body mass index, CAD coronary artery disease, SD standard deviation
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Table 2 Diagnostic accuracy of CTA, exercise-ECG, and SPEC

Pre-test

probability

All subjects < 10% 10 to

< 20%

20 to

< 30%

30 to

< 40%

40 to

< 50%

50 to

< 60%

60 to

< 70%

70 to

< 80%

80 to

< 90%

90 to

100%

N 2920 41 313 328 451 454 432 314 254 296 37

TP 1424 7 85 113 198 234 213 165 171 213 25

TN 1076 22 181 160 198 159 147 100 50 50 9

FP 330 11 44 44 49 51 60 30 22 17 2

FN 90 1 3 11 6 10 12 19 11 16 1

PPV 81.2 (79.4–83) 61.1

(38.6–83.6)

65.9

(57.7–74.1)

72

(64.9–79)

80.2

(75.2–85.1)

82.1

(77.7–86.6)

78

(73.1–82.9)

84.6

(79.6–89.7)

88.6

(84.1–93.1)

92.6

(89.2–96)

92.6

(82.7–100)

NPV 92.3 (90.7–93.8) 95.7

(87.3–100)

98.4

(96.5–100)

93.6

(89.9–97.2)

97.1

(94.7–99.4)

94.1

(90.5–97.6)

92.5

(88.3–96.6)

84

(77.5–90.6)

82

(72.3–91.6)

75.8

(65.4–86.1)

90

(71.4–100)

Sensitivity 94.1 (92.9–95.2) 87.5

(64.6–100)

96.6

(92.8–100)

91.1

(86.1–96.1)

97.1

(94.7–99.4)

95.9

(93.4–98.4)

94.7

(91.7–97.6)

89.7

(85.3–94.1)

94

(90.5–97.4)

93

(89.7–96.3)

96.2

(88.8–100)

Specificity 76.5 (74.3–78.7) 66.7

(50.6–82.8)

80.4

(75.3–85.6)

78.4

(72.8–84.1)

80.2

(75.2–85.1)

75.7

(69.9–81.5)

71

(64.8–77.2)

76.9

(69.7–84.2)

69.4

(58.8–80.1)

74.6

(64.2–85)

81.8

(59–100)

LR+ 4 2.6 4.9 4.2 4.9 3.9 3.3 3.9 3.1 3.7 5.3

LR− 0.08 0.2 0.04 0.1 0.04 0.05 0.08 0.1 0.09 0.09 0.05

N 1540 22 163 168 210 229 245 170 144 179 10

TP 721 4 38 51 86 103 112 93 94 132 8

TN 585 10 101 82 96 93 99 48 28 27 1

FP 182 7 22 31 22 28 27 18 14 12 1

FN 52 1 2 4 6 5 7 11 8 8

PPV 59.8 (56.3–63.4) 66.7

(40–93.3)

70.1

(59.9–80.4)

60

(48.1–71.9)

51.6

(41.5–61.6)

56.2

(46.7–65.7)

55.4

(46.2–64.6)

72.5

(62.7–82.3)

76.6

(67.2–86.1)

91.5

(86.2–96.8)

100

(100–100)

NPV 58.6 (55.2–62) 90

(71.4–100)

80.2

(71.8–88.6)

71.8

(63.2–80.5)

60 (51–69) 60.5

(51.9–69.1)

57.1

(48.7–65.6)

51.1

(40.8–61.4)

64.2

(52.7–75.7)

58.9

(47.6–70.2)

60

(17.1–100)

Sensitivity 56.8 (53.3–60.3) 80

(44.9–100)

57.5

(42.2–72.8)

52.7

(39.5–65.9)

50

(39.8–60.2)

54.6

(45.2–64)

52.1

(43.1–61.1)

55.8

(46.2–65.3)

57.8

(48.3–67.4)

69.3

(61.6–76.9)

62.5

(29–96)

Specificity 61.5 (58.1–65) 52.9

(29.2–76.7)

56.1

(47.3–64.9)

65.5

(56.7–74.3)

58.5

(49.6–67.4)

62

(53.3–70.6)

60.3

(51.8–68.9)

66.7

(55.3–78)

57.1

(42.2–72.1)

76.9

(63.7–90.1)

100

(100–100)

LR+ 1.5 1.7 1.3 1.5 1.2 1.4 1.3 1.7 1.3 3 1.7

LR− 0.7 0.4 0.8 0.7 0.9 0.7 0.8 0.7 0.7 0.4 0.4

N 532 6 63 47 60 79 74 66 49 77 11

TP 277 1 19 17 31 38 43 34 33 53 8

TN 166 2 33 19 20 30 16 20 9 15 2

FP 60 2 10 9 9 8 11 6 3 2

FN 29 1 1 2 3 4 6 4 7 1

PPV 63.6 (58.5–68.7) 66.7

(28.9–100)

62.8

(48.3–77.2)

51.7

(33.5–69.9)

61.1

(45.2–77)

55.8

(42.3–69.3)

72.3

(59.6–85.1)

66.7

(52.4–80.9)

81.5

(66.8–96.1)

84.3

(74.3–94.3)

75 (45–100)

NPV 53.4 (46.3–60.5) 80

(62.5–97.5)

77.8

(58.6–97)

62.5

(43.1–81.9)

55.6

(36.8–74.3)

51.9

(33–70.7)

50 (30–70) 68.2

(48.7–87.6)

65.4

(47.1–83.7)

100

(100–100)

Sensitivity 70.9 (65.8–76) 100

(100–100)

80

(62.5–97.5)

78.9

(60.6–97.3)

71

(55–86.9)

70.7

(56.8–84.7)

72.3

(59.6–85.1)

70

(55.8–84.2)

59.5

(43.6–75.3)

71.7

(60.3–83.1)

66.7

(35.9–97.5)

Specificity 54.9 (48.4–61.4) 100

(100–100)

62.8

(48.3–77.2)

50

(31.5–68.5)

51.7

(33.5–69.9)

60.5

(45–76.1)

51.9

(33–70.7)

53.8

(34.7–73)

58.3

(30.4–86.2)

52.9

(29.2–76.7)

100

(100–100)

LR+ 1.6 2.2 1.6 1.5 1.8 1.5 1.5 1.4 1.5 0.9

LR− 0.5 0 0.3 0.4 0.6 0.5 0.5 0.6 0.7 0.5 0.3

Data show the diagnostic performance for all three non-invasive tests versus invasive angiography as the reference standard with 95% CI divided into 10% steps of
pre-test probability. PPV and NPV are positive and negative predictive values
LR likelihood ratio
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CTA may provide a more solid basis for diagnostic and
treatment decision-making. However, the broad inclusion
for instance of all patients with atypical or typical angina
pectoris might require revision as we have shown that
reliably excluding obstructive CAD by CTA (NPV of at
least 85%) works best up to a clinical pretest probability of
74%. Confirming obstructive CAD based on a positive
CTA yields post-test probabilities of > 75% above clinical
pretest probabilities of 39% which should be considered in
the decision-making.

Comparison with previous studies
In a per-study-level meta-analysis of randomised trials,
CTA compared with functional stress testing was asso-
ciated with a reduced incidence of myocardial infarction
[47]. This further supports the conclusions from the
present IPD meta-analysis of diagnostic accuracy studies.
In a network meta-analysis comparing CTA, SPECT, PET,
and MRI on the per-study (not per-patient) level with ICA
or fractional flow reserve (FFR) it was demonstrated that
each diagnostic modality has its own optimal performance
pretest probability [48]. For the choice between stress
testing and coronary CTA, the ESC guideline

recommends considering whether patients are suitable
and if local expertise in one or the other diagnostic test is
present. Nowadays local expertise is commonly present
for both stress testing and CTA, while our study shows
that if local expertise is available, coronary CTA should be
considered as the primary test for the exclusion of
obstructive CAD. Our results may help in choosing the
most appropriate non-invasive test before proceeding to
ICA potentially resulting in an increase of the reportedly
lower diagnostic yield of invasive angiography [49].
Importantly, the ISCHEMIA trial suggests that an
ischaemia detection strategy with subsequent invasive
interventions may not result in improved outcomes [3].
The COME-CCT consortium used (quantitative) cor-
onary angiography as the reference standard for the direct
visualisation of coronary obstructions [8]. Considering the
low uptake of invasive FFR worldwide [50], the pragmatic
reference standard used in COME-CCT reflects clinical
practice at the time of data collection.
In line with our results, previous results indicate that

CT reduces false-positive rates compared with functional
testing [51]. In contrast, compared to most previous
publications, exercise-ECG and SPECT performed worse
in the present study, while past meta-analyses and current
guidelines report 61%–68% sensitivity and 70%–77%
specificity for exercise-ECG and 73%–91% sensitivity and
48%-90% specificity for SPECT our analysis reveals a
much lower diagnostic performance for the two tests,
likely due to the selected population [52–59]. In the
prospective multicentre PICTURE trial directly compar-
ing SPECT and CTA with ICA with 50% lumen reduction
for CAD detection as the reference standard, sensitivity
was 92.0 versus 54.5% for CTA and SPECT, respectively,
while specificity was 87.0% versus 78.3%. Applying a 70%
lumen reduction threshold for the definition of significant
CAD, CTA, and SPECT yielded similar results (sensitivity
92.6% versus 59.3% and specificity 88.9% versus 81.5%)
[60]. In contrast, the COME-CCT protocol prespecified
50% coronary stenosis as the definition of obstructive
CAD [8] similar to almost all studies available at the time
of planning this IPD analysis [49]. Moreover, using a cut-
off of 50% was assumed to not miss obstructive disease as
defined [61]. Importantly, we found no evidence of
selection bias in our cohort when comparing the diag-
nostic accuracy of CTA in the patients with and without
available information on functional testing. Moreover,
CTA as a non-invasive anatomical test holds an advantage
regarding the evaluation of further imaging criteria, such
as coronary plaque analysis, which plays an important role
in further risk stratification and may be useful for the
prediction of future cardiovascular events. Whereas
functional tests have the advantage of functional and flow-
relevant assessment of the coronary arteries.

Table 3 Overall statistical model without additional covariates

Generalised linear mixed model (basic)

Fixed effects Estimate

(S.E.)

95% LCI 95% UCI

Intercept −1.170 (0.110) −1.387 −0.953

CATH yes 4.032 (0.166) 3.706 4.358

ECG 0.726 (0.103) 0.525 0.927

SPECT 1.374 (0.163) 1.054 1.694

CATH yes * ECG −3.392 (0.173) −3.732 −3.052

CATH yes * SPECT −3.245 (0.244) −3.723 −2.767

Random effects Variance Standard

deviation

Correlations

Study no.

(intercept)

0.311 0.558

CATH yes 0.261 0.511 −0.180

Patient in study 2.125e-05 0.0046 −0.53, 0.02

Each effect is significant; fixed effects: estimates of regression coefficients. The
intercept stands for 1-specificity and the sum of the intercept and CATH yes
represents sensitivity. Random effects quantify between-study and between-
patient variability. The variance of the random effects of the intercept
corresponds to the between-studies variability of 1-specificity, the random
effects variance of CATH yes to between-studies variability of sensitivity, and the
random effects variance of Patient in Study corresponds to the between-patient
variability within studies. As can be seen from the results in Table 3 for
1-specificity (intercept) with random effects variance equal to 0.311 and random
effects variance equal to 0.265 for sensitivity (Catheter yes)
SE standard error, CI 95% confidence interval, LCI lower confidence interval, UCI
upper confidence interval
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Quality assurance and interpretation of results
To verify if exercise-ECG and SPECT were conducted
according to quality standards, participating sites
reported their protocols of functional tests (Appendix
Tables 2 and 3). According to these data, all SPECT
examinations and the majority of exercise-ECG examina-
tions of CAD patients were done using standardised cri-
teria [2, 52]. Thus, a likely reason for the lower diagnostic
accuracy of functional stress testing compared with CTA
is that these tests cannot directly visualise obstructive
disease. However, in light of the ORBITA trial, a much
more comprehensive strategy for the diagnosis of CAD
that includes anatomic and functional criteria will be
required to improve the selection of patients who benefit
from the most aggressive treatment [53]. A second aspect,
that may influence reported diagnostic accuracy, is ver-
ification bias [53]. The methodologically robust inclusion
of all patients with functional testing and CT prior to the
reference standard most likely reduced referral bias, which
cannot be entirely avoided and has been reported to lead
to erroneously high diagnostic sensitivity as shown by
Ladapo and co-workers [54, 55]. The solid approach of

comparing CT and functional testing with the reference
standard ICA used in the current collaborative meta-
analysis may thus explain especially the lower sensitivity
for functional testing compared to reports that were
influenced by referral bias. Moreover, the reference stan-
dard used for this comparison was also a morphological
imaging test (invasive catheter angiography), similar to
CT, which may also explain the low diagnostic accuracy of
functional tests in this analysis. In addition to that evi-
dence is missing whether functional tests using state-of-
the-art technology provide better diagnostic accuracy as
most of the mentioned studies were performed a SPECT
generation ago. Magnetic resonance imaging, which has
shown higher diagnostic accuracy than SPECT in the CE-
MARC study [54], was only rarely done as cardiac stress in
patients included in COME-CCT, thus intraindividual
comparison was not performed. Our results are also sup-
ported by a recent study by Patel et al, demonstrating that
performing CTA first leads to the highest diagnostic yield
of ICA (70%) while using functional testing leads to a
lower diagnostic yield (45%) [55]. Furthermore, functional
stress tests have been shown not to improve discriminative

Fig. 3 Similar diagnostic performance of CTA, Exercise-ECG, and SPECT after excluding studies with risk of bias. Similar diagnostic performance as shown
in Fig. 2 after including all individual-patient data, is found in this analysis in which studies with a high risk of bias [7, 28, 33, 36, 40, 43, 44, 48] were
excluded and only studies with low risk of bias were included (details on the risk of bias assessment is shown in Appendix Table 2)
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ability [56]. With our results, we have also clearly shown
the ability of CTA for the identification of patients with
moderate-to-severe CAD. However, especially in this
patient cohort these results do not necessarily prove or
evaluate the possible reduction of unnecessary ICA, which
should be addressed in future studies and analyses. In
summary, the present work provides further evidence for
the superior diagnostic accuracy of CTA compared to
exercise-ECG and SPECT.
Moreover, the SCOT-HEART and the CRESCENT trial

(Calcium imaging and selective CTA in comparison to
functional testing for suspected CAD), both comparing
CTA with functional cardiac tests, found a reduction in
cardiac events for the CTA group after a median follow-up
of 1.7 years or 1.2 years [4, 57, 58]. The improvement is
likely due to the change in preventive therapy regimens
through CTA, such as prescription of statins, aspirin and
smoking cessation, especially in the large patient group
with non-obstructive CAD [58]. Interestingly, a post-hoc

analysis of the SCOT-HEART trial revealed an association
of exercise-ECG with revascularisation procedures and
future risk of adverse coronary events, but to a lower extent
than CTA while CTA also offers information about unde-
tected CAD and improves clinical decision-making [59].

Study limitations and strengths
Our meta-analysis had three major limitations.
Fourteen studies including 1367 patients (47.8%) used
CT scanners with less than 64 detector rows
[5, 6, 24, 26, 30–32, 34, 35, 37, 39, 41–43, 45]. These
studies contributed to the majority of the non-
diagnostic test results, and because of the conservative
approach that was used, this led to lower sensitivities
and specificities for CTA. However, CTA still out-
performed SPECT and exercise-ECG. Nowadays, the use
of updated state-of-the-art technology with more than
64 detector-row CT scanners may increase diagnostic
performance in general.

Fig. 4 Cross-hair comparison of CTA, Exercise-ECG, SPECT of per-study sensitivity, and false-positive rate. The lines represent 95% confidence intervals for
sensitivity and false-positive rate based on the per-study data for CT, exercise-ECG, and SPECT. The per-study forest plots for all three tests and the results
of all individual studies are also shown in Appendix Figs. 5–8
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Assuming increased diagnostic accuracy, this would also
most likely lead to improvement with less frequent non-
diagnostic results and an overall reduction in radiation
dose leading to more wider availability of CTA to further
patients. Second, the use of obstructive CAD defined by
the COME-CCT collaborators as the reference standard is
not optimal for evaluating functional tests. The PACIFIC
study demonstrated using FFR in ICA as a reference
standard for detecting hemodynamically significant ste-
noses, CTA with a ≥ 50% lumen reduction as a cut-off for
significant stenoses criterion performed worse than PET
[62]. Yet, using obstructive CAD in ICA as the reference
standard reflects clinical practice with a low adoption rate
of below 10% of FFR during ICA [50]. The third limitation
is the amount of missing data which was addressed by
using multiple imputations for reduction of bias as
described to be superior to complete case analysis even
with large proportions of missing data [63, 64].
The major strength of this study is the IPD meta-

analysis approach to diagnostic accuracy using GLMM,
which has not been used before in comparing the diag-
nostic accuracy of CTA with SPECT and exercise-ECG
and is generally rarely employed in diagnostic accuracy
studies [65–69]. There was between-study heterogeneity
for 1-specificity (intercept) and sensitivity. We assume
that heterogeneity was most likely due to differences in
the patient population. However, GLMM can account for
some degree of heterogeneity when the study is intro-
duced into the model as a random effect, as has been done
in this IPD meta-analysis [65].

Conclusions
Coronary CTA improves the diagnostic assessment of
patients with suspected obstructive CAD based on stable
chest pain when compared with functional stress testing.
Diagnostic benefits of CTA over cardiac stress testing are
seen across a wide range of clinical pretest probabilities
and CTA should become widely adopted in patients with
intermediate pretest probability.
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