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Abstract
Purpose To investigate the performance of histogram features of non-Gaussian diffusion metrics for diagnosing
muscle invasion and histological grade in bladder cancer (BCa).

Methods Patients were prospectively allocated to MR scanner1 (training cohort) or MR2 (testing cohort) for
conventional diffusion-weighted imaging (DWIconv) and multi-b-value DWI. Metrics of continuous time random walk
(CTRW), diffusion kurtosis imaging (DKI), fractional-order calculus (FROC), intravoxel incoherent motion (IVIM), and
stretched exponential model (SEM) were simultaneously calculated using multi-b-value DWI. Whole-tumor histogram
features were extracted from DWIconv and non-Gaussian diffusion metrics for logistic regression analysis to develop
diffusion models diagnosing muscle invasion and histological grade. The models’ performances were quantified by
area under the receiver operating characteristic curve (AUC).

Results MR1 included 267 pathologically-confirmed BCa patients (median age, 67 years [IQR, 46–82], 222 men) and
MR2 included 83 (median age, 65 years [IQR, 31–82], 73 men). For discriminating muscle invasion, CTRW achieved the
highest testing AUC of 0.915, higher than DWIconv’s 0.805 (p= 0.014), and similar to the combined diffusion model’s
AUC of 0.885 (p= 0.076). For differentiating histological grade of non-muscle-invasion bladder cancer, IVIM
outperformed a testing AUC of 0.897, higher than DWIconv’s 0.694 (p= 0.020), and similar to the combined diffusion
model’s AUC of 0.917 (p= 0.650). In both tasks, DKI, FROC, and SEM failed to show diagnostic superiority over DWIconv
(p > 0.05).

Conclusion CTRW and IVIM are two potential non-Gaussian diffusion models to improve the MRI application in
assessing muscle invasion and histological grade of BCa, respectively.

Critical relevance statement Our study validates non-Gaussian diffusion imaging as a reliable, non-invasive
technique for early assessment of muscle invasion and histological grade in BCa, enhancing accuracy in diagnosis and
improving MRI application in BCa diagnostic procedures.
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Key Points
● Muscular invasion largely determines bladder salvageability in bladder cancer patients.
● Evaluated non-Gaussian diffusion metrics surpassed DWIconv in BCa muscle invasion and histological grade diagnosis.
● Non-Gaussian diffusion imaging improved MRI application in preoperative diagnosis of BCa.

Keywords Diffusion-weighted imaging, Bladder cancer, Muscle invasion, Histological grade
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Introduction
Bladder cancer (BCa) is a significant global health concern,
ranking as the 10th most commonly diagnosed cancer
worldwide and carrying the highest per-patient lifetime
treatment costs [1, 2]. Precision clinical management of
BCa depends highly on evaluating muscle invasion and
histological grade, categorizing it into three major risk
groups: low-grade non-muscle-invasive bladder cancer
(LG-NMIBC), high-grade (HG)-NMIBC, and muscle-
invasive bladder cancer (MIBC), each requiring distinct
treatment strategies [3–5]. Muscle invasion is the foremost
consideration for urologists when determining the feasi-
bility of bladder preservation in patients [3, 4]. Subse-
quently, histological grade guides assessments for repeat
resection, follow-up frequency, and treatment intensity in
NMIBC patients [3, 5, 6]. Hence, accurate preoperative
staging and grading are crucial for precision medicine and
optimal resource allocation [7]. Transurethral resection of

bladder tumor (TURBT) and MRI are standard procedures
for preoperative assessment. However, TURBT is invasive
with risks of understaging and undergrading [8, 9]; con-
versely, MRI often encounters overstaging and can’t
directly assess histological grade [10, 11].
Diffusion-weighted imaging (DWI) emerges as a pro-

mising tool for quantifying tumor microstructure [12–14].
Conventional DWI (DWIconv) is a Gaussian diffusion
model, assuming that the probability of water molecules
moving in any direction within tissues is equal [12]. Thus,
the Gaussian assessment of DWI is applicable to micro-
environments with simple structures. Conversely, non-
Gaussian diffusion models posit unequal movement of
water molecules across directions due to obstacles like
cell membranes, fibers, and vascular walls [12, 14]. Thus,
the non-Gaussian assessment of DWI is more applicable
to actual microenvironments with complex structures. To
better connect diffusion model metrics with biologically
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pertinent microstructures, many non-Gaussian diffusion
models, like intravoxel incoherent motion (IVIM), diffu-
sion kurtosis imaging (DKI), stretched exponential model
(SEM), fractional-order calculus (FROC), and continuous
time random walk (CTRW), have been developed. In a
recent study [15], the FROC has outperformed DWIconv in
diagnosing muscle invasion (accuracy, 78% vs. 69%) and
histological grade (accuracy, 88% vs. 74%).
However, the theoretical advantages of non-Gaussian

diffusion models have never been extensively validated in
BCa clinical practice. Thus, we aim to compare the
diagnostic performances of non-Gaussian diffusion
models and DWIconv for muscle invasion and histological
grade in BCa.

Materials and methods
Study participants
This prospective study (No. K-K112) received approval
from our hospital’s ethics committee and consecutively
involved a total of 632 participants with suspected
bladder tumors from January 2022 to July 2023.
Informed consent was obtained prior to MRI examina-
tions. Participants were randomly assigned to two MRI
scanners (MR1: training cohort; MR2: testing cohort) for
multi-b-value scanning with a ratio of 4:1 [16]. Inclusion
criteria mandated pathological confirmation (TURBT
or radical cystectomy) of non-metastatic urothelial car-
cinoma within two weeks following the MRI examina-
tion. Exclusion criteria and process of participant
selection are shown in Fig. 1A. According to patholo-
gical results [17, 18], all included patients were divided
into three groups: MIBC (pT stage ≥ 2), HG-NMIBC and
LG-NMIBC.

MRI parameters
To ensure sufficient bladder distension, participants were
instructed to empty their bladder 1–2 h before the
MRI examination, avoiding drinking or urinating until the
scan was completed. Multi-b-value DWI (11 b values of 0,
50, 100, 150, 200, 500, 800, 1000, 1500, 2000, and
2500 sec/mm2) was performed after routine scan
sequences of T1-weighted, T2-weighted, conventional
diffusion-weighted (b0: 0 sec/mm2; b1: 800 sec/mm2)
and dynamic contrast-enhanced (DCE). Multi-b-value
DWI acquisition was conducted using an integrated slice-
specific dynamic shimming single-shot echo planar
imaging (SS-EPI) sequence on a 3 T scanner MR1
(MAGNETOM Vida, Siemens Healthcare), with the
acquisition time of 11min 30 s, or using a multi-slice
SS-EPI sequence on one another 3 T scanner MR2
(MAGNETOM Skyra, Siemens, Healthcare), with the
acquisition time of 8 min. All parameters of imaging
acquisition were documented in Appendix Table S1, S2.

Image processing
The metric map of DWIconv, apparent diffusion coefficient
(ADC), was generated on the scanner console with a mono-
exponential formula [12]: S ¼ S0 exp �bADCð Þ, where S
represents the diffusion-weighted signal and S0 represents
the signal intensity without diffusion weighting, ADC
reflects the average diffusion rate.
A total of 13 metrics of five non-Gaussian diffusion

models, including (1) f, D and D* metrics of IVIM model;
(2) K and D metrics of DKI model; (3) α and DDC metrics
of SEM model; (4) β, μ and D metrics of FROC model;
(5) α, β and D metrics of CTRW model, were simulta-
neously generated from multi-b-value data using an in-
house developed software (BoDiLab) based on the open-
source Python toolkit DIPY (https://dipy.org). Details
were as follows [12, 14, 15]:
(1) S ¼ S0 f exp �bD�ð Þ þ 1� fð Þ exp �bDð Þ½ � for the

IVIM, where f is the volume fraction of the
vasculature, D* reflects the diffusion in
microvasculature, and D reflects the pure diffusion
rate without perfusion;

(2) S ¼ S0 exp �bDþ 1
6K bDð Þ2� �

for the DKI, where K
reflects the complexity of tissue microstructures, D
reflects the diffusion rate with the consideration of
non-Gaussianity;

(3) S ¼ S0 exp �bDDCð Þα½ � for the SEM, where α
reflects the diffusion non-Gaussianity, and DDC
reflects the non-Gaussian diffusion rate;

(4) S ¼ S0 exp½�Dμ2 β�1ð Þ γGdδð Þ2βðΔ� 2β�1
2βþ1 δÞ� for the

FROC, where β reflects spatial fractional-order
index, and μ is another spatial metric to preserve
unites of mm2/s for D;

(5) S ¼ S0Eα½� bDð Þβ� for the CTRW, where α and β
reflect the wait time and step length in each water
molecular movement, and D reflects the diffusion
rate, taking into account the temporal and spatial
heterogeneity.

Histogram analysis
On the ADCmap and any one of the non-Gaussian diffusion
metric maps, the volume of interest (VOI) was manually
segmented around the whole tumor by two radiologists
(A and B, respectively with 10 and 8 years of experience in
MRI diagnosis, blinded to pathological results), using ITK-
SNAP (v3.8.0, http://www.itksnap.org). T2-weighted, con-
ventional diffusion-weighted (b= 800 sec/mm2), and DCE
images were used as references for adjusting delineation, the
necrosis regions (high T2-weighted, low diffusion-weighted,
and low DCE signals) and tumor stalks (low diffusion-
weighted signals) within VOIs were excluded. In cases with
multiple tumors, the lesion with highest Vesical Imaging
Reporting and Data System (VI-RADS) score was selected.
Radiologist C (30 years of experience in MRI diagnosis)
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reviewed the VOIs delineated by the two radiologists and
resolved controversies regarding lesion boundaries, necrotic
regions, tumor stalks, and VI-RADS scores.
The 13 non-Gaussian diffusion metric maps of IVIM-f,

IVIM-D, IVIM-D*, DKI-K, DKI-D, SEM-α, SEM-DDC,
FROC-μ, FROC-β, FROC-D, CTRW-α, CTRW-β, and
CTRW-D had identical dimensions, allowing the VOI to
be directly copied between them without the need of

registration. Then, employing FAE v0.5.6 (https://github.
com/salan668/FAE), a tool developed within the open-
resource framework pyradiomics, 18 types of histogram
features (Appendix Table S3) were extracted from the
ADC map and the 13 non-Gaussian diffusion metric
maps, resulting in a total of 252 features per participant.
The pipeline of image post-processing and histogram
analysis is shown in Fig. 1B.

Fig. 1 A Flowchart of participants selection and (B) pipeline of image post-processing and histogram analysis. NMIBC, non-muscle-invasive bladder
cancer; MIBC, muscle-invasive bladder cancer; LG, low-grade; HG, high-grade; DWIconv, conventional diffusion-weighted imaging; ADC, apparent diffusion
coefficient; IVIM, intravoxel incoherent motion; DKI, diffusion kurtosis imaging; SEM, stretched exponential model; FROC, fractional-order calculus;
CTRW, continuous time random walk; ICC, intraclass correlation coefficient; LASSO, least absolute shrinkage and selection operator
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VI-RADS scoring
Radiologists A, B and C have 5 years of experience in
interpreting VI-RADS. Since DCE scanning was not per-
formed on all participants, a bi-parametric VI-RADS
based on T2-weighted and conventional diffusion-
weighted images was used for lesions without DCE ima-
ges, while a multi-parametric VI-RADS was used for
lesions with DCE images. Referencing the standard scor-
ing system [19, 20], the distributions of bi-parametric and
multi-parametric VI-RADS scores are shown in Table 1.

Statistical analysis
Statistical analyses were conducted using R v4.2.1 (https://
www.r-project.org) and Python v3.9.7 (https://www.
python.org), with a two-sided p-value threshold set at

less than 0.05. The Mann–Whitney U test and Chi-square
test were employed for two-group comparisons of con-
tinuous data and categorical data, respectively.
In the training cohort, histogram features with an

intraclass correlation coefficient (ICC, a two-way random
effects model with two raters) below 0.80 were excluded
to ensure robustness. Based on the groups of MIBC vs.
NMIBC, and HG-NMIBC and LG-NMIBC, useful fea-
tures of CTRW, DKI, FROC, IVIM, SEM, and DWIconv
were sequentially identified by least absolute shrinkage
and selection operator (LASSO) combined with 10-fold
cross-validation, to construct logistic regression (LR)
models for each individual diffusion model. Significant
features (p value of LR less than 0.05) from individual
diffusion models were selected for correlation analysis.
After excluding redundant features (the absolute value of
Spearman coefficient > 0.70 and lower ICC), the remain-
ing features were used to construct the combined diffu-
sion model. The area under the receiver operating
characteristic (ROC) curve (AUC) was the main index of
model evaluation.
In the testing cohort, accuracy, sensitivity, and specificity

under maximal Youden’s index were calculated to test
the diagnostic performances of the models. The Delong
method was performed to compare the differences in AUC
values between the models. Decision curve analysis (DCA)
was used to compare the clinical utility of the models by
examining the net benefit across a range of threshold
probabilities. The Hosmer-Lemeshow (H-L) test was
employed to assess the fitting accuracy of the models.

Results
Participant characteristics
Overall, 350 consecutive eligible participants with uro-
thelial carcinoma were included in this study. Among the
267 participants (222 men, 45 women; median age, 67
years [IQR: 46–82]) assigned to MR1, 73 (27.3%) were
diagnosed with MIBC, and 194 (72.7%) with NMIBC.
Within the NMIBC group, 70 (36.1%) were identified as
HG, and 124 (63.9%) as LG. Among the 83 participants
(73 men, 10 women; median age, 65 years [IQR: 31–82])
assigned to MR2, 22 (26.5%) participants were diagnosed
with MIBC, and 61 (73.5%) participants were diagnosed
with NMIBC. In the NMIBC group, 19 (31.1%) were
identified as HG, and 42 (68.7%) as LG. The comparison
of clinical and pathological characteristics of participants
in MR1 and MR2 is shown in Table 1.

Correlation of diffusion metrics with muscle invasion in
bladder cancer
The intraclass correlation coefficient (ICC) values of 252
histogram features ranged from 0.648 to 0.998 (Appendix
Table S4). Two features with ICCs below 0.80, specifically

Table 1 Clinical characteristics of participants in training and
testing Cohorts

Characteristics Training cohort
(n= 267)

Testing cohort
(n= 83)

p value

Age 67 (46–82) 65 (31–82) 0.329
Gender 0.293

Female 45 (16.9) 10 (12.0)
Male 222 (83.1) 73 (88.0)

Smoking 0.561
Yes 132 (49.4) 38 (45.8)
No 135 (50.6) 45 (54.2)

Number of lesions 0.249
Single 199 (74.5) 67 (80.7)
Multiple 68 (25.5) 16 (19.3)

Location of lesions 0.074
Trigone 31 (11.6) 16 (19.3)
Others 236 (88.4) 67 (80.7)

Diameter of lesions (cm) 0.338
Less than 3 178 (66.7) 60 (72.3)
At least 3 89 (33.3) 23 (27.7)

Pathologic T stage 0.539a

Ta 61 (22.8) 26 (31.3)
T1 133 (49.8) 35 (42.2)
T2 47 (17.6) 16 (19.3)
T3 11 (4.2) 3 (3.6)
T4 15 (5.6) 3 (3.6)

Pathologic N stage
N0 222 (83.1) 70 (84.3) 0.999a

N1 29 (10.9) 9 (10.8)
N2 12 (4.5) 3 (3.6)
N3 4 (1.5) 1 (1.3)

Pathologic grade of NMIBC 0.481
Low 124 (63.9) 42 (68.7)
High 70 (36.1) 19 (31.1)

Multi-parametric VI-RADS 0.292a

1 11 (13.3) 2 (10.5)
2 54 (65.1) 9 (47.4)
3 6 (7.2) 4 (21.1)
4 6 (7.2) 2 (10.5)
5 6 (7.2) 2 (10.5)

Bi-parametric VI-RADS 0.971a

1 21 (11.4) 8 (12.5)
2 100 (54.3) 36 (56.3)
3 36 (19.6) 10 (15.6)
4 14 (7.6) 5 (7.8)
5 13 (7.1) 5 (7.8)

Unless otherwise specified, data out brackets represent numbers of patients,
data in brackets represent percentages, analyzed by chi-square test
Data of Age out brackets represent medians, in brackets represent interquartile
ranges, analyzed by Mann–Whitney U test
MIBC muscle-invasive bladder cancer, NMIBC non-muscle-invasive bladder cancer
aFisher’s exact test
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Table 2 Diffusion models in diagnosing muscle invasion of bladder cancer

Model Training cohort Testing cohort

Coef p value AUC (95% CI) AUC (95% CI) ACC Sen Spe

CTRW 0.966 (0.946–0.986) 0.915 (0.775–0.932) 87% 91% 85%

Intercept 11.104 < 0.001

α-skewness 0.654 0.003

D-meana −0.007 < 0.001

D-skewness 1.626 0.002

DKI 0.839 (0.784–0.894) 0.806 (0.679–0.933) 80% 77% 80%

Intercept −2.832 0.17

D-meana −0.001 0.048

D-skewness 0.857 0.119

D-uniformity 0.3 0.956

K-median 0.005 0.006

FROC 0.850 (0.797–0.902) 0.843 (0.720–0.965) 90% 77% 95%

Intercept 1.181 0.409

D-90Pa 0 0.711

D-meana 0 0.034

D-skewness 0.941 0.006

μ-uniformity 1.87 0.448

IVIM 0.840 (0.789–0.891) 0.838 (0.727–0.950) 80% 86% 77%

Intercept 0.394 0.705

D-kurtosis 0.007 0.953

D-mediana −0.003 0

D-skewness 0.672 0.183

D*-uniformity 2.644 0.037

f-skewness 0.721 0.09

SEM 0.839 (0.783–0.895) 0.781 (0.645–0.907) 81% 59% 89%

Intercept 0.475 0.638

α-energy 0 0.756

α-TE 0 0.753

DDC-meana −0.001 0.42

DDC-mediana 0 0.678

DDC-skewness 0.758 0.019

DWIconv 0.848 (0.798–0.899) 0.805 (0.645–0.907) 78% 77% 79%

Intercept 1.337 0.286

ADC-90Pa 0 0.632

ADC-meana −0.002 0.034

ADC-skewness 1.25 0

Combined 0.968 (0.947–0.988) 0.885 (0.790–0.980) 88% 82% 90%

Intercept 9.282 0

CTRW-α-skewness 0.788 0.002

CTRW-D-meana −0.008 0

CTRW-D-skewness 0.84 0.191

FROC-D-skewness 1.189 0.066

IVIM-D-mediana 0.003 0.167

IVIM-D*uniformity 0.698 0.726

CTRW continuous time random walk, DKI diffusion kurtosis imaging, FROC fractional-order calculus, IVIM intravoxel incoherent motion, SEM stretched exponential
model, DWIconv conventional diffusion-weighted imaging, ADC apparent diffusion coefficient, 90 P 90th percentile, TE total energy, CI confidence interval, ACC
accuracy, Sen sensitivity, Spe specificity
a×10−3 μm2/ms
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DKI-K-Kurtosis (ICC= 0.779) and SEM-α-Kurtosis
(ICC= 0.614) were excluded.
In the training cohort, LASSO identified several useful

metrics for classifying MIBC and NIMIBC, from each of
the individual diffusion models (Table 2), the univariate
analysis results of these metrics were documented in
Appendix Table S5. CTRW-α-skewness, CTRW-D-mean,
CTRW-D-skewness, DKI-D-mean, DKI-K-median, FROC-
D-mean, FROC-D-skewness, IVIM-D-median, IVIM-D*-
uniformity, SEM-DDC-skewness, DWIconv-mean, and
DWIconv-skewness were significant relevant metrics in each
individual diffusion model’s LR analysis, with all the
p values less than 0.05. Among them, DKI-D-mean, DKI-K-
median, FROC-D-mean, SEM-DDC-skewness, DWIconv-
mean, and DWIconv-skewness, which had lower ICCs
and strong correlations with other metrics, were
excluded from the combined diffusion model LR analysis
(Appendix Table S4).
CTRW-D-skewness, DKI-D-skewness, FROC-μ-uniformity,

IVIM-D*-uniformity, SEM-DDC-skewness, and DWIconv-
ADC-skewness were the representative metrics in each indi-
vidual diffusion model, with the highest LR coefficient. In the
training cohort, the six representative metrics were
significantly higher in MIBC than in NMIBC, with all the
p values less than 0.001. In the testing cohort, except for
IVIM-D*-uniformity (p= 0.093), the other five repre-
sentative metrics also significantly higher in MIBC than
in NMIBC, with all the p values less than 0.001
(Appendix Table S5). The distributions of CTRW-D-
skewness, the most useful metric for diagnosing muscle
invasion of BCa, in both the training and testing cohorts
are shown in Fig. 2A.

Diagnostic performance of diffusion metrics for muscle
invasion in bladder cancer
LR analysis showed that the CTRW, DKI, FROC, IVIM,
SEM, DWIconv, and the combined diffusion model per-
formed AUCs of 0.966, 0.839, 0.850, 0.840, 0.839, 0.848, and
0.968 for diagnosing muscle invasion in the training cohort,
respectively. Correspondingly, they performed AUCs of
0.915, 0.806, 0.843, 0.838, 0.781, 0.805, and 0.885 respec-
tively in the testing cohort (Table 2, Fig. 3). In the com-
parison of AUCs in the testing cohort (Table 3), the AUC of
CTRW was significantly higher than that of DWIconv
(p= 0.014), and similar to the combined diffusion model
(p= 0.076). CTRW was a highly sensitive non-Gaussian
diffusion model for diagnosing muscle invasion, and it
reached the highest sensitivity of 91% among all diffusion
models. The DCA (Fig. 4) showed that across all risk
threshold probabilities, the clinical net benefit of the CTRW
was similar to that of the combined diffusion model, and
both significantly superior to the DWIconv. In addition, the
calibration curve of the CTRW also demonstrated an
acceptable fitting condition, with the mean absolute error
(MAE) value of 0.020 based on 10,000 bootstrap repetitions.
Meanwhile, the combined model showed an MAE of 0.010.

Correlation of diffusion metrics with histological grade in
non-muscle-invasive bladder cancer
For the assessment of the histological grade of NMIBC,
several useful metrics were identified by LASSO from
each individual diffusion model in the training cohort
(Table 4), the comparisons of these metrics between HG
and LG were noted in Appendix Table S6. Significant
relevant metrics in the individual diffusion models include

Fig. 2 Distributions of the most useful metrics for assessing (A) muscle invasion of bladder cancer and (B) histological grade of non-muscle-invasive
bladder cancer in training and testing cohorts. CTRW, continuous time random walk; IVIM, intravoxel incoherent motion
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CTRW-β-skewness, CTRW-D-10P, DKI-K-mean, DKI-K-
median, FROC-β-median, FROC-β-skewness, IVIM-D-
median, IVIM-f-10P, SEM-α-median, SEM-α-skewness,
and SEM-DDC-10P, with all the p values of LR analysis
less than 0.05. LR analysis of DWIconv showed that no
metrics had a significant correlation to the histological
grade of NMIBC, with the p values of 0.098 (DWIconv-
ADC-10P), 0.844 (DWIconv-ADC-median), and 0.307

(DWIconv-ADC-skewness). Among the significant metrics,
CTRW-D-10P, DKI-K-median, FROC-β-skewness, IVIM-
D-median, SEM-α-median, and SEM-α-skewness had
strong correlations with other metrics and had weaker
consistencies were excluded for combined diffusion
model LR analysis.
In LR analysis of the single diffusion models, CTRW-β-

skewness, DKI-K-mean, FROC-β-skewness, IVIM-f-10P,

Fig. 3 Receiver operating character (ROC) curves for diffusion models. A, B ROC curves for the diagnosis of muscle invasion in the (A) training and (B)
testing cohorts, respectively. C, D ROC curves for the diagnosis of histological grade in the (C) training and (D) testing cohorts. respectively. AUC, area
under the receiver operating characteristic curves; CI, confidence interval; CTRW, continuous time random walk; DKI, diffusion kurtosis imaging; FROC,
fractional-order calculus; IVIM, intravoxel incoherent motion; SEM, stretched exponential model; DWIconv, conventional diffusion-weighted imaging
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SEM-α-skewness, DWIconv-ADC-skewness were repre-
sentative metrics with the highest coefficient. The com-
parisons, based on the Mann–Whitney U test, showed
that, in the training cohort, all representative metrics of
HG-NMIBC were significantly higher than those of LG-
NMIBC, with all the p values less than 0.05. In the testing
cohort, DKI-K-mean, IVIM-f-10P, and DWIconv-ADC-
skewness of HG-NMIBC were significantly higher than
those of LG-NMIBC, with all the p values less than 0.05
(Appendix Table S6). The distributions of IVIM-f-10P,
the most useful metric for assessing the histological grade
of NMIBC, in both training and testing cohorts, are
shown in Fig. 2B.

Diagnostic performance of diffusion metrics for
histological grade in non-muscle-invasive bladder cancer
In the training cohort, the LR analysis of CTRW, DKI,
FROC, IVIM, SEM, DWIconv, and the combined diffusion
model performed the AUCs of 0.742, 0.819, 0.739, 0.913,
0.766, 0.677, and 0.927 respectively for assessing the his-
tological grade of NMIBC (Table 4). In the testing cohort,
the AUCs of these models were 0.693, 0.812, 0.663, 0.897,
0.742, 0.694, and 0.917, respectively. The comparison of
AUCs in the testing cohort showed that IVIM performed
better than DWIconv (p= 0.020), and similarly to the
combined diffusion model (p= 0.650). IVIM and the
combined diffusion model both achieved the highest
testing accuracy of 89%. However, the former exhibited a
higher sensitivity of 84%, while the latter demonstrated a
higher specificity of 93%. Across most risk threshold
probabilities, the clinical benefit of the combined diffusion
model was slightly higher than that of the IVIM, with
both significantly outperforming the DWIconv (Fig. 4).
However, IVIM demonstrated a higher goodness-of-fit
compared to the combined diffusion model. Based on
the 10,000 bootstrap repetitions, IVIM achieved a lower
MAE of 0.033, compared to 0.053 of the combined dif-
fusion model.

Discussion
This research is characterized by several notable
strengths. First, we utilized the largest dataset to date to
validate the performance of non-Gaussian diffusion
models for diagnosing muscle invasion and histological
grade of BCa. Second, we employed two MRI scanners for
image acquisition, with one scanner’s data serving as an
independent testing cohort, ensuring the robustness of
our results. Third, all non-Gaussian diffusion models were
obtained simultaneously through post-processing of a
single multi-b-value scan, eliminating the need for repe-
titive scans. Furthermore, through comparison, we found
that CTRW and IVIM were potential individual non-
Gaussian models for BCa diagnosis. In diagnosing muscle
invasion, the testing AUC of CTRW (0.915) was the
highest and significantly higher than that of DWIconv
(0.805, p= 0.014). In diagnosing the histological grade of
NMIBC, the testing AUC of IVIM (0.897) was similar to
that of the combined diffusion model (0.917, p= 0.650),
and both significantly higher than the testing AUC of
DWIconv (both the p values below 0.05). With similar
diagnostic performance to the combined diffusion mod-
els, individual diffusion models are structurally simpler
and easier to apply in clinical practice.
Accurate preoperative assessment of muscle invasion

and histological grade of BCa is crucial for therapeutic
decisions [21, 22]. VI-RADS is a sensible tool for diag-
nosing muscle invasion of BCa, but the risk interpretation
of lesions with a score of 3 remains ambiguous, and the
diagnostic cutoff scores are still controversial [19, 20].
Moreover, although VI-RADS aims to standardize the
interpretation of MRI in BCa, its morphology-based
assessments still tend to be influenced by the subjective
experience of readers. In contrast, quantitative assess-
ment results based on the microstructural characteristics
of the tumor are more objective and stable. CTRW,
the best quantitative non-Gaussian diffusion model
for diagnosing muscle invasion of BCa in this study,

Table 3 Comparison of diffusion models for determining muscle invasion and grade of bladder cancer

CTRW DKI FROC IVIM SEM DWIconv Combined

CTRW … 0.047a 0.087a 0.107a 0.003a 0.014a 0.076a

DKI 0.028b … 0.327a 0.544a 0.554a 0.964a 0.111a

FROC 0.468b 0.005b … 0.890a 0.054a 0.117a 0.179a

IVIM 0.020b 0.214b 0.007b … 0.191a 0.400a 0.237a

SEM 0.211b 0.149b 0.052b 0.047b … 0.428a 0.033a

DWIconv 0.988b 0.150b 0.760b 0.020b 0.542b … 0.008a

Combined 0.002b 0.021b 0.000b 0.650b 0.003b 0.004b …

CTRW continuous time random walk, DKI diffusion kurtosis imaging, FROC fractional-order calculus, IVIM intravoxel incoherent motion, SEM stretched exponential
model, DWI diffusion-weighted imaging
aThe p values obtained from Delong’s test for the diffusion models applied in predicting muscle invasion
bThe p values obtained from Delong’s test for the diffusion models applied in assessing histological grade
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Fig. 4 Decision curve analysis (DCA) and calibration curves. Comparison of net benefit among best individual non-Gaussian diffusion models,
conventional diffusion-weighted imaging (DWIconv) models, and combined diffusion models for diagnosing (A) muscle invasion and (B) histological
grade. Calibration curves of (C, D) best individual non-Gaussian diffusion models and (E, F) combined diffusion models for diagnosing (C, E) muscle
invasion and (D, F) histological grade. Continuous time random walk (CTRW) and intravoxel incoherent motion (IVIM) are the best non-Gaussian
individual diffusion models with the highest area under the receiver operating characteristic curve for diagnosing muscle invasion and histological grade,
respectively.
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characterizes the nonlinear diffusion of water molecules,
which are “trapped” or “released” by tumor micro-
structures, using the temporal metric α and spatial metric
β [12, 14, 15, 23]. D-skewness, α-skewness and D-mean
were useful metrics in our CTRW model. MIBC, char-
acterized by deep invasion into the bladder wall, exhibits
higher cellular density, leading to a lower CTRW-D-
mean value (Appendix Table S5) compared to NMIBC
[24]. And the heterogeneity of cell proliferative cycle

stages, morphology, size, arrangement, and vascular dis-
tribution within MIBC, contributes more variable waiting
times and step lengths for particle diffusion [23]. This
results in higher CTRW-α-skewness and CTRW-D-
skewness values (Appendix Table S5).
Compared to CTRW, IVIM is a typical compartmen-

talized non-Gaussian diffusion model that divides tumors
into microvascular perfusion compartments and inter-
cellular diffusion compartments for analysis [25]. This

Table 4 Diffusion models in assessing histological grade of non-muscle-invasive bladder cancer

Model Training cohort Testing cohort

Coef p value AUC (95% CI) AUC (95% CI) ACC Sen Spe

CTRW 0.742 (0.672–0.813) 0.693 (0.556–0.830) 66% 95% 52%

Intercept 3.998 0.042

β-median −0.003 0.306

β-skewness 0.907 0.04

D-10Pa −0.002 0

DKI 0.819 (0.759–0.879) 0.812 (0.701–0.923) 70% 90% 62%

Intercept −7.257 0

K-mean 0.006 0.031

K-median 0.005 0.08

FROC 0.739 (0.669–0.810) 0.663 (0.516–0.809) 61% 90% 48%

Intercept 6.218 0.002

β-median −0.008 0.002

β-skewness 0.724 0.019

IVIM 0.913 (0.875–0.951) 0.897 (0.801–0.993) 89% 84% 90%

Intercept 0.217 0.844

D-mediana −0.005 0

f-10P 0.022 0

SEM 0.766 (0.699–0.833) 0.742 (0.620–0.864) 69% 84% 62%

Intercept 6.593 0.001

α-median −0.007 0.008

α-skewness 0.855 0.004

DDC-10Pa −0.001 0.007

DWIconv 0.677 (0.600–0.754) 0.694 (0.563–0.826) 66% 95% 52%

Intercept 0.591 0.614

ADC-10Pa −0.002 0.098

ADC-mediana 0 0.844

ADC-skewnessa 0.412 0.307

Combined 0.927 (0.892–0.961) 0.917 (0.839–0.996) 89% 79% 93%

Intercept −3.613 0.014

CTRW-β-skewness 0.888 0.146

DKI-K-mean 0.01 0.003

FROC-β-median 0.006 0.282

IVIM-f-10P 0.024 0

SEM-DDC-10Pa −0.002 0.067

CTRW continuous time random walk, DKI diffusion kurtosis imaging, FROC fractional-order calculus, IVIM intravoxel incoherent motion, SEM stretched exponential
model, DWIconv conventional diffusion-weighted imaging, ADC apparent diffusion coefficient, 10P 10th percentile, CI confidence interval, ACC accuracy, Sen sensitivity,
Spe specificity
a×10−3 μm2/ms
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allows for the separate assessment of hemodynamic
properties (metrics f and D*) and actual interstitial dif-
fusion (metric D). In this study, IVIM emerged as the
most useful model for assessing histological of NMIBC,
with its most significant metric, f-10P, indicating that
perfusion constitutes a key biological difference between
HG and LG tumors. Unlike LG-NMIBC, HG-NMIBC
exhibits a higher cell proliferation, leading to an increased
demand for perfusion [26, 27]. Thus, the IVIM-f-10P,
representing the 10th percentile of vascular volume frac-
tion in tumor, was significantly higher in HG-NMIBC
than in LG-NMIBC. The higher proliferation level also
results in congested interstitial spaces, reducing D-mean
in HG-NMIBC (Appendix Table S6) [28–30].

Notably, among six representative metrics in each task,
four of them were skewness metrics. In the CTRW model,
two of the three were skewness metrics. Skewness,
describing the asymmetry of data distribution, better
captures the heterogeneity of diffusion behavior in
tumors, as opposed to the mean, showing stronger resis-
tance to outliers [31]. Thus, skewness better describes the
heterogeneity of diffusion behavior in tumors. In the study
of Cui et al [15], the AUCs for diagnosing muscle invasion
based on FROC (β-mean, μ-mean, and D-mean) and
DWIconv (ADC-mean) models were only 0.782 and 0.730.
While through incorporating skewness metrics, the AUCs
of FROC and DWIconv models in our study improved to
0.843 and 0.805.

Fig. 5 T2-weighted (T2WI), conventional diffusion-weighted (DWI), and dynamic contrast-enhanced (DCE) images, and CTRW metric maps from (A–F) a
69-year-old male with non-muscle-invasive bladder cancer (NMIBC) and (G–L) a 60-year-old male with muscle-invasive bladder cancer (MIBC). A, G T2WI,
(B, H) DWI, and (C, I) DCE, along with (D, J) CTRW-α, (E, K) CTRW-β, and (F, L) CTRW-D metric maps integrated into the corresponding T2WI within the
tumors. In both patients, the Vesical Imaging Reporting and Data System assigned a score of 3. Additionally, all metric maps indicated that the lesion in
the MIBC appeared cooler and exhibited more variability in color, suggesting a higher degree of diffusion limitation and greater heterogeneity, both
temporally and spatially, within the lesion

Fig. 6 T2-weighted (T2WI), conventional diffusion-weighted (DWI), and dynamic contrast-enhanced (DCE) images, and CTRW metric maps from (A–F) a
60-year-old male with low-grade non-muscle-invasive bladder cancer (LG-NMIBC) and (G–L) a 63-year-old male with high-grade non-muscle-invasive
bladder cancer (HG-NMIBC). A, G T2WI, (B, H) DWI, and (C, I) DCE, along with (D, J) IVIM-D, (E, K) IVIM-D*, and (F, L) IVIM-f metric maps integrated into the
corresponding T2WI within the tumors. In both patients, the Vesical Imaging Reporting and Data System assigned a score of 3. The value of IVIM-D in HG
tumor was significantly lower, indicating the higher cellular density. Additionally, the color representation of IVIM-D* and IVIM-f in the HG tumor
appeared hotter and exhibited more variability, suggesting a higher degree of perfusion and greater heterogeneity within the lesion
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The current diagnostic process for BCa relies largely on
TURBT. However, a single TURBT often presents insuf-
ficient staging and grading, and its extent and depth of
resection are determined by the experience of urologists
[3–5]. Repeated invasive diagnosis caused mucosal
damage, infections, and patient substantial distress, and
waste of medical resources [32–34]. Our results demon-
strated the non-Gaussian diffusion models of CTRW and
IVIM possess acceptable accuracy and strong robustness
in assessing muscle invasion and histological grade. This
finding could advance the application of non-Gaussian
diffusion models in clinical practice, particularly ampli-
fying the standing of MRI in current diagnostic proce-
dures for BCa and reducing the dependence on TURBT.
Our study had limitations. First, both scanners origi-

nated from a single institution, suggesting that further
multicenter studies are needed to validate the reprodu-
cibility of these results. Second, excluding lesions with a
maximum diameter of less than 5mm or imaged in fewer
than 3 slices may introduce selection bias. Third, the long
acquisition time required for multi-b-value diffusion-
weighted scanning might cause discomfort to patients
with low tolerance. In addition, the time cost of image
post-processing needs to be further shortened. However,
clinical practice does not necessitate the use of all non-
Gaussian diffusion models. By focusing solely on the
CTRW and IVIM models, there is no need for scanning
with 11 b-values, which could significantly reduce both
scanning and post-processing times.

Conclusions
CTRW and IVIM are two potential non-Gaussian diffu-
sion models to assess muscle invasion and histological
grade for BCa, respectively. Compared with the DWIconv,
the new models improved the accuracy and sensitivity,
ultimately, contributing to improved outcomes in the
management of BCa.
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