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Abstract
Objectives To develop an interactive, non-invasive artificial intelligence (AI) system for malignancy risk prediction in
cystic renal lesions (CRLs).

Methods In this retrospective, multicenter diagnostic study, we evaluated 715 patients. An interactive geodesic-based
3D segmentation model was created for CRLs segmentation. A CRLs classification model was developed using spatial
encoder temporal decoder (SETD) architecture. The classification model combines a 3D-ResNet50 network for
extracting spatial features and a gated recurrent unit (GRU) network for decoding temporal features from multi-phase
CT images. We assessed the segmentation model using sensitivity (SEN), specificity (SPE), intersection over union (IOU),
and dice similarity (Dice) metrics. The classification model’s performance was evaluated using the area under the
receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA).

Results From 2012 to 2023, we included 477 CRLs (median age, 57 [IQR: 48–65]; 173 men) in the training cohort,
226 CRLs (median age, 60 [IQR: 52–69]; 77 men) in the validation cohort, and 239 CRLs (median age, 59 [IQR: 53–69];
95 men) in the testing cohort (external validation cohort 1, cohort 2, and cohort 3). The segmentation model and SETD
classifier exhibited excellent performance in both validation (AUC= 0.973, ACC= 0.916, Dice= 0.847, IOU= 0.743,
SEN= 0.840, SPE= 1.000) and testing datasets (AUC= 0.998, ACC= 0.988, Dice= 0.861, IOU= 0.762, SEN= 0.876,
SPE= 1.000).

Conclusion The AI system demonstrated excellent benign-malignant discriminatory ability across both validation and
testing datasets and illustrated improved clinical decision-making utility.

Critical relevance statement In this era when incidental CRLs are prevalent, this interactive, non-invasive AI system
will facilitate accurate diagnosis of CRLs, reducing excessive follow-up and overtreatment.
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Key Points
● The rising prevalence of CRLs necessitates better malignancy prediction strategies.
● The AI system demonstrated excellent diagnostic performance in identifying malignant CRL.
● The AI system illustrated improved clinical decision-making utility.

Keywords Cystic renal lesions, Bosniak-2019 classification, Deep learning, Radiomics
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Introduction
Cystic renal lesions (CRLs) are being detected more fre-
quently as CT becomes more commonplace [1, 2]. While
a small number of CRLs are malignant renal neoplasms
requiring surgical intervention, most CRLs are benign
cystic renal neoplasms or simple renal cysts which do not
require surgery [3, 4]. Precisely identifying the compo-
nents of CRLs is crucial for deciding on suitable treatment
approaches. Contrast-enhanced computed tomography
(CECT) imaging is frequently utilized to distinguish
among the different types of CRLs [5]. However, the
complex pattern of malignant CRLs on CECT images,
including septal thickness, mural nodule enhancement,
and calcifications presence, pose significant challenges for
both diagnosis and management, particularly when deal-
ing with early-stage cases [6].
Existing limitations in diagnosing malignant CRLs

necessitate novel approaches [2]. While the Bosniak-2019

classification aimed to improve accuracy, recent studies
have shown limited improvement compared to its pre-
decessor [3]. Additionally, the updated criteria reclassify a
significant portion of previously diagnosed class III
lesions, which also adds to the follow-up burden. The
misapplication of Bosniak categorization can lead to
inaccurate treatment and associated diagnostic errors,
resulting in adverse outcomes such as impairment of renal
function, re-operation surgery, and increased medical
disputes [7].
To overcome the challenges of subjective biases in

visual image evaluations and improve diagnostic sensi-
tivity (SEN), machine learning algorithms, trained on
quantitative data extracted from CT scans, are demon-
strating potential in differentiating between benign and
malignant CRLs [8]. Minisk et al identified six features
from nephrogenic CT phase scans, while Dana et al
focused on extracting radiomics features from
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nephrogenic CT phase scans. Both studies achieved pro-
mising results in differentiating between benign and
malignant CRLs by modeling these features [4, 9].
Our prior study has developed a blending ensemble

machine learning algorithm integrating quantitative
radiomics features with deep learning features, which
demonstrated favorable classification performance in
accurately differentiating between benign and malignant
CRLs [10]. However, the prior study only utilized corti-
comedullary phase CT images to build the machine
learning algorithm instead of multi-phase CT scans. In
CECT phases imaging (renal protocol), renal mass
enhancement is assessed by analyzing the difference in
Hounsfield units (HU) before and after contrast admin-
istration. An increase of fifteen or more HU value within
the solid tumor regions indicates enhancement, high-
lighting critical malignant renal neoplasms components
[11]. In this study, we aim to develop and validate an
interactive 3D U-Net segmentation model which can
efficiently segment CRLs in corticomedullary and
nephrogenic phase CT images [12]. To enhance the SEN
and specificity (SPE) of diagnosing CRLs, a spatial encoder
temporal decoder (SETD) deep learning classifier was
created and validated. SETD model utilizes a pre-trained
3D ResNet50 encoder block to extract spatial features and
a gated recurrent unit (GRU) network to decode temporal
features from multi-phase CT scans.

Methods
Study participants and inclusion criteria
Since this study was retrospective, informed consent was
not required, and the research ethics committees of each
participating hospital approved it. This study is in
accordance with the CLEAR checklist guidelines [13]. In
the segmentation model cohort, the inclusion criteria
were as follows: individuals with CRLs comprising less
than 25% solid tissue, diameter more than 1 cm, and
absence of history of prior kidney surgery or polycystic
kidney disease.
To ensure the generation of an optimal machine

learning model applicable to clinical practice, the inclu-
sion criteria for the SETD model’s training cohort were
histopathological analysis results after surgery as well as
CRLs cases with no progression observed in CT or MRI
imaging over a period of four years. To guarantee the
reliability of the SETD model’s performance, all enrolled
participants in the SETD validation and testing datasets
had confirmed histological diagnosis results. During the
construction of the SETD model, CRLs were incorporated
in a balanced distribution across the Bosniak classification
categories, enabling the model to capture the full varia-
bility of imaging appearances. Detailed inclusion and
exclusion criteria are displayed in Fig. 1.

CT acquisition protocol
The training cohort (The First Affiliated Hospital of
Chongqing Medical University), validation cohort
(The Second Affiliated Hospital of Chongqing Medical
University), external validation cohort 1 (Guangzhou First
People’s Hospital), and external validation cohort
3 (Chongqing University Fuling Hospital) used 128-slice
or 64-slice spiral CT scanners to obtain contrast-
enhanced CT scans. External validation cohort 2 (Yong-
chuan Hospital of Chongqing Medical University) used a
256-slice spiral CT scanner. All cohorts used standardized
CT imaging scanning protocols (Appendix Table E2). The
prior study only utilized corticomedullary phase CT
images to build the machine learning algorithm [10]. In
this study, the corticomedullary phase and nephrogenic
phase CT images were utilized to create the artificial
intelligence (AI) system.

ROI sketching and Bosniak-2019 system reclassification
quality control
All CRLs regions of interest (ROIs) labeling and Bosniak-
2019 reclassification was undertaken by two abdominal
radiologists (with more than 10 years clinical experience
in diagnostic radiology). To precisely delineate the CRL
margin, radiologists carefully reviewed multi-phase CT
image data using ITK-SNAP software, incorporating
information from the corticomedullary and nephrogenic
phases across axial, sagittal, and coronal planes. In cases
where there was contentious CRL sketching and con-
flicting classifications, another senior radiologist (FJ-L,
over 20 years of hands-on clinical experience in diagnostic
radiology, particularly in the interpretation of multi-phase
CT scans) would participate in the discussion. This col-
laboration ensured a consensus was reached on the final
ROIs sketching and Bosniak-2019 reclassification
outcomes.

Interactive segmentation model architecture
The proposed deep interactive segmentation method
based on 3D U-Net and geodesic distance transforms is
depicted in Appendixes E1 and E2. To reduce the inter-
actions required with radiologists, we implemented a two-
stage 3D U-Net segmentation approach, consisting of an
initial Proposal Network (P-net) for segmentation, fol-
lowed by a Refinement Network (R-net) for enhancing the
segmentation accuracy. P-net provides an initial auto-
matic segmentation by using a raw image with single
channel. The radiologist then verifies the segmentation
results and adds some interactions (clicks or scribbles) to
indicate the mis-segmented regions and 3D boundaries of
target CRLs. R-net takes the original image, the initial
segmentation, and the user interactions (encompassing a
total of four image channels) as inputs to provide a refined
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segmentation result. This iterative process allows the
radiologist to repeatedly provide feedback to R-net,
refining the outcomes based on P-net’s preliminary
automatic segmentation results.

Spatial encoder and temporal decoder model architecture
The SETD model adopts an encoder-decoder based
modular design, which takes preprocessed multiphase CT
images as input and generates the corresponding CRL
malignancy probability. To extract spatial features from
multi-phase CT images, the spatial encoder module uses a
deep convolutional neural network composed of the
encoder layers of 3DResnet50 network with pre-trained
weights. Following the outputs of the spatial encoder

module, the SETD incorporates a temporal decoder
module. This module consists of two GRU layers. The
GRU network is particularly effective in identifying evol-
ving patterns across the multiphase CT images, a critical
aspect in the differential diagnosis of malignant renal
tumors. The final step in the process involves passing the
GRU output through a linear layer, which calculates the
probability of malignancy (Fig. 2).

Statistical analysis
SEN, SPE, Intersection over union (IOU), and dice simi-
larity (Dice) were used to evaluate the segmentation
model. The area under the receiver operator characteristic
curve (AUC), decision curve analysis (DCA), and accuracy

Fig. 1 Flowchart of the enrollment process and pathology results for cystic renal lesions (CRLs) in each cohort. In the training cohort, benign CRLs were
identified using pathology criteria and a 4-year CT imaging follow-up. The validation cohort was employed for model validation. The external validation
cohort 1, cohort 2, and cohort 3 were combined for model testing
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score (ACC) were utilized to evaluate the performance of
SETD model compared with prior machine learning
models and Bosniak-2019 version. The level of statistical
significance was determined by two-sided p value of less
than 0.05. All models were implemented using MONAI
framework (version 1.12, https://monai.io/). The inter-
active segmentation model, SETD model and data pro-
cessing procedure are publicly available on GitHub
(https://github.com/jacobhqh1997/CRL_AI).

Results
Patient clinical characteristics
The characteristic distributions of the patients in each
cohort are summarized in Table 1. From 2012 to 2023, we
included 477 CRLs in the training cohort, 226 CRLs in the
validation cohort, and 239 CRLs in the testing cohort
(external validation cohort 1, cohort 2, and cohort 3).
Based on the 2005 Bosniak version, 11 CRLs in the

SETD training cohort were originally categorized as
Bosniak II (8 lesions) and III (3 lesions). After a 4-year
imaging follow-up, these were confirmed to be benign
renal cysts. Additionally, one CRL was reclassified to
Bosniak IV according to the updated 2019 Bosniak cri-
teria. Histopathological results have been obtained for all

lesions within the SETD validation and test cohorts, along
with malignant CRLs in the SETD training cohort.

Interactive segmentation model performance
Detailed performance metrics for both P-net and R-net in
the validation and testing datasets are presented in
Table 2. The proposed 3D R-net exhibited superior
accuracy (validation: Dice= 0.847, IOU= 0.743, SEN=
0.840, SPE= 1.000; testing: Dice= 0.861, IOU= 0.762,
SEN= 0.876, SPE= 1.000) with geodesic distance com-
pared to the P-net (validation: Dice= 0.781, IOU= 0.713,
SEN= 0.840, SPE= 1.000; testing: Dice= 0.803, IOU=
0.735, SEN= 0.775, SPE= 1.000). Figure 3 shows an
example usage of the initial CRLs segmentation and
refined CRLs segmentation by using radiologist-provided
margin points, respectively.

SETD classifier performance in CRL classification
The SETD model was evaluated on the validation and
testing datasets using the best training weights. The
model achieved a SEN of 100% and a SPE of 90.3% for the
malignancy prediction in the validation cohort, and a SEN
of 100% and a SPE of 97.2% for the malignancy prediction
in the testing cohort.

Fig. 2 Flowchart providing a detailed procedures used to construct the CRLs artificial intelligence (AI) system
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Bosniak-2019 system performance in CRL classification
The Bosniak-2019 classification system classified CRLs
into two groups: benign (I, II) and potentially malignant
(IIF, III, IV). The system achieved a SEN of 100% and a
SPE of 68.1% for the malignancy prediction in the vali-
dation cohort, and a SEN of 88.2% and a SPE of 85.5% for
the malignancy prediction in the testing cohort.

Machine learning algorithm performance in CRL
classification
We extensively assessed the preceding four machine learn-
ing algorithms based on our earlier research. The detailed
radiomic features used in the previous machine learning
algorithms are described in the Appendix E4. The Blending
ensemble classifier was the best-performing model in
the validation set (AUC= 0.902 (95% CI: 0.768–1.000),

ACC= 0.940 (95% CI: 0.938–0.941)). The lightgbm classifier
was the best-performing model in the testing set (AUC=
0.968 (95% CI: 0.942–0.993), ACC= 0.883 (95% CI:
0.881–0.884)). The detailed performance metrics of the four
models are presented in Table 3.

Clinical utility of SETD classifier
Figure 4 presents a comparative analysis of the AUC
performance of each model alongside the Bosniak-2019
classification, with the latter being specifically evaluated
by radiologists. Figure 5 shows a detailed comparison
between the confusion matrix of the SETD model and the
Bosniak-2019 classification, with the Bosniak classifica-
tion being evaluated by radiologists.
In the validation and testing datasets, the SETD model

demonstrated a statistically significant higher AUC value

Table 2 Performance of P-net and R-net models in validation and testing datasets

model Dice (%) IOU (%) SEN (%) SPE (%)

P-net (validation cohort) 78.10 ± 30.15 71.29 ± 29.55 84.01 ± 10.15 99.98 ± 0.04

P-net (test cohort) 80.30 ± 27.53 73.52 ± 28.39 77.45 ± 29.43 99.99 ± 0.02

R-net (validation cohort) 84.66 ± 8.63 74.26 ± 11.48 84.01 ± 10.15 99.98 ± 0.04

R-net (test cohort) 86.09 ± 7.15 76.23 ± 10.30 87.64 ± 8.58 99.96 ± 0.08

All performance metrics are reported as mean values along with their respective standard deviations
Dice dice similarity, SEN sensitivity, SPE specificity

Table 1 Baseline characteristics of patients with CRLs

Training cohort Validation cohort External validation

cohort 1

External validation

cohort 2

External validation

cohort 3

Patients (n) 403 150 31 44 87

Age (median-IQR) 57 (48–65) 60 (52–68.75) 58 (53–63.50) 60.50 (53–70) 60 (51.5–70.5)

Sex (male) 173 (42.9%) 77 (51.3%) 17 (54.8%) 29 (65.9%) 49 (56.3%)

Sex (female) 230 (57.1%) 73 (48.7%) 14 (45.2%) 15 (34.1%) 38 (43.7%)

Interactive segmentation model

Total renal cysts 477 226 44 74 121

Patients with isolated cysts 355 119 21 27 66

Patients with ipsilateral cysts 11 8 1 0 7

Patients with contralateral

cysts

25 6 8 11 10

Patients with ipsilateral and

contralateral cysts

12 17 1 6 5

SETD model

CRLs diameter (mean-SD, cm) 6.53 ± 2.99 6.61 ± 2.04 6.52 ± 2.51 6.55 ± 2.11 6.27 ± 1.96

Up to 4 years of imaging

follow-up (benign)

11 0 0 0 0

Benign (n= 346) 129 72 26 36 83

Malignant (n= 83) 55 11 5 8 4

In the SETD training cohort, all imaging follow-up assessments of CRLs were conducted over a duration of up to 4 years. All CRLs in the SETD external validation
cohorts had histopathological results
CRLs cystic renal lesions, SETD spatial encoder temporal decoder
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(validation: 0.973, 95% CI: 0.944–1.000; testing: 0.998, 95% CI:
0.993–1.000) compared to the Bosniak-2019 classification, as
indicated by the AUC DeLong test (p < 0.05). Figure 6 depicts
the results of DCA in each model performed on validation
and testing datasets, showing that the SETDmodel provides a
greater net benefit than the “none” and “all” treatment stra-
tegies for all considered threshold probabilities. The deep
learning system outperformed the Bosniak-2019 based man-
agement guideline in both the validation and testing datasets,

suggesting that clinical decision support could be improved
by employing the SETD algorithm. The Appendix
Figs. E3 and E4 shows a detailed confusionmatrix formachine
learning models and the Bosniak-2019 classification.

Discussion
In this retrospective multicenter study, we developed a
non-invasive AI system to stratify malignant and benign
CRLs. The reliability and applicability of the AI

Table 3 Performance of each model and Bosniak-2019 classification in validation and testing datasets

Model AUC (95% CI) ACC (95% CI) Sensitivity Specificity p Value

Validation cohort SETD 0.973 (0.944–1.000) 0.916 (0.914–0.917) 100 (11/11) 90.3 (65/72) p < 0.01

Blending 0.902 (0.768–1.000) 0.940 (0.938–0.941) 90.9 (10/11) 91.7 (66/72) p= 0.40

Lightgbm 0.891 (0.774–1.000) 0.928 (0.926–0.929) 90.9 (10/11) 77.8 (56/72) p= 0.43

Decision tree 0.783 (0.662–0.904) 0.687 (0.682–0.692) 90.9 (10/11) 65.3 (47/72) p= 0.41

XGBoost 0.897 (0.769–1.000) 0.904 (0.902–0.906) 81.8 (9/11) 87.5 (63/72) p= 0.42

Bosniak 2019 classification 0.840 (0.786–0.895) 0.723 (0.718–0.728) 100 (11/11) 68.1 (49/72) Reference

Test cohort SETD 0.998 (0.993–1.000) 0.988 (0.988–0.988) 100 (17/17) 97.2 (141/145) p < 0.01

Blending 0.951 (0.910–0.993) 0.889 (0.888–0.890) 76.5 (13/17) 93.8 (136/145) p= 0.09

Lightgbm 0.968 (0.942–0.993) 0.883 (0.881–0.884) 94.1 (16/17) 64.8 (94/145) p= 0.02

Decision tree 0.902 (0.857–0.946) 0.840 (0.838–0.841) 100 (17/17) 64.1 (93/145) p= 0.49

XGBoost 0.939 (0.882–0.996) 0.883 (0.881–0.884) 94.1 (16/17) 90.3 (131/145) p= 0.17

Bosniak 2019 classification 0.869 (0.785–0.953) 0.858 (0.857–0.859) 88.2 (15/17) 85.5 (124/145) Reference

AUC area under the receiver operating characteristic curve, ACC accuracy score, p value p value in DeLong test, 95% CI 95% confidence interval

Fig. 3 Example usage of the initial CRLs segmentation model and refined CRLs segmentation model. a Original image inputs, (b) initial segmentation
results combined with negative indicator points (red dots), (c) initial segmentation results combined with positive indicator points (green dots),
(d) refined segmentation results
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algorithm are determined by the following key factors: 1.
Radiologists can provide feedback to the interactive CRL
segmentation model, which can improve the segmenta-
tion results and make the process more efficient and
accurate. 2. Histopathologic results serve as the diag-
nostic gold standard for CRL classification in both
validation and testing datasets. 3. Early stopping

approaches and weighted cross-entropy loss prevented
overfitting in SETD training steps. 4. The SETD classi-
fier demonstrated strong diagnostic performance in both
validation and testing datasets. 5. The calculated RQS
quality score of this study is 43, which demonstrates that
the AI algorithm construction is trustworthy and
repeatable.

Fig. 4 The diagnostic performance of each model evaluated by receiver operating characteristic (ROC) curve. a ROC curve in validation dataset, (b) ROC
curve in testing dataset
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In diagnosing malignant renal neoplasms, evaluating
changes in HU value before and after CECT scans is highly
effective. For example, clear cell renal cell carcinoma (RCC)
typically exhibits a fast-in, fast-out CT presentation in
CECT scans. Chromophobe RCC and Papillary RCC tend
to be relatively homogeneous contrast enhancement in
CECT scans [14]. During the corticomedullary and
nephrographic phases, benign CRLs, such as simple renal
cysts and cystic nephroma, typically exhibit a more gradual
and less pronounced intense enhancement [15]. We
developed the SETD model to detect useful features from
multi-phase CT images, with a focus on feature changes in
multi-phase CT images. This greatly improved the model’s
predictive performance and interpretability [16]. Given that
feature-based machine learning algorithms are more sen-
sitive to variations in imaging parameters, the SETD algo-
rithm exhibits a more robust performance in external
validation dataset compared to the machine learning model
used in our previous study.

A growing body of evidence suggests that cystic RCC is
less aggressive and has a better prognosis than solid RCC of
the same size [17]. One plausible explanation for this is that
only the solid portions of malignant CRLs contain malig-
nant cells, which generally make up a very small portion of
the lesion’s overall volume [18]. Developing reliable
methods to differentiate benign cysts from malignant
tumors, especially in larger cysts is crucial. Risk stratifica-
tion based on our deep learning system can help guide
management decisions. Low-risk cysts may be monitored
conservatively or treated with minimally invasive proce-
dures like laparoscopic decortication, while high-risk cysts
may require more extensive evaluation or intervention [19].
Updated guidelines from various medical organizations

have shifted toward more conservative approaches to
manage renal cysts [20]. Active surveillance has become
the recommended option for Bosniak IIF and even some
Bosniak III and IV lesions since the majority of CRLs
are benign renal cysts [21, 22]. The updated Bosniak

Fig. 5 Confusion matrices for the SETD Model and the Bosniak-2019 classification. a Confusion matrix for SETD model in validation datasets,
(b) confusion matrix for Bosniak-2019 in validation datasets, (c) confusion matrix for SETD model in testing datasets, (d) confusion matrix for Bosniak-2019
in testing datasets
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classification version aims to reduce inter-reader varia-
bility and enhance the accuracy of malignancy predictions
in CRLs. However, the effectiveness of this revised clas-
sification in clinical practice still requires validation.
Moreover, the implications of prolonged medical follow-
up for high-level Bosniak renal cysts should be carefully
considered. To our knowledge, this is the largest CRLs
related AI research with multicenter validation, providing
a more reliable tool for preoperatively discriminating
malignant CRLs. A recent study on IIF-classified CRLs
with a median follow-up duration of 50 months showed a
significantly lower incidence of IIF renal lesions upgrading
and malignancy than previously reported. The research
also observed that all participants did not demonstrate
any significant radiological progression beyond 36 months
of follow-up. This indicates that follow-up beyond
36 months may not be necessary in most cases [23]. In
this research, the SETD model delivered a clear, concise,
and binary (yes/no) determination regarding the

likelihood of malignancy in CRLs. This demonstrates its
practical utility in clinical settings, aiding radiologists and
urologists in evaluating and selecting the optimal surgical
strategy for CRL treatment.
Our research has several limitations. Firstly, its retro-

spective design necessitates further prospective validation
to reinforce findings. Secondly, the strict inclusion and
exclusion criteria may introduce selection bias, suggesting
the need for broader international multi-center studies to
confirm the generalizability of our results. Thirdly, all
ROIs in interactive segmentation model training were
labeled by radiologists, and this approach seems a little bit
old-fashioned despite it can produce more reliable and
convincing results. Our follow-up study will examine
whether semi-supervised segmentation methods can be
applied in clinical practice to reduce radiologists’ work-
load [24]. Lastly, clinical characteristics like age and
gender may be potential predictors. A mixture model that
combines deep learning networks with clinical features
may further improve the diagnostic model’s performance.
In conclusion, we developed and validated a novel AI

system, combining an interactive 3D U-Net segmentation
model with a SETD model, to accurately differentiate
between benign and malignant CRLs. The AI algorithm
demonstrated good discrimination capability across vali-
dation and testing datasets. The non-invasive AI system
will facilitate accurate diagnosis of renal cystic lesions,
reducing excessive follow-up and overtreatment.

Abbreviations
ACC Accuracy score
AUC Area under the receiver operator characteristic curve
CI Confidence interval
CRLs Cystic renal lesions
DCA Decision curve analysis
Dice Dice similarity
GRU Gated recurrent unit
IOU Intersection over union
ROI Regions of interest
RCC Renal cell carcinoma
SETD Spatial encoder temporal decoder
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