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Unlocking the potential: T1-weighed MRI
as a powerful predictor of levodopa
response in Parkinson’s disease
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Chencheng Zhang1,2,6*

Abstract
Background The efficacy of levodopa, the most crucial metric for Parkinson’s disease diagnosis and treatment, is
traditionally gauged through the levodopa challenge test, which lacks a predictive model. This study aims to probe
the predictive power of T1-weighted MRI, the most accessible modality for levodopa response.

Methods This retrospective study used two datasets: from the Parkinson’s Progression Markers Initiative (219 records)
and the external clinical dataset from Ruijin Hospital (217 records). A novel feature extraction method using
MedicalNet, a pre-trained deep learning network, along with three previous approaches was applied. Three machine
learning models were trained and tested on the PPMI dataset and included clinical features, imaging features, and
their union set, using the area under the curve (AUC) as the metric. The most significant brain regions were visualized.
The external clinical dataset was further evaluated using trained models. A paired one-tailed t-test was performed
between the two sets; statistical significance was set at p < 0.001.

Results For 46 test set records (mean age, 62 ± 9 years, 28 men), MedicalNet-extracted features demonstrated a
consistent improvement in all three machine learning models (SVM 0.83 ± 0.01 versus 0.73 ± 0.01, XgBoost 0.80 ± 0.04
versus 0.74 ± 0.02, MLP 0.80 ± 0.03 versus 0.70 ± 0.07, p < 0.001). Both feature sets were validated on the clinical dataset
using SVM, where MedicalNet features alone achieved an AUC of 0.64 ± 0.03. Key responsible brain regions were
visualized.

Conclusion The T1-weighed MRI features were more robust and generalizable than the clinical features in prediction;
their combination provided the best results. T1-weighed MRI provided insights on specific regions responsible for
levodopa response prediction.

Critical relevance statement This study demonstrated that T1w MRI features extracted by a deep learning model
have the potential to predict the levodopa response of PD patients and are more robust than widely used clinical
information, which might help in determining treatment strategy.
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Key Points
● This study investigated the predictive value of T1w features for levodopa response.
● MedicalNet extractor outperformed all other previously published methods with key region visualization.
● T1w features are more effective than clinical information in levodopa response prediction.

Keywords Parkinson’s disease, Magnetic resonance imaging, Levodopa response, Machine learning
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Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder
with a growing prevalence [1]. Its array of symptoms,
including tremors, rigidity, bradykinesia, and postural
instability, significantly impair patients’ quality of life [1].
Levodopa, a dopamine precursor, is the most used treat-
ment [1–3]. Clinicians often employ the levodopa chal-
lenge test (LCT), as its outcomes are crucial for making
diagnoses and guiding treatment strategies, particularly
that of deep brain stimulation [3]. A predictive model for
levodopa response could not only help clinicians deter-
mine treatment strategies [4] but also provide insights
into potential pathophysiological mechanisms.
T1-weighted MRI is a widely available imaging techni-

que that offers high-resolution brain images. While
extensively used in clinical routine for diagnosing and
differentiating PD [5–10] and predicting conversion from
mild cognitive impairment to dementia [11], its potential

for predicting levodopa response has been underexplored.
For T1-weighted MRI, Ballarini et al [12] extracted age-
corrected gray matter intensity from discriminative voxels
between good and poor responders to predict LCT out-
comes. Xie et al [13] constructed a morphological brain
graph network to fetch individual-level network metrics
for LCT result prediction. Furthermore, the PREDISTIM
Study Group [4] utilized texture features from 16 sub-
cortical regions of interest (ROIs) to construct feature
vectors for each participant to predict LCT results.
Although these studies demonstrated the potential of
T1-weighted MRI in levodopa response prediction, they
either lacked adequate test sets and had limited sample
sizes, or did not query the predictive ability of imaging
features separately, leaving the underlying potential of
T1-weighted MRI in levodopa response prediction
unclear. Convolutional neural networks have demon-
strated efficacy in brain MRI analysis prediction tasks,
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including PD diagnosis [14, 15], but have not been utilized
in levodopa response prediction. Therefore, the role of
T1-weighted MRI in levodopa response should be further
evaluated through a more persuasive predictive model.
In this study, we aimed to leverage the Parkinson’s

Progression Markers Initiative (PPMI) dataset and an
external clinical dataset to evaluate the predictive potential
of T1-weighted MRI for levodopa response prediction by
comparing classification performance with and without
imaging features and identify the underlying brain regions.

Methods
Data sources
In this retrospective study, data were sourced in
January 2023 from the openly accessible PPMI database
(https://www.ppmi-info.org/). PPMI is a multicenter
study focused on gathering Parkinson’s progression bio-
markers [16]. PPMI participants met specific criteria: PD
diagnosis (marked as group ‘PD’ in the PPMI database)
and availability of T1-weighted MRI data and MDS-
UPDRS III scores for both medication ON and OFF states
during the same visit. The exclusion criteria included the
lack of a calculable levodopa equivalent daily dose (LEDD)
overlapping with the visit time, multiple records for the
same patient at one visit, MDS-UPDRS III OFF < 5, and
LEDD > 5000. In total, 219 records, with multiple records
from the same participants at different visits, were
included. An additional dataset of 193 healthy controls
from PPMI was included only for age correction.
A threshold of a 30% improvement rate classified the

patients into “good” and “bad” responders [13]; the
improvement rate was calculated as follows:

Improvement Rate ¼MDS � UPDRS III OFF �MDS � UPDRS III ON
MDS � UPDRS III OFF

´ 100%

The whole PPMI dataset was randomly split into
training and test sets with a ratio of 8:2, ensuring that

records from the same participant were in the same set,
resulting in 173 and 46 records for the training and test
sets, respectively.
The performance of the output models on actual

samples was validated using an external clinical dataset
with 217 records from Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine, collected between
2017 and 2022. All included participants underwent
standard LCT. Notably, these records were collected
retrospectively from patients available for deep brain
stimulation surgery, which might introduce potential
bias to the dataset distribution, with longer disease
duration, LEDD, and MDS-UPDRS III scores and a
higher proportion of “good” responders (Table 1 and
Fig. 1).
T1-weighted MRI scans from PPMI were acquired

using 1.5-T (Philips) or 3-T (Siemens) scanners with an
isotropic resolution of 1 mm, whereas those from Ruijin
Hospital were isotropically acquired using 1.5-T or 3-T
scanners (GE) with a resolution of 1 mm to 2mm.

Data pre-processing
Two image pre-processing pipelines were constructed
using Nipype (https://nipype.readthedocs.io/en/latest/)
[17] for different feature extraction methods, following
previous studies (see Fig. 2). The first one utilized the
CAT12 toolbox (http://www.neuro.uni-jena.de/cat/)
[18] from SPM12 (https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/); the image was segmented into gray
matter, white matter, and cerebrospinal fluid, followed
by registration to the default template (IXI151_MNI152)
in CAT12 at 1.5 mm isotropic voxel size. Spatial
smoothing was applied with an 8 mm full width at half
maximum Gaussian kernel. The second one utilized
ANTs (https://github.com/ANTsX/ANTs) [19, 20]; the
image was registered to the PD25 atlas [21–23] using
RegistrationSynQuick with an isotropic voxel size
of 1 mm.

Table 1 Demographic and clinical information for datasets

Training Set Testing set p-value Clinical set Healthy set

Source PPMI PPMI Ruijin PPMI

No. of samples 173 46 217 193

Sex (M/F) 116/57 28/18 0.541 125/92 126/67

Age (years) 64.12 ± 9.22 61.74 ± 9.19 0.123 62.91 ± 9.24 60.29 ± 11.00

Disease duration (m) 41.88 ± 21.61 44.15 ± 23.51 0.537 136.12 ± 56.90 -

LEDD (mg/day) 645.40 ± 426.97 579.82 ± 318.06 0.334 758.04 ± 345.68 -

MDS-UPDRS III OFF 27.51 ± 12.38 25.91 ± 11.67 0.433 56.84 ± 12.06 -

MDS-UPDRS III ON 18.97 ± 10.86 17.43 ± 10.12 0.390 29.82 ± 11.14 -

LCT result (Good/Bad) 86/87 22/24 0.951 201/16 -

PPMI Parkinson’s Progression Markers Initiative, LCT levodopa challenge test, LEDD levodopa equivalent daily dose
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Feature extraction
Four feature extraction methods were evaluated, including
three from published research and one proposed in this
study. Details of the former methods are provided in the
Supplementary Materials. In brief, the first one is age-
corrected regional gray matter intensity extracted from
CAT12 pre-processed images, following Ballarini et al [12],
after which principal component analysis (PCA) was used
to select the first 50 principal components as features. The
second method, proposed by the PREDISTIM Study Group
and Chakraborty et al [4, 5] used subcortical ROI textures
as PD biomarkers, by extracting and removing highly cor-
related texture features of 16 subcortical ROIs from ANTs-
pre-processed images, encompassing caudate, putamen,
thalamus, GPi, GPe, STN, SN, and RN using PyRadiomics
(https://pyradiomics.readthedocs.io/en/latest/). The mor-
phological graph was constructed using Kullback–Leibler
and Jensen–Shannon divergence following Xie et al [13].
The graph metrics of the individual networks were calcu-
lated as features.
To enhance the utility of T1-weighed MRI data, we

proposed a feature extraction method based on Medi-
calNet, a pre-trained ResNet-based deep model tailored for
medical images [24]. We replaced the layers originally used
for segmentation with a max-pooling layer (kernel size= 8,
stride= 8, padding= 0) and a flattening layer. The pre-
trained model was fixed and treated as a pure feature
extractor. ANTs-pre-processed T1-weighted images (193,
229, 193 dimensions) were input into the model to obtain
the output vector as the feature for each sample.

After sequential feature selection, GradCAM [25] was
employed to visualize the retained features. The selected
features were mapped back to their coordinates as cor-
responding gradients in the flattening layer. Excluded
features were assigned gradients of –0.001. A saliency
map was generated and up-sampled for the last con-
volution layer to visualize the contributing ROIs in
the image.

Feature selection
To refine the feature sets, given their potential redun-
dancy and noise, a feature selection step was necessary for
effective classification. Minimum Redundancy - Max-
imum Relevance (mRMR), least absolute shrinkage and
selection operator (LASSO), and recursive feature elim-
ination (RFE) were applied sequentially to the original
feature sets. mRMR, based on mutual information, selects
features with high relevance to the target and low
redundancy [26]. LASSO, based on L1 regularization,
compresses unimportant features to zero to achieve fea-
ture selection [27]. RFE, based on backward elimination,
recursively removes the least important features until the
specified number of features is reached.
We sequentially applied these methods to the features

extracted from the training set with four feature extrac-
tion methods respectively to eliminate irrelevant and
redundant features due to the large number of features
generated by MRI data, among which LASSO and RFE
went through a 5-fold cross-validation to determine
optimal hyperparameters. For mRMR, the top 50 features,

Fig. 1 Flowchart of sample inclusion. PD, Parkinson’s disease; HC, healthy control; LEDD, Levodopa equivalent daily dose; MDS-UPDRS III, Movement
Disorder Society Unified Parkinson’s Disease Rating Scale Part III
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ranked across the feature sets, were selected for the next
step. For LASSO, the optimal regularization parameter α∗
was used to fit the model on the entire training set to
select the features with non-zero coefficients. For RFE, a
logistic regression model representing L2 regularization

was used as an estimator in RFE. The entire feature
selection process was repeated 10 times to generate a
more robust feature set. As a result, the feature number of
each extraction method resulted in feature sets being
reduced separately.

Fig. 2 Study design. Two preprocessing methods were performed on T1w images. Four feature extraction methods were then applied to extract
features from the preprocessed images. Three feature selection methods were used sequentially to select the most significant features for classification.
Three machine learning models were trained on the training set and tested on the test set to predict the category of LCT result (good/bad responder).
An external clinical dataset was also included to evaluate the generalizability of the model. The important features of the MedicalNet extractor were
visualized. VBM, voxel-based morphometry; CAT12, computational anatomy toolbox; ANTs, advanced normalization tools; ROI, region of interest; PCA,
principal component analysis; mRMR, minimum redundancy maximum relevance; LASSO, least absolute shrinkage and selection operator; RFE, recursive
feature elimination; SVM, support vector machine; XgBoost, extreme gradient boosting; MLP, multi-layer perceptron
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Machine-learning models
Machine learning models were trained on a training set
using 5-fold cross-validation and tested on a test set to
predict the category of the LCT results (good/bad
responders). An ablation study was conducted to assess
the contribution of T1-weighted MRI data. This involved
comparing the classification performance among three
feature sets under the same setting: an imaging set, con-
taining features extracted via four methods respectively; a
clinical set, encompassing demographic and clinical
information including age, sex, disease duration, LEDD,
and MDS-UPDRS III OFF; and union set that combined
the imaging and clinical sets. All training set features were
used to fit MinMaxScaler to scale the training and test set
features.
Optimal hyperparameters for each model were deter-

mined through 5-fold cross-validation performed on the
training set. The specific model was then trained on the
entire training set with the optimal hyperparameters and
used to predict LCT results for the test set. Repeated
experiments were performed to eliminate random effects.
Our study employed three machine learning models—

SVM, XgBoost, and MLP—resulting in nine trained and
tested models.

Model performance evaluation
To assess model performance, we used the micro-averaged
area under the receiver operating characteristic curve
(AUC) as the primary metric. For each feature extraction
method and machine learning model, we calculated three
AUCs for three test sets generated using three different
feature sets. A paired one-tailed t-test was performed
between the clinical and union sets to evaluate the statis-
tical significance between the clinical and union models.
If any imaging feature set showed a statistically sig-

nificant contribution (p < 0.001), the model was further
validated on an external clinical dataset to evaluate its
generalizability using the best machine-learning method.
More specifically, all models trained in the training stage
were fixed without further training and modification,
resulting in no additional training in the validation stage.
The feature labels to be tested were manually selected
according to the feature-selection results of the training
set, and feature sets to be validated were built by
extracting features from an external set according to
feature labels. The external set-generated features were
normalized using the MinMaxScaler trained on the
training set and inputted into the trained model to predict
LCT results.

Statistical analysis
To evaluate statistical significance between the clinical and
union models, a paired one-tailed t-test was performed

between the two sets, with each containing 10 AUCs gen-
erated from 10 random seeds. A p-value of < 0.001 was
considered statistically significant. All statistical analyses
were performed using scikit-learn (https://scikit-learn.org/
stable/, version 1.2.1), scipy (https://www.scipy.org/, version
1.10.0), and statannotations (https://github.com/trevismd/
statannotations, version 0.5.0) [28].

Results
Records inclusion
In this study, we included 219 records from PPMI. The
training and test sets encompassed 173 records (mean
age, 64 ± 9 years, 116 men) and 46 records (mean age,
62 ± 9 years, 28 men), respectively. The external clinical
dataset from Ruijin Hospital included 217 records (mean
age, 63 ± 9 years, 125 men), with 201 good and 16 bad
responders. The demographic and clinical data of all the
datasets are summarized in Table 1.

Feature extraction
Four distinct feature sets were generated. The age-
corrected regional gray matter intensity yielded 50 prin-
cipal components from discriminative voxels through
PCA. Subcortical texture features yielded 86 features from
16 ROIs each, ultimately reduced to 225 features by post-
correlation-based feature exclusion. The morphological
graph contributed 368 features, whereas the pre-trained
model of MedicalNet extracted 13,824 features. There
were no differences among repeated selections for all four
feature extraction methods.

Feature selection
The feature extraction steps culminated in four distinct
feature sets. The age-adjusted regional gray matter
intensity resulted in only one selected feature out of the
50 PCA features. Subcortical texture encompassed
two features situated in the right thalamus out of the
225 input features. For the morphological graph, 18 of
the 368 features were selected. Of the 13,824 features
extracted from MedicalNet, only 9 were selected.
Detailed information on the selected features is pre-
sented in Table 2.

Model performance
Table 3 summarizes model performance on the test set.
MedicalNet-extracted features consistently outperformed
other feature sets across all three models (SVM Union
0.83 ± 0.01, Clinical 0.73 ± 0.01; XgBoost Union
0.80 ± 0.04, Clinical 0.74 ± 0.02; MLP Union 0.80 ± 0.03,
Clinical 0.70 ± 0.07; p < 0.001). The best-performing
union model, utilizing MedicalNet-extracted features,
was SVM, with an AUC of 0.83 ± 0.01 on the test set. For
subcortical texture features, only SVM displayed
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significant improvement (Union 0.79 ± 0.003, Clinical
0.73 ± 0.01, p < 0.001). The MLP exhibited a minor but
not statistically significant enhancement from 0.70 ± 0.07
to 0.74 ± 0.08. The addition of texture features to XgBoost
decreased the AUC from 0.74 ± 0.02 to 0.73 ± 0.03. Nei-
ther regional gray matter intensity features nor morpho-
logical network features were significantly improved

across the three models. The AUC of the improved fea-
ture sets are shown in Fig. 3.
For the external clinical set (Table 4), both subcortical

texture and MedicalNet-extracted features showed a sta-
tistically significant improvement with SVM (subcortical
texture Union 0.57 ± 0.005, Clinical 0.53 ± 0.01; Medi-
calNet Union 0.59 ± 0.005, Clinical 0.53 ± 0.01; p < 0.001);

Table 2 Surviving features post-feature selection

Feature name Description RFE importance

Gray matter intensity

PCA_4 Principal component 4 from age-corrected

discriminative voxels

7.68e-18

Subcortical texture

rTHA Gray Level Dependence Matrix

LargeDependenceHighGrayLevelEmphasis

Measures the joint distribution of large dependence

with higher gray-level values

‒7.80e-5

rTHA Gray Level Size Zone Matrix

LargeAreaHighGrayLevelEmphasis

Measures the proportion in the image of the joint

distribution of larger-size zones with higher gray-level

values

6.96e-5

Morphologic graph

Nodal Clustering Coefficient

FAG Left precentral gyrus –1.54

PAD Right postcentral gyrus –1.08

O2G Left middle occipital gyrus 0.90

CIPD Right posterior cingulum –0.74

F3OG Left IFG pars orbitalis 1.01

O1D Right superior occipital gyrus 0.83

T2D Right middle temporal gyrus 0.71

THAD Right thalamus 0.65

GAD Right angular gyrus 0.87

O3G Left inferior occipital gyrus –1.05

T1G Left superior temporal gyrus 0.72

HESCHLD Right Heschl’s gyrus 0.60

PARA_HIPPOG Left parahippocampal gyrus 0.84

P1D Right superior parietal gyrus –0.64

F1G Left superior frontal gyrus, dorsolateral –0.59

F2D Right middle frontal gyrus 0.88

Degree centrality

LPCG Left paracentral lobule 0.73

F3OPG Left inferior frontal gyrus, opercular part –0.66

MedicalNet extractor

ResNet_7020 N/A –0.38

ResNet_7763 N/A –1.17

ResNet_3294 N/A –0.34

ResNet_7509 N/A 1.07

ResNet_7044 N/A –0.81

ResNet_13074 N/A 0.62

ResNet_874 N/A 0.20

ResNet_12889 N/A 0.35

ResNet_810 N/A –0.58
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however, a notable performance drop was observed in
both models. The imaging model with MedicalNet-
extracted features outperformed all other models
(p < 0.001), with an AUC of 0.64 ± 0.03 (Fig. 4).

Feature visualization
Using MedicalNet as a feature extractor, we visualized the
surviving features after feature selection. The up-sampled
saliency map from the last convolution layer revealed key
ROIs that contributed to classification. The saliency map
and most significant cluster are shown in Fig. 5. This
dominant cluster identified several anatomical regions,
including the superior temporal gyrus, cingulate gyrus,
thalamus, putamen, GPe, GPi, hippocampus, insula, RN,
SN, pons, and VTA.

Discussion
In this project, we proposed a feature extraction method
based on a pre-trained ResNet-based model. The features
of this model outperformed previously published methods
on both PPMI and external clinical datasets, demon-
strating greater robustness and generalizability than
clinical features. Our study also offers insights into the
brain regions responsible for levodopa response
prediction.
Multiple feature extraction methods were developed to

maximize information extractable from T1-weighted MRI
for LCT prediction. Although previous studies have
demonstrated promising prediction performance using
age-corrected regional gray matter intensity (accuracy 74%)

and morphological graph (AUC 0.98) features, their con-
clusions raise uncertainties owing to the small sample sizes
and lack of test and external validation sets [12, 13]. Sub-
cortical ROI texture features (r2 of 0.76) employed clinical
features alongside T1-weighted images with a relatively large
sample size and an external validation set, although the
imaging features were not evaluated separately [4]. Here, we
developed a rigorous pipeline to re-evaluate previous
methods with three feature combinations with or without
both clinical and imaging features. Our results revealed
that only the addition of subcortical texture features to
the model would significantly improve the classification
performance.
Although subcortical texture features showed predictive

potential, we aimed to broaden our search for biomarkers
beyond this region or with greater improvement. We
modified MedicalNet to serve as a deep-learning feature
extractor. The union model, incorporating MedicalNet-
extracted features, outperformed all other methods across
all three machine learning models on the test set
(p < 0.001 for all). The saliency map, generated to visualize
the selected features from MedicalNet, highlighted com-
mon subcortical ROIs (putamen, thalamus, GPi, GPe, RN,
and SN) and additional ROIs (superior temporal gyrus,
cingulate gyrus, hippocampus, insula, pons, and VTA).
These findings potentially elucidate the superior perfor-
mance of MedicalNet-extracted features over subcortical
texture features. Gallagher et al [29] reported that subtle
changes in anterior cingulate dopamine metabolism may
contribute to dysexecutive behaviors in PD. Calabresi et al
[30] proposed a link between the hippocampus and
dopaminergic system changes in PD. Similarly, Faivre et al
[31] suggested that VTA modulates motor and non-motor
symptoms related to a partial loss of dopamine cells in
PD. Halliday et al reported neuropathological changes in
catecholamine cell groups in PD [32]. These findings
suggest that the newly identified ROIs in our study may
indeed be related to dopaminergic system changes in PD,
explaining their contribution to LCT prediction.
Although more related to cognitive impairment in PD, a
D2 receptor loss was observed in the insula of PD
patients, potentially affecting LCT results measured using
MDS-UPDRS III [33]. For the superior temporal gyrus, no
direct relationship with dopaminergic system changes in
PD has been reported; however, its involvement with PD
progression has been suggested [34].
Testing the external clinical set similarly, with only two

feature sets previously established as predictive on the test
set, a great decrease in performance was observed in the
clinical and union models. This indicated potential bias in
the clinical information of the external clinical set, which
is common in the clinical environment. This drop in
performance also questioned the generalizability of

Table 3 AUCs on the test set

Imaging Clinical Union p-value

Gray matter intensity

SVM 0.48 ± 0.05 0.73 ± 0.01 0.74 ± 0.002 0.004

XgBoost 0.62 ± 0.04 0.74 ± 0.02 0.75 ± 0.03 0.365

MLP 0.47 ± 0.12 0.70 ± 0.07 0.73 ± 0.03 0.176

Subcortical texture

SVM 0.54 ± 0.04 0.73 ± 0.01 0.79 ± 0.003 < 0.001

XgBoost 0.64 ± 0.05 0.74 ± 0.02 0.73 ± 0.03 0.899

MLP 0.51 ± 0.09 0.70 ± 0.07 0.74 ± 0.08 0.130

Morphologic graph

SVM 0.45 ± 0.06 0.73 ± 0.01 0.55 ± 0.03 1.00

XgBoost 0.43 ± 0.03 0.74 ± 0.02 0.55 ± 0.05 1.00

MLP 0.45 ± 0.06 0.70 ± 0.07 0.52 ± 0.05 1.00

MedicalNet extractor

SVM 0.68 ± 0.03 0.73 ± 0.01 0.83 ± 0.01 < 0.001

XgBoost 0.69 ± 0.03 0.74 ± 0.02 0.80 ± 0.04 < 0.001

MLP 0.69 ± 0.03 0.70 ± 0.07 0.80 ± 0.03 < 0.001

p-values were calculated to evaluate the differences between the clinical and
corresponding union models
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clinical information in real-world settings. However, the
imaging model with MedicalNet outperformed all other
models, with an AUC of 0.64 ± 0.03, demonstrating that
the information extracted from objective T1-weighted

MRI using MedicalNet was more robust and consistent
than that of clinical information.
This study had some limitations. Although larger than

that of several studies, our sample size was limited, which
led to biased models that affected performance and
eliminated the possibility of deep learning model training
for specific tasks. Only one retrospective external clinical
set limited the ability to further evaluate the general-
izability of the predictive features. Although data-driven
ROIs were identified via the MedicalNet extractor and
validated using an external clinical set, their implication in
levodopa response prediction and PD progression
remains unclear, necessitating more interpretable models

Fig. 3 Model performance. A ROC curve of MedicalNet feature sets on the test set with SVM. B ROC curve of MedicalNet feature sets on the test set with
XgBoost. C ROC curve of MedicalNet feature sets on the test set with MLP. D ROC curve of subcortical texture feature sets on the test set with SVM

Table 4 AUCs on the external clinical set using SVM

Imaging Clinical Union p-value

Subcortical texture

SVM 0.39 ± 0.08 0.53 ± 0.01 0.57 ± 0.005 < 0.001

MedicalNet extractor

SVM 0.64 ± 0.03 0.53 ± 0.01 0.59 ± 0.005 < 0.001
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or features to elucidate their pathological roles. Lastly,
considering the poor generalizability of clinical informa-
tion, real-world prediction models need to rely on ima-
ging features exclusively. However, using T1-weighted

MRI alone yielded an AUC of 0.64 in the external clinical
set, which implies the potential value of imaging data.
In conclusion, T1-weighted MRI offers more robust

information than general demographic and clinical

Fig. 4 Performance comparison. A Box plots of models with significant improvement from the clinical set to the union set on the test set. B Box
plot of the ROC-AUC distributions of different models using MedicalNet extracted features on the external clinical set. Paired one-tailed t-test:
***: 1.00e-04 < p <= 1.00e-03, ****: p <= 1.00e-04

Fig. 5 Activation map of MedicalNet extractor. The contours in blue represent predefined but dropped ROIs from the subcortical texture extraction
method. The contours in green represent the thalamus, which was selected from subcortical texture features. The heatmap represents the cluster
extracted by MedicalNet that survived the feature selection step, with an intensity threshold of 0.4
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features. However, it may not suffice for predicting levo-
dopa response in clinical settings (AUC 0.64 ± 0.03).
Therefore, to improve practical LCT prediction perfor-
mance, future studies should explore advanced imaging
for robust feature extraction. A previous study highlighted
the utility of T2* images in 16 subcortical ROI [4]. Sub-
sequent studies could encompass an investigation of the
predictive potential of our newly identified brain regions
using T2* or quantitative susceptibility mapping which
indicates the iron load [4], integrating this information to
generate a more robust and generalizable model for
levodopa response prediction.
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