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Abstract
Objectives To investigate the utility of deep learning (DL) automated segmentation-based MRI radiomic features and
clinical-radiological characteristics in predicting early recurrence after curative resection of single hepatocellular
carcinoma (HCC).

Methods This single-center, retrospective study included consecutive patients with surgically proven HCC who
underwent contrast-enhanced MRI before curative hepatectomy from December 2009 to December 2021. Using 3D
U-net-based DL algorithms, automated segmentation of the liver and HCC was performed on six MRI sequences.
Radiomic features were extracted from the tumor, tumor border extensions (5 mm, 10 mm, and 20 mm), and the liver.
A hybrid model incorporating the optimal radiomic signature and preoperative clinical-radiological characteristics was
constructed via Cox regression analyses for early recurrence. Model discrimination was characterized with C-index and
time-dependent area under the receiver operating curve (tdAUC) and compared with the widely-adopted BCLC and
CNLC staging systems.

Results Four hundred and thirty-four patients (median age, 52.0 years; 376 men) were included. Among all radiomic
signatures, HCC with 5 mm tumor border extension and liver showed the optimal predictive performance (training set
C-index, 0.696). By incorporating this radiomic signature, rim arterial phase hyperenhancement (APHE), and incomplete
tumor “capsule,” a hybrid model demonstrated a validation set C-index of 0.706 and superior 2-year tdAUC (0.743) than
both the BCLC (0.550; p < 0.001) and CNLC (0.635; p= 0.032) systems. This model stratified patients into two
prognostically distinct risk strata (both datasets p < 0.001).

Conclusion A preoperative imaging model incorporating the DL automated segmentation-based radiomic signature
with rim APHE and incomplete tumor “capsule” accurately predicted early postsurgical recurrence of a single HCC.

Critical relevance statement The DL automated segmentation-based MRI radiomic model with rim APHE and
incomplete tumor “capsule” hold the potential to facilitate individualized risk estimation of postsurgical early
recurrence in a single HCC.
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Key Points
● A hybrid model integrating MRI radiomic signature was constructed for early recurrence prediction of HCC.
● The hybrid model demonstrated superior 2-year AUC than the BCLC and CNLC systems.
● The model categorized the low-risk HCC group carried longer RFS.

Keywords Artificial intelligence, Carcinoma (hepatocellular), Recurrence, Magnetic resonance imaging, Machine
learning
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Introduction
Hepatocellular carcinoma (HCC) is the sixth leading
type of cancer and the third most fatal malignancy
worldwide [1]. Surgical resection is recommended as the
first-line treatment for early-stage HCC [2, 3]. However,
even after curative-intent resection, tumor recurrence
occurs in ~70% of patients [1, 2], whilst early recurrence
within two years accounts for > 70% of recurrence [4, 5].
Tumor burden and aggressive characteristics, such as
worse tumor differentiation, microvascular invasion
(MVI), and satellite nodules, have been reported to be
associated with early recurrence in HCC [4, 6–8].
Nonetheless, histopathological biomarkers had limited
implications for clinical decision-making in the pre-
treatment context. Therefore, noninvasive estimation of
early recurrence risk in HCC is crucial for individualized
treatment.

Magnetic resonance imaging (MRI) is instrumental in
the noninvasive diagnosis and management of HCC.
Several semantic MR imaging features, such as rim
arterial phase hyperenhancement (APHE), arterial phase
peritumoral enhancement, and hepatobiliary phase (HBP)
peritumoral hypointensity, have been associated with
early recurrence of HCC [8, 9]. However, these semantic
features are inadequate for prognostication due to limited
predictive performances and suboptimal interobserver
reproducibility.
Radiomics has emerged as a new radiological technique

that enables the extraction of high-throughput quantita-
tive image features beyond inspections of naked human
eyes from standard-of-care medical images, providing
important insights into cancer phenotypes and tumor
microenvironments that are distinct and complementary
to other clinical information [10]. Previous studies have
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shown good predictive accuracy of MRI radiomic analyses
for HCC recurrence after surgery [6, 11–13]. However,
these studies generally included limited sample sizes (e.g.,
48–361 patients) and utilized manual or semiautomated
segmentation, which are time-consuming, labor-intensive,
operator-dependent, and subject to inter-rater variability.
Fortunately, with recent advances in artificial intelligence
(AI) deep learning (DL) algorithms, liver and HCC lesions
can be segmented in an automated manner, which may
improve both efficiency and reproducibility [14–16]. DL
image segmentation models enable the fully automated
detection of tumor margins for fast and reproducible
HCC segmentation. Accurate segmentation of liver and
tumors is a critical prerequisite for subsequent quantita-
tive analysis and holds the huge potential to standardize
and improve clinical management. Nevertheless, to our
knowledge, there is currently limited evidence on the
utility of automated segmentation-based MRI radiomic
analyses for predicting postoperative early recurrence
in HCC.
Therefore, using the DL-assisted automated segmenta-

tion technique, this study aimed to develop and validate a
predictive model for early recurrence based on MRI
radiomic features and clinical-radiological characteristics
in patients with single early-stage HCC following curative
resection.

Materials and methods
This single-institution, retrospective study was approved
by the institutional review board of West China Hospital
of Sichuan University, with a waiver of the informed
consent.

Patients
Consecutive patients who received curative resection for
HCC between December 2009 and December 2021 were
retrospectively recruited. The inclusion criteria were: (a)
age ≥ 18 years, (b) surgically proven HCC, (c) no pre-
operative treatment for HCC, and (d) contrast-enhanced
MRI performed within 1 month before surgery. The
exclusion criteria were: (a) multiple HCC, (b) macro-
vascular invasion, (c) ruptured HCC, (d) any co-
malignancy other than HCC at baseline or during fol-
low-up, (e) suboptimal MR image quality (i.e., MR images
covering only part of tumor/liver, and incomplete MR
sequences), (f) inaccurate image segmentation (detailed
below), (g) incomplete clinical data (detailed below), and
(h) follow-up period less than 2 years. Eligible patients
were randomly assigned to training and validation sets at
a ratio of 7:3 (Fig. 1A).
Baseline clinical, laboratory, and histopathological data

were collected from the electronic medical records. Cir-
rhosis was diagnosed according to the Clinical Practice
Guidelines [17]. Intraoperative ultrasound was routinely
performed for each patient to detect small occult HCCs
and guide the resection strategy.
Of note, 16.8% (73/434) of these patients have been

reported in our prior work [18], where the primary focus
was on the MRI features associated with HCC recurrence
without radiomic model construction.

MRI technique
MRI was performed with various 3.0-T or 1.5-T scanners.
The choice of MRI contrast agents, either extracellular or
hepatobiliary, was determined by the surgeons or

Consecutive patients who underwent curative resection for HCC 
between December 2009 and December 2021, fulfilling the following 
criteria (n=993):

- Age ≥18 years
- Surgically proven HCC
- No preoperative treatment for HCC
- Contrast enhanced MRI performed within 1 month before surgery

Patients included in the study (n=434)

Exclusion (n=559)
- Multiple HCC (n=118)
- Macrovascular invasion (n=126)
- Ruptured HCC (n=11) 
- Any co-malignancy other than HCC at baseline or 

during follow-up (n=15) 
- Suboptimal MR image quality (n=65) (i.e., MR images 

covering only part of tumor/liver [n=43], and incomplete 
MR sequences [n=22])

- Inaccurate image segmentation (n=40) 
- Incomplete clinical data (n=2) 
- Follow-up period less than 2 years (n=182)

Training set (n=305 ) Validation set (n=129)

Radiomic Signature Construction

HCC
HCC with 5 mm tumor border extension
HCC with 10 mm tumor border extension
HCC with 20 mm tumor border extension
HCC + liver
HCC with 5 mm tumor border extension + liver
HCC with 10 mm tumor border extension + liver
HCC with 20 mm tumor border extension + liver

Optimal radiomic signature

C-index, tdAUC

Hybrid Model Building and Test

Optimal radiomic signature

Clinical features MRI features

Hybrid model

Survival 
analysis

Performance 
evaluation

Multivariable Cox regression 
Five-fold cross-validation

Automated Segmentation 

Quality control of automated segmentation
Excluding inaccurate segmentations

Assessment of automated segmentation accuracy
Manual segmentation of 30 randomly selected tumors

LiverMRDoc v2.10.0

MRI image 
download, 

anonymization, 
and quality 
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MRI image 
registration,
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name
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bounding box 
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Radiomic Feature Selection

Hierarchical feature clustering

Univariable Cox regression

Random survival forest
Top 20 features

Multivariable Cox regression 
Five-fold cross-validation

Radiomic Feature Extraction
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Radiomic Feature Normalization 

Shape features

First-order 
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Second-order features (GLCM)
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A B

Fig. 1 Flowcharts depicting (A) the recruitment of patients and (B) the workflow of radiomics. AP, arterial phase; C-index, concordance index; DP,
delayed phase; OP, opposed phase; PVP, portal venous phase; tdAUC, time-dependent area under the receiver operating characteristic curve; TP,
transitional phase; T2WI, T2-weighted imaging; VOI, volume of interest; 3D, three dimensional

Wei et al. Insights into Imaging          (2024) 15:120 Page 3 of 16



multidisciplinary team. MRI systems and acquisition
protocols are detailed in Supplementary Material 1 and
Table S1.

MRI evaluation
Two abdominal radiologists (H.Y.J. and H.W., with 8 and
5 years of experience in liver MRI, respectively) inde-
pendently reviewed all deidentified MR images. They were
informed of the HCC diagnosis but were blinded to other
clinical, histopathological, and follow-up information.
Discrepancies between the two readers were resolved by a
senior abdominal radiologist with over 20 years of
experience in liver MRI.
On a per-lesion basis, the following features were

evaluated: (a) tumor size (cm), (b) enhancement pattern
(typical vs atypical, with typical enhancement pattern
referring to the presence of non-rim APHE coupled with
nonperipheral “washout” [19]), (c) rim APHE, (d) corona
enhancement, (e) nonsmooth tumor margin, (f) incom-
plete tumor “capsule,” (g) delayed central enhancement,
(h) enhancing “capsule,” (i) intratumoral necrosis, (j) fat in
mass, more than adjacent liver, (k) radiological cirrhosis,
(l) diffuse fatty change, (m) diffuse iron overload, (n)
splenomegaly, (o) ascites, (p) collateral circulation, (q)
gastroesophageal varices, and (r) main portal vein dia-
meter (cm). Definitions of the imaging features haven
been described in our prior study [20].

Radiomic analysis
Image acquisition, preprocessing, and automated segmentation
De-identified MR images were uploaded to a commercial
visualization and analysis software (LiverMRDoc; version
2.10.0; Shukun Technology Co., Ltd).
Before automated segmentation, one radiologist

(H.W.) inspected all MR images in terms of the
sequence names, HCC lesions, and corresponding 3D
bounding boxes (i.e., the automated lesion detection
annotation) on the AI software platform. To ensure
accurate localization of tumors, manual adjustment was
conducted for 16 patients with inaccurate 3D bounding
boxes (e.g., failing to detect HCC lesions or delineate the
whole tumors).
Using 3D U-net-based DL algorithms as detailed in

Supplementary Material 2 and Fig. S1, automated seg-
mentation of liver and HCC lesions was conducted on
each transverse section of T2-weighted imaging (T2WI),
IP, opposed phase (OP), arterial phase (AP), portal venous
phase (PVP), and delayed phase (DP; for MRI with
extracellular contrast agent [ECA]) or translational phase
(TP; for MRI with hepatobiliary contrast agent [HCA])
images.
To implement the quality control, one radiologist

(H.W.) visually inspected each segmented tumor and

liver, and those (n= 40) with inaccurate tumor or liver
segmentations on any above sequences were excluded
from radiomic analyses. The exclusion criteria for inac-
curate segmentation were (a) tumor region of interest
(ROI) covered nontumoral areas (e.g., liver parenchyma,
benign cysts, adjacent organs or tissues) (n= 18), (b)
tumor ROI failed to cover the whole tumor areas (n= 8),
(c) liver ROI failed to cover the whole tumor or liver areas
(n= 6), and (d) liver ROI covered areas beyond the liver
(n= 8). Examples of inaccurate image segmentations are
presented in Fig. 2. Manual adjustment was not con-
sidered because the study aimed to examine the prog-
nostic utility of this automated technique.
To assess the accuracy of automated DL segmentation,

one radiologist (T.Y.Z., with 5 years of experience in liver
MRI) who was unknown to the automated segmentation
results manually segmented 30 randomly chosen HCC
lesions using ITK-SNAP (version 3.8.0; www.itksnap.org).
To extract radiomic features of peritumoral areas, the

tumor’s 3D mask was expanded radially outwards by 5, 10,
and 20mm on each sequence using a medical research
platform (UltraScholar, Version 2.0, Shukun Technology
Co., Ltd, https://medresearch.shukun.net/). Accordingly,
five types of VOIs were created: (a) tumor VOI, defined as
the VOI covering HCC lesion; (b) three extended tumor
VOIs, defined as the tumor VOI with automated exten-
sion of tumor boundaries by 5, 10, and 20 mm, respec-
tively; and (c) liver VOI, defined as the VOI covering
nontumoral liver parenchyma (Fig. 3).

Radiomic feature extraction
The radiomic workflow is illustrated in Fig. 1B. Detailed
methods of radiomic analyses are shown in Supplemen-
tary Material 3. MR signal intensity normalization and
radiomic feature extraction were performed with the
PyRadiomics package (version 3.0.1; https://pyradiomics.
readthedocs.io/en/v3.0.1/).
A total of 1688 features were extracted from each VOI

in one sequence. Radiomic features were extracted for
VOIs of tumor, tumor border extensions (5, 10, and
20mm), and the liver, respectively.

Radiomic feature normalization and abnormal feature
exclusion
Radiomic feature normalization, abnormal feature exclu-
sion, feature selection, and radiomic signature construc-
tion were performed with R software (version 4.3.1; The R
Foundation for Statistical Computing).
Values of extracted radiomic features on the training set

were normalized with z scores; the means and standard
deviations derived from the training set were applied to
the feature normalization of the validation set. Abnormal
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Fig. 2 Examples of inaccurate image segmentations. AP, arterial phase; DP, delayed phase; OP, opposed phase; PVP, portal venous phase; ROI, region of
interest; TP, transitional phase; T2WI, T2-weighted imaging
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features with a variance of 0 were excluded from further
analyses.

Feature selection
After normalization and excluding abnormal features,
we followed a four-step procedure to reduce dimensions
and select robust radiomic features on the training set.
First, intervariable collinearity was estimated by Spear-
man correlation analysis. For radiomic features with a
Spearman’s rank correlation coefficient > 0.8, hier-
archical feature clustering was performed to remove
redundancy. Subsequently, univariable Cox regression
analysis was performed to identify significant radiomic
features associated with early recurrence. Features with
a p < 0.01 were kept for further analyses. Next, random
survival forest (RSF) was used to select the top 20 fea-
tures. Finally, radiomic signatures were constructed by
the multivariable Cox regression analysis using a back-
ward elimination approach with five-fold cross-
validation.

Radiomic signature development and validation
Eight groups of radiomic signatures were built based on
different combinations of radiomic features extracted
from tumor, tumor border extensions, and the liver,
including (a) HCC, (b) HCC with 5mm tumor border
extension, (c) HCC with 10 mm tumor border extension,
(d) HCC with 20 mm tumor border extension, (e) HCC
and liver, (f) HCC with 5mm tumor border extension and
liver, (g) HCC with 10 mm tumor border extension and
liver, and (h) HCC with 20 mm tumor border extension
and liver. The optimal radiomic signature that exhibited
the highest performance was selected for building the
hybrid model (detailed below).

Patient follow-up
Postoperative follow-up consisted of serum alpha-
fetoprotein (AFP) level, liver biochemistry, and contrast-
enhanced imaging examinations (i.e., ultrasound, com-
puted tomography, or MRI) performed 1 month after
surgery, every 3 months in the first 2 years, and every
6 months thereafter. Patients were followed up until death
or the end date of this study (May 1, 2022). Early recur-
rence was defined as tumor recurrence within 2 years
after surgery. Recurrence-free survival (RFS) was defined
as the time interval from surgery to the first documented
tumor recurrence or death.

Statistical analysis
Continuous variables were compared by Student’s t vali-
dation or Mann-Whitney U validation, whereas catego-
rical variables were compared by chi-squared validation or
Fisher’s exact validation, as appropriate. Interobserver
agreement of MRI findings was measured with Cohen’s κ
coefficient for binary features and intraclass correlation
coefficient for continuous variables. The consistency
between automated (A) and manual (M) segmentations
was evaluated by calculating the Dice similarity coefficient
(DSC), which was defined as DSC= 2 × ( | A | ∩ | M | )/
( | A | ∪ | M | ) [21]. DSC is a widely used statistical metric
that measures the proportion of overlapping pixels
between two sets of image segmentations [22].

Model development and validation
Using the training set, a hybrid model was built by incor-
porating the optimal radiomic signature and clinical-
radiological variables available before surgery. While con-
trolling for age and sex, univariable Cox regression analysis
was performed to identify significant predictors of early
recurrence. The multicollinearity of variables was estimated
by a variance inflation factor (VIF). For variables with VIF > 2,

Fig. 3 An example of automated segmentation. Axial MRI scans in a 71-year-old woman demonstrate a 2.1 cm HCC (*) in segments V and VIII of the liver
on (A) portal venous phase image. Automated (B) liver segmentation (yellow lines), (C) tumor segmentation (read line), tumor border extensions with (D)
5 mm (orange line), (E) 10 mm (purple line), and (F) 20 mm (blue line) to create (G, H) corresponding segmentation masks

Wei et al. Insights into Imaging          (2024) 15:120 Page 6 of 16



those with the largest absolute value of β coefficients were
selected for further analyses. Variables with p < 0.1 in the
univariable analysis following the above steps were entered
into the multivariable Cox model; the final model was for-
mulated by a backward elimination approach and the Akaike
information criterion (AIC) with five-fold cross-validation.
Model discrimination and calibration were evaluated by

the Harrell’s C-index [23] and calibration plot [24],
respectively. The time-dependent receiver operating
characteristic (tdROC) curve was used to estimate the
prognostic accuracy at different time points [25]. The
decision curve was plotted to measure the clinical utility
of the model [26].
The hybrid model performance was compared with the

widely used Barcelona Clinic Liver Cancer (BCLC) staging
system [3] and the Chinese National Liver Cancer (CNLC)
staging system [27].

Survival analysis
To stratify patients into high and low-risk groups for early
recurrence, the optimal threshold for the proposed hybrid
model was determined by X-tile software (version 3.6.1;
Yale University School of Medicine). RFS was estimated
by the Kaplan-Meier method and compared with the log-
rank validation. Subgroup analyses were performed
according to histological differentiation and MVI statuses,
which were known pathological risk factors related to
early recurrence of HCC [4, 7].
Statistical analyses were performed with R software

(version 4.3.1; The R Foundation for Statistical Comput-
ing) or SPSS software (version 26.0; SPSS Inc.). Two-tailed
p < 0.05 was considered statistically significant.

Results
Patient characteristics
A total of 434 patients (median age, 52.0 years; inter-
quartile range [IQR], 45.0–60.0 years; 376 men) were
included, with 305 (70.3%) and 129 (29.7%) patients on
the training and validation sets, respectively. During a
median follow-up period of 55.3 months (IQR,
39.0–79.8 months), early recurrence occurred in 32.7%
(142/434) of patients.
The validation set had a higher proportion of patients

with CNLC Ib stage (31.8% vs. 22.0%; p= 0.031) and more
frequent diffuse iron overload (27.9% vs. 19.0%; p= 0.040)
compared to the training set, whereas no differences were
found in other clinical-radiological-pathological char-
acteristics and follow-up data between the two datasets
(p range, 0.223–0.963).
Patient characteristics are summarized in Table 1. MRI

features and interobserver agreement are shown in Table 2.

Evaluation of automated segmentation accuracy
DSCs for each sequence are detailed in Table S2. For 30
randomly selected HCCs (median size, 4.8 cm; IQR,
3.5–8.4 cm), the mean DSC between automated and
manual tumor segmentations was 0.84 ± 0.13 (median,
0.88; IQR, 0.82–0.92) in all sequences.

Construction of radiomic signatures on the training set
The number of radiomic features in each step of feature
selection on the training set is presented in Table S3.
Based on the top 20 features determined by RSF, eight
radiomic signatures for predicting early recurrence were
constructed by multivariable Cox regression analyses
(Table S4). Of these, the best performing radiomic sig-
nature for early recurrence was HCC with 5 mm tumor
border extension and liver, which demonstrated a
C-index of 0.696 (95%CI: 0.645, 0.746) on the training
set.
There was no evidence of a difference in the C-index

of the radiomic signature between MRI with extra-
cellular contrast agent and hepatobiliary contrast agent
subgroups on both training (0.673 [95%CI: 0.610, 0. 736]
vs 0.743 [95%CI: 0.658, 0.828]; p= 0.210) and test (0.700
[95%CI: 0.598, 0.801] vs 0.692 [95%CI: 0.577, 0.808];
p= 0.934) sets.

Construction and validation of the hybrid model on the
training and validation sets
The univariable analysis identified nine variables as
potential predictors for early recurrence on the training
set (p range, < 0.001–0.061). On subsequent multivariable
analysis, rim APHE (hazard ratio [HR]= 4.315; 95%CI:
2.384, 7.810; p < 0.001), radiomic signature (HR= 2.728;
95%CI: 2.178, 3.417; p < 0.001) and incomplete tumor
“capsule” (HR= 1.370; 95%CI: 0.831, 2.258; p= 0.217)
were included in the Cox model (Table 3). A hybrid
model that incorporated the above predictors were con-
structed for predicting early recurrence and illustrated as
a nomogram to provide individualized risk estimates
(Fig. 4A).
The hybrid model exhibited a C-index of 0.727 (95%CI:

0.676, 0.777) on the training set and 0.706 (95%CI: 0.630,
0.783) on the validation set. There was no evidence of a
difference in the C-index of the hybrid model between
MRI with extracellular contrast agent and hepatobiliary
contrast agent subgroups on both training (0.699 [95%CI:
0.635, 0.764] vs 0.788 [95%CI: 0.707, 0.869]; p= 0.101)
and validation (0.720 [95%CI: 0.628, 0.813] vs 0.688 [95%
CI: 0.569, 0.807]; p= 0.709) sets. Calibration curves
showed good agreement between the predicted survival
by the hybrid model and the observed outcomes on both
datasets (Fig. 4B and C).
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Comparisons between the hybrid model and staging
systems on the validation set
On the validation set, the C-index of the hybrid model (0.706;
95%CI: 0.630, 0.783) was higher than the BCLC system (0.543;
95%CI: 0.494, 0.592; p < 0.001) but showed no evidence of a
difference from the CNLC system (0.630; 95%CI: 0.557, 0.703;
p= 0.061) (Table 4). In addition, the hybrid model
(0.710–0.743) demonstrated superior tdAUC to the BCLC
system (0.550–0.557; p range, 0.005−< 0.001) for predicting
early recurrence at 6-, 12-, 18-, and 24-month on the
validation set, whereas the model (0.743) yielded a higher
tdAUC at 24-month than the CNLC system (0.635; p= 0.032)
but showed no evidence of a difference at other time
points (p range, 0.166–0.992) (Table 4; Fig. 5A). Decision
curves revealed that the hybrid model provided a larger
net benefit than two staging systems on the validation set
(Fig. 5B).

Early recurrence risk stratification on the training and
validation sets
Using 1.25 as the cutoff score derived by the X-tile ana-
lysis, the hybrid model stratified all patients on the

Table 1 Patient characteristics

Characteristic Whole

cohort

Training set Validation

set

p value

(n= 434) (n= 305) (n= 129)

Age (y)a 52.0

(45.0–60.0)

51.0

(45.0–60.0)

53.0

(45.0–60.0)

0.736

Sex 0.587

Women 58 (13.4) 39 (12.8) 19 (14.7)

Men 376 (86.6) 266 (87.2) 110 (85.3)

Cause of liver

disease

0.303

HBV 414 (95.4) 293 (96.1) 121 (93.8)

Non-HBV 20 (4.6) 12 (3.9) 8 (6.2)

Cirrhosis 0.430

Absent 201 (46.3) 145 (47.5) 56 (43.4)

Present 233 (53.7) 160 (52.5) 73 (56.6)

Child-Pugh class 0.586

A 430 (99.1) 303 (99.3) 127 (98.4)

B 4 (0.9) 2 (0.7) 2 (1.6)

ALBI grade 0.866

1 352 (81.1) 248 (81.3) 104 (80.6)

2 82 (18.9) 57 (18.7) 25 (19.4)

BCLC stage 0.327

0 83 (19.1) 62 (20.3) 21 (16.3)

A 351 (80.9) 243 (79.7) 108 (83.7)

CNLC stage 0.031

Ia 326 (75.1) 238 (78.0) 88 (68.2)

Ib 108 (24.9) 67 (22.0) 41 (31.8)

Contrast agent

type of MRI

0.315

ECA 340 (78.3) 235 (77.0) 105 (81.4)

HCA 94 (21.7) 70 (23.0) 24 (18.6)

Laboratory index

AST (IU/L)a 31.5

(25.0–42.0)

31.0

(25.0–42.0)

32.0

(26.0–42.0)

0.352

ALT (IU/L)a 35.0

(24.0–49.8)

34.0

(24.0–47.0)

36.0

(24.0–54.0)

0.310

TBIL (umol/L)a 13.6

(9.7–17.5)

13.6

(9.6–17.4)

13.4

(9.9–18.2)

0.630

ALB (g/L)b 43.0 ± 4.3 43.0 ± 4.1 43.1 ± 4.6 0.860

PLT (×10^9/L)a 125.5

(89.0–166.0)

124.0

(87.0–167.0)

135.0

(90.0–166.0)

0.496

PT (S)a 11.9

(11.3–12.6)

11.9

(11.3–12.6)

11.9

(11.4–12.6)

0.829

INRa 1.0 (1.0–1.1) 1.0 (1.0–1.1) 1.0 (1.0–1.1) 0.432

GGT (IU/L)a 45.0

(28.0–77.0)

44.0

(28.0–71.0)

46.0

(28.0–87.0)

0.223

AFP (ng/mL) 0.137

≤ 400 333 (76.7) 240 (78.7) 93 (72.1)

> 400 101 (23.3) 65 (21.3) 36 (27.9)

Table 1 continued

Characteristic Whole

cohort

Training set Validation

set

p value

(n= 434) (n= 305) (n= 129)

Histopathological characteristics

Tumor

differentiationc
0.805

Well or

Moderate

291 (67.5) 205 (67.9) 86 (66.7)

Poor 140 (32.5) 97 (32.1) 43 (33.3)

MVIc 0.371

Absent 115 (53.0) 77 (51.0) 38 (57.6)

Present 102 (47.0) 74 (49.0) 28 (42.4)

Follow-up perioda 55.3 (39.0,

79.8)

54.6 (39.0,

77.4)

57.8 (39.0,

80.8)

0.764

Early recurrence

rate, %

142 (32.7) 100 (32.8) 42 (32.6) 0.963

RFS Rate at 24-

month, %d

67.3 (62.8,

71.8)

67.2 (61.9,

72.5)

67.4 (59.4,

75.4)

0.945

Statistically significant p values are bold
Unless indicated otherwise, data are the number of patients, with percentages in
parentheses
a Data are medians, with IRs in parentheses
b Data are means ± standard deviations
c There were 3 missing data for tumor differentiation and 217 missing data for
MVI in the whole cohort

d Numbers in parentheses are 95% confidence intervals (CI)
ALB albumin, ALBI albumin-bilirubin, ALT alanine aminotransferase, AST
aspartate aminotransferase, ECA extracellular contrast agent, GGT gamma-
glutamyl transferase, HCA hepatobiliary contrast agent, HBV hepatitis B virus,
INR international normalized ratio, PLT platelet, PT prothrombin time, TBIL total
bilirubin
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training set into two risk strata: low risk (< 1.25; n= 269;
RFS rate at 24-month, 75.1%), and high risk (≥ 1.25;
n= 36; RFS rate at 24-month, 8.3%) (p < 0.001) (Table 5;
Fig. 6A). In each subgroup, including absence and pre-
sence of MVI, and high or moderate tumor differentiation
and poor tumor differentiation, low-risk patients had
significantly longer RFS than high-risk patients on the
training set (p < 0.001 for all) (Table 5; Fig. 6B–E).

Based on the above threshold, two risk strata with sig-
nificantly different RFS were also obtained for all patients
on the validation set (RFS rate at 24-month: 73.9% vs.
27.8%; p < 0.001) (Table 5; Fig. 6F). Additionally, low-risk
patients showed significantly longer RFS compared with
high-risk patients in subgroups of MVI absence (p= 0.002)
(Table 5; Fig. 6G), high or moderate tumor differentiation
(p < 0.001) (Table 5; Fig. 6I), and poor tumor differentiation

Table 2 MRI characteristics and interobserver agreement

MRI characteristic Whole cohort Training set Validation set p value Interobserver agreementa

(n= 434) (n= 305) (n= 129)

Tumor size (cm)b 3.4 (2.3–5.0) 3.3 (2.3–4.8) 3.6 (2.3–5.9) 0.281 0.985 (0.982, 0.988)
Enhancement pattern 0.571 0.526 (0.438, 0.613)

Typical 308 (71.0) 214 (70.2) 94 (72.9)
Atypical 126 (29.0) 91 (29.8) 35 (27.1)

Rim APHE 0.574 0.642 (0.497, 0.787)
Absent 408 (94.0) 288 (94.4) 120 (93.0)
Present 26 (6.0) 17 (5.6) 9 (7.0)

Corona enhancement 0.603 0.438 (0.351, 0.524)
Absent 261 (60.1) 181 (59.3) 80 (62.0)
Present 173 (39.9) 124 (40.7) 49 (38.0)

Nonsmooth tumor margin 0.915 0.496 (0.411, 0.581)
Absent 133 (30.6) 93 (30.5) 40 (31.0)
Present 301 (69.4) 212 (69.5) 89 (69.0)

Incomplete tumor “capsule” 0.703 0.318 (0.22, 0.415)
Absent 129 (29.7) 89 (29.2) 40 (31.0)
Present 305 (70.3) 216 (70.8) 89 (69.0)

Delayed central enhancement 0.897 0.288 (0.055, 0.522)
Absent 425 (97.9) 298 (97.7) 127 (98.4)
Present 9 (2.1) 7 (2.3) 2 (1.6)

Enhancing “capsule” 0.493 0.346 (0.222, 0.47)
Absent 40 (9.2) 30 (9.8) 10 (7.8)
Present 394 (90.8) 275 (90.2) 119 (92.2)

Intratumoral necrosis 0.232 0.705 (0.635, 0.776)
Absent 284 (65.4) 205 (67.2) 79 (61.2)
Present 150 (34.6) 100 (32.8) 50 (38.8)

Fat in mass, more than adjacent liver 0.284 0.416 (0.329, 0.502)
Absent 269 (62.0) 194 (63.6) 75 (58.1)
Present 165 (38.0) 111 (36.4) 54 (41.9)

Radiological cirrhosis 0.477 0.628 (0.552, 0.703)
Absent 159 (36.6) 115 (37.7) 44 (34.1)
Present 275 (63.4) 190 (62.3) 85 (65.9)

Diffuse fatty change 0.749 0.596 (0.455, 0.737)
Absent 401 (92.4) 281 (92.1) 120 (93.0)
Present 33 (7.6) 24 (7.9) 9 (7.0)

Diffuse iron overload 0.040 0.475 (0.37, 0.581)
Absent 340 (78.3) 247 (81.0) 93 (72.1)
Present 94 (21.7) 58 (19.0) 36 (27.9)

Splenomegaly 0.718 0.61 (0.537, 0.683)
Absent 223 (51.4) 155 (50.8) 68 (52.7)
Present 211 (48.6) 150 (49.2) 61 (47.3)

Ascites 0.303 0.401 (0.232, 0.57)
Absent 414 (95.4) 293 (96.1) 121 (93.8)
Present 20 (4.6) 12 (3.9) 8 (6.2)

Collateral circulation 0.865 0.406 (0.329, 0.484)
Absent 181 (41.7) 128 (42.0) 53 (41.1)
Present 253 (58.3) 177 (58.0) 76 (58.9)

Gastroesophageal varices 0.839 0.327 (0.251, 0.403)
Absent 195 (44.9) 138 (45.2) 57 (44.2)
Present 239 (55.1) 167 (54.8) 72 (55.8)

Main portal vein diameter (cm)b 1.5 (1.3–1.6) 1.5 (1.3–1.6) 1.5 (1.3–1.6) 0.792 0.677 (0.457, 0.794)
Radiomic signatureb −0.08 (−0.47–0.40) −0.11 (−0.44–0.33) 0.03 (−0.48–0.51) 0.381 …

Statistically significant p values are bold
Unless indicated otherwise, data are the number of patients, with percentages in parentheses
a Data are ICC for continuous variables and Cohen’s κ coefficient for binary variables, with 95% confidence intervals in parentheses. Interobserver agreement was
assessed by the ICC or Cohen’s κ coefficient as follows: 0.01–0.20, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial
agreement; and 0.81–1.00, almost perfect agreement

b Data are medians, with IRs in parentheses
ICC intraclass correlation coefficient
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(p= 0.048) (Table 5; Fig. 6J) on the validation set. However,
there was no evidence of a difference in RFS between low-
and high-risk patients in the MVI present subgroup
(p= 0.487) on the validation set (Table 5; Fig. 6H).
Representative images of a patient with HCC at high

risk of early recurrence determined by the hybrid model
are shown in Fig. S2.

Discussion
In this study, using DL-assisted automated segmentation,
we developed and validated a hybrid model, which

integrated MRI radiomic signature and two imaging fea-
tures (rim APHE and incomplete tumor “capsule”), to
predict early recurrence for patients with single HCC fol-
lowing curative resection. The model demonstrated
superior prognostic accuracy (validation set 2-year tdAUC,
0.743) and better clinical utility compared to the BCLC
(0.550; p < 0.001) and CNLC (0.635; p= 0.032) systems.
Moreover, patients in the model-predicted high-risk group
exhibited worse RFS than those in the low-risk group.
Accurate and reproducible segmentation is the corner-

stone of radiomic analyses. However, most existing

Table 3 Predictors for early recurrence based on cox regression analyses on the training set (n= 305)

Variable Univariable analysis Multivariable analysis

HR p value HR p value

Age (> 50 y) 0.851 (0.575, 1.262) 0.423 … …

Sex (male) 0.729 (0.420, 1.263) 0.259 … …

Cause of liver disease (non-HBV) 1.065 (0.392, 2.897) 0.901 … …

Cirrhosis 1.072 (0.722, 1.591) 0.731 … …

ALBI grade (2) 0.865 (0.513, 1.459) 0.587 … …

AST (> 40 IU/L) 1.140 (0.740, 1.757) 0.552 … …

ALT (> 50 IU/L) 0.648 (0.383, 1.094) 0.105 … …

TBIL (> 19 umol/L) 0.623 (0.353, 1.098) 0.102 … …

ALB (< 40 g/L) 0.894 (0.551, 1.451) 0.651 … …

PLT (< 100 ×109/L) 0.970 (0.638, 1.474) 0.885 … …

PT (> 13 S) 0.557 (0.270, 1.147) 0.112 … …

INR (> 1.1) 0.687 (0.412, 1.144) 0.149 … …

GGT (> 60 IU/L) 1.570 (1.043, 2.364) 0.031 … …

AFP (> 400 ng/mL) 1.549 (0.987, 2.432) 0.057 … …

BCLC stage (A) 1.550 (0.904, 2.656) 0.111 … …

Tumor size (> 5 cm) 2.227 (1.460, 3.398) < 0.001 … …

Enhancement pattern (atypical) 0.880 (0.566, 1.368) 0.570 … …

Rim APHE 4.670 (2.585, 8.435) < 0.001 4.315 (2.384, 7.810) < 0.001

Corona enhancement 1.599 (1.077, 2.373) 0.020 … …

Nonsmooth tumor margin 1.555 (0.981, 2.466) 0.061 … …

Incomplete tumor “capsule” 1.837 (1.123, 3.005) 0.016 1.370 (0.831, 2.258) 0.217

Delayed central enhancement 1.489 (0.469, 4,725) 0.500

Enhancing “capsule” 0.716 (0.389, 1.318) 0.284

Intratumoral necrosis 1.694 (1.136, 2.527) 0.010

Fat in mass, more than adjacent liver 1.106 (0.738, 1.657) 0.626

Radiological cirrhosis 0.914 (0.611, 1.367) 0.661 … …

Diffuse fatty change 0.751 (0.327, 1.723) 0.498 … …

Diffuse iron overload 1.011 (0.612, 1.669) 0.966 … …

Splenomegaly 0.932 (0.629, 1.381) 0.725 … …

Ascites 1.487 (0.594, 3.720) 0.397 … …

Collateral circulation 1.044 (0.700, 1.556) 0.833 … …

Gastroesophageal varices 1.183 (0.793, 1.765) 0.411 … …

Main portal vein diameter (> 1.3 cm) 1.491 (0.915, 2.429) 0.109 … …

Radiomic signature 2.773 (2.225, 3.456) < 0.001 2.728 (2.178, 3.417) < 0.001

Statistically significant p values are bold
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Fig. 4 A The hybrid model-based nomogram to predict early recurrence of single HCC after surgical resection. Calibration curves of the hybrid model on
the (B) training and (C) validation sets, respectively
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radiomics-based assessment of HCC recurrence utilized
manual or semiautomated segmentation, reducing both
efficiency and reproducibility. In our study, the consistency
between the automated and manual tumor segmentations
was satisfactory, with the mean DSC of 0.85 ± 0.12. More-
over, in a manual segmentation-based study comprising
167 single HCC, Kim et al reported that a combined
clinicopathologic-radiomic model with the 3-mm border
extension achieved the highest performance (C-index:
0.716) for predicting early postsurgical recurrence [6]. In
our study, the automated segmentation-based hybrid
model achieved similar validation set discrimination (C-
index: 0.706). These initial findings offered a promising
prospect for using DL-assisted automated segmentation,
which might be more effective and reproducible, to stan-
dardize the development of radiomic models, thereby
facilitating their translation into clinical practice.
Recently, a few studies have shown the potential utility of

automated segmentation-based CT or MRI radiomics in
predicting postsurgical recurrence of HCC [28, 29]. For
instance, Wang et al employed a DLmodel to automatically
segment tumors on arterial phase images in the external

cohort (n= 31) and reported that an MRI-based radiomic-
clinical model achieved good accuracy for predicting
postsurgical recurrence [29]. To the best of our knowledge,
our study is the first study in the literature to use DL-
assisted automated segmentations of both the liver and
tumor for MRI radiomics-based evaluation of HCC early
recurrence. In comparison to previous studies, our research
included a larger number of patients (n= 434), thereby
enhancing the reliability and robustness of the results
presented. In addition, to determine the optimal radiomic
signature, we comprehensively investigated the prognostic
impact of tumor, tumor border extensions, and the liver.
Therefore, our final radiomic signature may convey more
abundant information to achieve accurate prognostication.
The biological rationales underlying the association

between the hybrid model and HCC early recurrence are
not fully understood. In our study, the radiomic signature
of HCC with 5 mm tumor border extension and liver
exhibited the highest performance for predicting early
recurrence of HCC. We speculated that this model may
comprehensively capture the whole spectrums of aggres-
sive tumor features, peritumoral microenvironments, and

Fig. 5 Performance of the hybrid model and staging systems on the validation set. A tdROC curves at various time points of the hybrid model and
staging systems on the validation set. B Decision curves of the hybrid model and staging systems on the validation set. AUROC, areas under the receiver
operating characteristic

Table 4 Comparison of performance between the hybrid model and staging systems on the validation Set (n= 129)

Performance Hybrid model BCLC system p value CNLC system p value

C-index 0.706 (0.630, 0.783) 0.543 (0.494, 0.592) < 0.001 0.630 (0.557, 0.703) 0.061

6-month tdAUC 0.710 (0.579, 0.842) 0.557 (0.488, 0.627) 0.005 0.711 (0.590, 0.832) 0.992

12-month tdAUC 0.739 (0.638, 0.840) 0.554 (0.490, 0.618) < 0.001 0.710 (0.610, 0.811) 0.635

18-month tdAUC 0.732 (0.634, 0.830) 0.553 (0.492, 0.614) < 0.001 0.654 (0.561, 0.748) 0.166

24-month tdAUC 0.743 (0.653, 0.834) 0.550 (0.489, 0.611) < 0.001 0.635 (0.547, 0.723) 0.032

Statistically significant p values are bold
Data in parentheses are 95% confidence intervals
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liver morphological and functional characteristics. Rim
APHE has been shown to be correlated with tumor
aggressiveness, e.g., proliferative subtype, MVI, hypoxic
and fibrotic tumor microenvironments, and increased
stemness of HCC [30–32]. An incomplete tumor “cap-
sule”, indicative of infiltrative tumor growth, has been
identified as an imaging marker for predicting MVI and
high BRAF and RAF1 expression in HCC, which can
promote tumor invasion and metastasis [33–35].
Remarkably, a small subset of our cases (n= 40)

encountered challenges during automated segmentation

and were excluded from radiomic analyses. These inac-
curate segmentations could arise from various factors,
such as the inhomogeneous signal intensity within the
tumor, the obscured tumor margin, and additional signal
interferences introduced by peritumoral liver par-
enchyma, adjacent benign cysts, or organs (e.g., heart, gall
bladder, and right kidney). Hence, further refinement of
the DL algorithm is warranted to improve the automated
segmentation performance. If its accuracy and general-
izability can be further validated and improved on large-
scale multicenter populations, this advanced technique

Table 5 RFS rates and HRs according to each risk group defined by the hybrid model in all patients and two pathological subgroups

Dataset and risk group No. of patient Event RFS Rate at 12-month, % RFS rate at 24-month, % HR p value

Training set

All < 0.001

Low risk 269 67 87.0 (83.1, 91.1) 75.1 (70.1, 80.4) Reference

High risk 36 33 30.6 (18.7, 50.0) 8.3 (2.8, 24.6) 8.588 (5.561, 13.263)

MVI absent < 0.001

Low risk 66 9 95.5 (90.6, 100.0) 86.4 (78.5, 95.1) Reference

High risk 11 11 27.3 (10.4, 71.6) 0.0 (NA, NA) 19.797 (7.706, 50.860)

MVI present < 0.001

Low risk 58 19 69.0 (58.0, 82.0) 67.2 (56.2, 80.5) Reference

High risk 16 16 12.5 (3.4, 45.7) 0.0 (NA, NA) 6.105 (3.028, 12.307)

High or moderate tumor

differentiation

< 0.001

Low risk 185 42 89.2 (84.8, 93.8) 77.3 (71.5, 83.6) Reference

High risk 20 18 40.0 (23.4, 68.4) 10.0 (2.7, 37.2) 8.901 (5.029, 15.754)

Poor tumor differentiation < 0.001

Low risk 81 25 81.5 (73.4, 90.4) 69.1 (59.8, 80.0) Reference

High risk 16 15 18.8 (6.8, 52.0) 6.3 (0.9, 41.7) 7.100 (3.592, 14.037)

Validation set

All < 0.001

Low risk 111 29 84.7 (78.2, 91.7) 73.9 (66.1, 82.5) Reference

High risk 18 13 50.0 (31.5, 79.4) 27.8 (13.2, 58.5) 4.148 (2.143, 8.031)

MVI absent 0.002

Low risk 33 9 90.9 (81.6, 100.0) 72.7 (59.0, 89.6) Reference

High risk 5 4 40.0 (13.7, 100.0) 20.0 (3.5, 100.0) 5.836 (1.707, 19.954)

MVI present 0.487

Low risk 19 11 52.6 (34.4, 80.6) 42.1 (24.9, 71.3) Reference

High risk 9 7 55.6 (31.0, 99.7) 22.2 (6.5, 75.4) 1.395 (0.540, 3.602)

High or moderate tumor

differentiation

< 0.001

Low risk 73 20 84.9 (77.1, 93.5) 72.6 (63.1, 83.6) Reference

High risk 13 10 46.2 (25.7, 83.0) 23.1 (8.6, 62.3) 4.517 (2.086, 9.781)

Poor tumor differentiation 0.048

Low risk 38 9 84.2 (73.4, 96.6) 76.3 (63.9, 91.1) Reference

High risk 5 3 60.0 (29.3, 100.0) 40.0 (13.7, 100.0) 3.467 (0.936, 12.846)

Statistically significant p values are bold
Data in parentheses are 95%CIs
NA not available
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would probably become an applicable workflow in routine
clinical practice.
Our study had several limitations. First, the retro-

spective design may have led to unavoidable selection
bias. Second, the hybrid model was not validated in an
independent external cohort, which is crucial to check the
generalizability of the model. Thus, future multicenter
studies are needed to test the applicability of our model in
different populations. Third, the interobserver agreement
for incomplete tumor “capsule” was only fair (Cohen’s κ
coefficient, 0.316), which may reduce the reproducibility
of the model. However, as an intrinsic limitation of sub-
jective manual assessment, future studies are warrant to
identify approaches for reducing interreader variability,
such as utilizing more standardized image criteria or
development of computer-aided feature interpretation.
Fourth, the vast majority of included patients (95.4%) had
HBV infection; hence, our results may not pertain to
patients with other etiologies (e.g., hepatitis C virus
infection and alcohol abuse). Fifth, we did not construct a
postoperative model for predicting HCC early recurrence
due to a large number of missing data for key pathological
features (e.g., MVI and tumor differentiation). None-
theless, the purpose of our study was to establish a

noninvasive model for assisting in clinical decision-
making before treatment. Finally, we did not investigate
the prognostic risk stratification ability of the hybrid
model across different pathological subtypes of HCC due
to insufficient data. Future radiomic studies are encour-
aged to look at this issue.
In conclusion, using DL-assisted automated segmenta-

tion, we proposed a hybrid model by incorporating MRI-
based radiomic signature, rim APHE, and incomplete
tumor “capsule” for prediction of HCC early recurrence
after resection. The model demonstrated superior
predictive performance than two widely used staging
systems, holding the potential to facilitate individualized
risk estimation of postsurgical early recurrence in a
single HCC.

Abbreviations
AI Artificial intelligence
APHE Arterial phase hyperenhancement
BCLC Barcelona clinic liver cancer
C-index Concordance index
CNLC Chinese National Liver Cancer
DL Deep learning
DSCs Dice similarity coefficients
HCC Hepatocellular carcinoma
HR Hazard ratio

Fig. 6 Kaplan-Meier curves demonstrating differences in RFS between low (< 1.25) and high (≥ 1.25) risk strata defined by the hybrid model in all
patients on the (A) training and (F) validation sets, respectively. Similar results were observed in the (B) MVI absent, (C) MVI present, (D) H/MTD, and (E)
PTD subgroups on training set. Except for the (H) MVI present subgroup, two prognostically distinct risk strata were also obtained in (G, I, J) other
subgroups on the validation set. H/MTD, high/moderate tumor differentiation; PTD poor tumor differentiation
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MRI Magnetic resonance imaging
MVI Microvascular invasion
RFS Recurrence-free survival
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tdROC Time-dependent receiver operating characteristic
VIF Variance inflation factor
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