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Abstract 

Background We aimed to explore the application value of various machine learning (ML) algorithms based on multi‑
center CT radiomics in identifying peripheral nerve invasion (PNI) of colorectal cancer (CRC).

Methods A total of 268 patients with colorectal cancer who underwent CT examination in two hospitals from Janu‑
ary 2016 to December 2022 were considered. Imaging and clinicopathological data were collected through the Pic‑
ture Archiving and Communication System (PACS). The Feature Explorer software (FAE) was used to identify 
the peripheral nerve invasion of colorectal patients in center 1, and the best feature selection and classification chan‑
nels were selected. Finally, the best feature selection and classifier pipeline were verified in center 2.

Results The six‑feature models using RFE feature selection and GP classifier had the highest AUC values, which 
were 0.610, 0.699, and 0.640, respectively. FAE generated a more concise model based on one feature (wavelet‑HLL‑
glszm‑LargeAreaHighGrayLevelEmphasis) and achieved AUC values of 0.614 and 0.663 on the validation and test sets, 
respectively, using the “one standard error” rule. Using ANOVA feature selection, the GP classifier had the best AUC 
value in a one‑feature model, with AUC values of 0.611, 0.663, and 0.643 on the validation, internal test, and external 
test sets, respectively. Similarly, when using the “one standard error” rule, the model based on one feature (wave‑let‑
HLL‑glszm‑LargeAreaHighGrayLevelEmphasis) achieved AUC values of 0.614 and 0.663 on the validation and test sets, 
respectively.

Conclusions Combining artificial intelligence and radiomics features is a promising approach for identifying periph‑
eral nerve invasion in colorectal cancer. This innovative technique holds significant potential for clinical medicine, 
offering broader application prospects in the field.

Critical relevance statement The multi‑channel ML method based on CT radiomics has a simple operation process 
and can be used to assist in the clinical screening of patients with CRC accompanied by PNI.

Key points 

• Multi‑channel ML in the identification of peripheral nerve invasion in CRC.

• Multi‑channel ML method based on CT‑radiomics can detect the PNI of CRC.
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• Early preoperative identification of PNI in CRC is helpful to improve the formulation of treatment strategies 
and the prognosis of patients.

Keywords Colorectal cancer, Computed tomography, Machine learning, Perineural invasion, Radiomics

Graphical Abstract

Introduction
In recent years, the global incidence and mortality rates 
of colorectal cancer (CRC) have significantly increased 
due to the impact of unhealthy lifestyle habits and an 
imbalanced dietary structure [1]. The Global Cancer 
Observatory (GLOBOCAN) project of the Global Can-
cer Research Center estimates that about 1.93 million 
cases of colorectal cancer were diagnosed worldwide in 
2020, and about 930,000 people died of the disease [2]. 
In China, about 30% of CRC patients are diagnosed as 
middle to late-stage and are prone to peripheral nerve 
invasion (PNI) and distant metastasis. These patients 
are either unable to be surgically resected or have a 
poor prognosis after surgery, with local and distant 
recurrence rates remaining high, at about 4% and 15%, 
respectively [3]. The long-term survival rate of patients 
with CRC metastasis is far from our expectations [4].

Standardized and reasonable radical resection remains 
the preferred treatment for patients with early and mid-
dle-stage colorectal cancer. PNI is an underrated measure 

of character that the National Integrated Cancer Network 
lists as an important parameter that must be reported 
in standard pathology reports [5]. PNI means that the 
tumor invades the nerve structure or spreads along the 
nerve sheath [6, 7], which can adversely affect the prog-
nosis of colorectal cancer [8, 9]. PNI may be a source of 
metastatic spread that can lead to poorer prognosis and 
reduced survival in colorectal cancer [6, 10–13]. Some 
studies have shown that the presence of PNI-positive 
CRC after surgical resection may indicate incomplete 
resection and local recurrence [11, 14]. Liebig et al. [14] 
reported that about 30–40% of patients with colorectal 
cancer have PNI positivity; the 5-year productivity after 
surgical resection is no more than 16 %, and the median 
survival time is 25 months. Some studies have shown 
that PNI-positive patients can benefit from adjuvant 
therapy. For PNI-positive CRC patients after local resec-
tion, it is usually recommended to expand the scope of 
surgical resection or receive adjuvant chemoradiotherapy 
[15–17]. Therefore, PNI status should be considered in 
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stratified adjuvant therapy for colorectal cancer patients, 
and preoperative detection of PNI status has crucial clin-
ical significance [13, 18].

PNI is primarily detected through pre-operative biopsy 
or post-operative histopathological examination [19, 20]. 
Biopsies are not effective in detecting PNI because they 
focus on the wrong layers and lack suitable specimens, 
hindering their use for diagnosing PNI status [21]. PNI 
status detection is limited in efficiency and timeliness, 
which restricts its application in guiding preoperative 
treatment decisions [19, 20, 22]. The National Com-
prehensive Cancer Network guidelines recommended 
magnetic resonance imaging (MRI) and computed 
tomography (CT) as the primary diagnostic methods 
for preoperative clinical staging of CRC, with traditional 
CT-enhanced scanning commonly utilized for tumor-
lymph node-metastasis (TNM) staging and prognosis 
assessment[23]. MRI and CT are important methods for 
clinical evaluation of colorectal cancer. Unfortunately, 
neither can predict the PNI status of patients with colo-
rectal cancer before surgery. Predicting the PNI status of 
CRC before treatment will help clinicians develop more 
personalized treatment strategies. Abdominal-enhanced 
CT is a cost-effective way to evaluate tumors in the medi-
cal field [1]. Previous studies on predicting PNI of colo-
rectal cancer primarily used 2D region of interest (ROI) 
for lesion delineation [24–27]. 3D imaging model out-
performs 2D imaging model in diagnosing gastrointesti-
nal tumors [28, 29]. 3D radiomics models provide more 
comprehensive information on tumor heterogeneity and 
accurately reflect its biological behavior.

As far as we know, there is a lack of relevant studies on 
identifying PNI in CRC by CT radiomics ML method. As 
a branch of artificial intelligence, ML consists of multi-
ple algorithms that analyze large and complex data sets to 
improve the results of neuro-oncology medicine in diag-
nosis, treatment, and follow-up [11]. ML is objective and 
repeatable, providing the best predictive power and clini-
cal applications[30].

Therefore, this study aims to utilize ML algorithms 
based on radiomic features from whole-tumor CT images 
to identify the status of perineural invasion in colorectal 
cancer. By comparing 3 feature selection methods and10 
ML algorithms in terms of their performance in identify-
ing perineural invasion, the goal is to obtain the optimal 
pipeline for constructing a convenient, stable, and accu-
rate ML prediction channel for patients undergoing colo-
rectal cancer surgery.

Materials and methods
Patients
This retrospective study was conducted in two hospi-
tals (The First Hospital of Lanzhou University, Gansu 

Province, Lanzhou, China; Lichuan People’s Hospital, 
Hubei Province. Lichuan, China). The ethics commit-
tee approved and waived the patient’s informed consent 
requirement.

A total of 268 consecutive patients with colorectal can-
cer who underwent CT examination at two hospitals 
between January 2016 and December 2022 were included 
in the study. Inclusion criteria are as follows: (1) patients 
with colorectal cancer confirmed by postoperative 
pathology; (2) complete clinical and pathological data 
and clear pathological report of PNI status; (3) enhanced 
CT scan was performed within 2 weeks before surgery, 
and the image quality met the requirements; (4) no other 
treatment was received before surgery. Exclusion crite-
ria are as follows: (1) clinical and pathological data are 
incomplete, or lack complete preoperative CT images; 
(2) combined with other malignant tumors; (3) received 
radiotherapy, chemotherapy, or other treatments before 
surgery.

Finally, we included 162 patients with colorectal cancer 
from hospital 1 (center 1) and 82 patients from hospi-
tal 2 (center 2). In center 1, the patients were randomly 
divided into a training set (n = 113) and an internal test 
set (n = 49) in a 7:3 ratio, while center 2 was used as an 
external test set (n = 82). Clinical data of each patient 
were obtained through the Picture Archiving and Com-
munication System (PACS) (Fig. 1).

Histopathologic standard for the determination of PNI
In this retrospective study, the PNI status of all CRC 
patients was obtained based on pathology reports of 
excised specimens. (1) At least 33% of the perinerve 
is surrounded by cancer cells (not invading the nerve 
sheath), and PNI status is defined as positive; (2) cancer 
cells are located in any layer of the nerve sheath [31, 32].

Image acquisition and segmentation
The patient was placed supine and scanned from the 
top of the diaphragm to the symphysis pubis. Detailed 
CT scan parameters are shown in Supplementary Table 
A1. Since portal vein phase images are the best method 
for displaying colorectal cancer, we selected portal vein 
phase images as the target area. To eliminate potential 
differences in CT images obtained from different CT 
scanners at each center, before extracting radiomics fea-
tures, the gray discrete method was used to normalize 
the final 256 bins of all original CT images (Analysis Kit 
software, version v3.0.0r, GE Healthcare) [32].

The conventional CT portal images were uploaded to 
the open-source software 3D Slicer 5.2.1 (https:// downl 
oad. slicer. org/). The whole tumor region of interest 
(ROI) was delineated by two doctors with 5 years (reader 
A, LIU Nian-jun) and 10 years (reader B, ZHAI Ya-nan) 

https://download.slicer.org/
https://download.slicer.org/
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of abdominal lesion diagnosis experience, respectively, 
without knowledge of the specific lesion. Colorectal wall 
thickening or mass formation and significant enhance-
ment were considered as potential tumor lesions, while 
the contents and gasses within the intestinal cavity were 
avoided during the delineation process as much as pos-
sible. After the delineation was completed, the ROI of 
all lesions was reviewed and calibrated by another phy-
sician (reader C, LV Wei-long), and any discrepancies 
were resolved through consensus among the three phy-
sicians. Additionally, intra-observer and inter-observer 
repeatability were evaluated by randomly selecting 30 
patients and having reader A perform the delineation. 
The intraclass correlation coefficients (ICCs) within and 
between groups were all > 0.75, indicating good repro-
ducibility and reliability of the features, which were sub-
sequently used for further analysis.

Radiomics extraction and selection
We utilized 3D-Slicer to extract radiomics features 
from each ROI. Prior to feature extraction, CT images 

were resampled for standardization. The extracted 
features in this study include First order (maximum, 
skewness, mean, median), GLCM (gray-level co-occur-
rence matrix), GLDM (gray-level dependence matrix), 
GLRLM (gray-level run length matrix), GLSZM (gray-
level size zone matrix), NGTDM (gray-level run length 
matrix), and SHAPE. We selected robust features with 
an ICC > 0.75.

The Feature Explorer software (FAE, v0.5.5) is devel-
oped using the Python programming language (3.7.6) 
(https:// github. com/ salan 668/ FAE) [33]. Firstly, we uti-
lized a computer-generated random dataset for the data 
in center 1. We assigned 70% of the dataset to the train-
ing set (n = 113) and the remaining 30% to the independ-
ent test set (n = 49). To address the imbalance in the 
training dataset, we duplicated random cases to achieve 
a balanced ratio between positive and negative samples. 
The dataset was normalized using Z-score normalization. 
Secondly, we employed the Pearson correlation coeffi-
cient (PCC) to measure the correlation between each pair 
of features and reduce the dimensionality of the feature 

Fig. 1 The inclusion and exclusion criteria of patients

https://github.com/salan668/FAE
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matrix. If the PCC exceeded 0.99, one of the features was 
randomly removed. Finally, feature selection was per-
formed using analysis of variance (ANOVA), Relief, and 
recursive feature elimination (RFE). Multivariate analy-
sis of variance calculated the F-value weight of each fea-
ture with respect to the label, sorting them from largest 
to smallest to determine the most relevant features. The 
Relief algorithm assessed the correlation between fea-
tures and categories based on their discriminative power 
among nearby samples. RFE, or recursive feature elimi-
nation, involved iteratively building a model (such as an 
SVM or regression model), selecting the best (or worst) 
features based on their coefficients, setting them aside, 
and repeating the process on the remaining features until 
all features were evaluated. We considered the number of 
features ranging from 1 to 30.

Classifications
Ten machine learning algorithms were utilized to evalu-
ate classification performance, based on Python code and 
the sci-kit learn library (https:// scikit- learn. org/). These 
algorithms include support vector machines (SVM), lin-
ear discriminant analysis (LDA), AdaBoost (AB), Gauss-
ian processes (GP), autoencoders (AE), random forests 
(RFE), logistic regression (LR), lasso logistic regression 
(LRLasso), decision trees (DT), and naive Bayes (NB).

Evaluations
A tenfold cross-validation test was employed to evaluate 
the results. The dataset was divided into ten equal parts, 
with nine parts used for training and one part for valida-
tion in each iteration. The average of the results obtained 
from the ten iterations was used as an estimate of the 

algorithm’s accuracy. Accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV) were calculated based on the optimal cut-
off value determined from the most approximate entry 
index. The area under the receiver operating characteris-
tic curve (AUC) was calculated for each test condition to 
assess the classification performance (Fig. 2).

Statistical analysis
SPass 26.0 was used for statistical analysis. For quanti-
tative data, descriptive statistics such as mean ± stand-
ard deviation were used for description. For count data 
and ordinal data, the percentage method was used for 
description.

Results
Clinical characteristics
This study included a total of 272 consecutive patients 
with colorectal cancer who underwent CT examination 
at two hospitals from January 2016 to December 2022. 
Five patients were excluded due to inadequate image 
quality, and three patients were excluded because they 
could not be recognized by the 3D-slicer software. Ulti-
mately, 244 patients were enrolled in the study. Table  1 
presents the clinical data for the three cohorts of patients.

Performance of the machine learning models
A total of 162 patients were included in unit 1, with 83 
positive and 79 negative cases. To address the impact of 
data imbalance on classifier filtering and eliminate imbal-
ances in the training dataset, we promoted samples by 
randomly repeating cases to balance the positive and 
negative samples. We compared the area under the curve 

Fig. 2 The schematic diagram of the entire radiomics and machine learning pipeline for three cohorts of patients

https://scikit-learn.org/
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(AUC) of all pipelines in the validation dataset using 
FAE and found that pipelines using random forest fea-
ture selection and Gaussian process classifiers achieved 
the highest AUC of 0.610 and accuracy of 0.602 with six 
selected features. The resulting model achieved an AUC 
of 0.699 and an accuracy of 0.653 on the test dataset. 
Clinical statistics are presented in Table 2, while the ROC 
curve and selected features for diagnosis are displayed in 
Fig. 3.

While employing the RFE feature selection and Gauss-
ian process classifier pipeline with “standard error” rules, 
we discovered that a model based on a single feature 
(wavelet-HLL-GLSZM-LargeAreaHighGrayLevelEmpha-
sis) achieved the highest AUC of 0.614 and accuracy of 

0.637 on the validation dataset. On the test dataset, this 
model achieved an AUC of 0.663 and accuracy of 0.610 
(Fig. 4).

By employing ANOVA feature selection, a pipe-
line utilizing GP classifiers achieved the highest AUC 
of 0.611 and accuracy of 0.655 on the validated dataset 
using a model with one feature. On the test dataset, this 
model achieved an AUC of 0.663 and accuracy of 0.610. 
The clinical statistics for the diagnosis can be found in 
Table  3. The ROC curve and selected features for the 
diagnosis are depicted in Fig. 5. Notably, when applying a 
“standard error” rule, we discovered that the model based 
on the feature (wavelet-HLL-GLSZM-LargeAreaHighG-
rayLevelEmphasis) yielded the same result in FAE.

For feature selector Relief, we did not get the desired 
result.

External test set performance
To further assess the model’s performance, an additional 
82 patients from center 2 were included. The data pro-
cessing for center 2 followed the same procedures as 
center 1. We conducted tests on an external validation 
dataset using RFE feature selection and GP classifier. The 
model achieved an AUC of 0.640 and accuracy of 0.634 
on the test dataset. Similarly, when utilizing ANOVA fea-
ture selection and GP classifier on the external validation 
dataset, the model attained an AUC of 0.643 and accu-
racy of 0.634. The ROC curve can be seen in Fig. 6.

Discussion
This study aimed to explore the potential value of CT 
radiomics features in distinguishing the presence of 
PNI in colorectal cancer utilizing various advanced ML 
algorithms. The main findings are summarized as fol-
lows: (1) the pipeline incorporating RFE, ANOVA fea-
ture selection, and GP classifier exhibited stable AUC 
results and had the ability to achieve differential diag-
nosis efficiency; (2) AUC results under RFE feature 
selection and GP classifier were found to be higher com-
pared to ANOVA; (3) the optimal diagnostic param-
eter for distinguishing PNI in CRC was found to be 
wavelet-LHL-glszm-LargeAreaHighGrayLevelEmphasis.

Radiomics enables the capture of microscopic tumor 
heterogeneity by extracting texture features from images, 
with 3D ROI radiomics being preferred over 2D radiom-
ics [34, 35]. Additionally, the inclusion of multi-center 
data can enhance the stability and reliability of our 
research findings. Therefore, we extracted radiomics fea-
tures based on multi-center 3D ROI and evaluated the 
significance of each channel in distinguishing between 
PNI-positive and PNI-negative cases in CRC using ML 
methods. The results of our study demonstrate that the 

Table 1 The clinical data of three cohorts

SD Standard deviation

Characteristics Training cohort 
(n = 113)

Internal testing 
cohort (n = 49)

External testing 
cohort 1 (n = 82)

Age (mean ± SD) 60.12 ± 12.01 60.57 ± 11.05 66.8 ± 10.7

Sex

 Male 67 (59.3) 63.3 (64.7) 50 (61.0)

 Female 46 (40.7) 36.7 (35.3) 32 (39.0)

BMI 22.79 ± 2.79 23.34 ± 3.75 22.68 ± 2.83

Pathological T staging

 T1 5 (4.4) 2 (4.1) 0 (0.0)

 T2 34 (30.1) 9 (18.4) 9 (11.0)

 T3 44 (39.0 25 (51.0) 69 (84.1)

 T4 30 (26.5) 13 (26.5) 4 (4.9)

Pathological N staging

 N0 55 (48.7) 24 (49.0) 27 (32.9)

 N1 46 (40.7) 19 (38.8) 30 (36.6)

 N2 12 (10.6) 6 (12.2) 25 (30.5)

Pathological M staging

 M0 99 (87.6) 43 (87.8) 78 (95.1)

 M1 14 (12.4) 6 (12.2) 4 (4.9)

Perineural invasion

 Present 61 (54.0)) 27 (55.0) 52 (63.4)

 Absent 52 (46.0) 22 (45.0) 30 (36.6)

Table 2 Clinical statistics in the diagnosis

Statistics value Statistics value

Accuracy 0.6531

AUC 0.6992

AUC 95% CIs [0.5508–0.8475]

NPV 0.6061

PPV 0.7500

Sensitivity 0.6800

Specificity 0.8333
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ML method based on multi-center data accurately identi-
fies the presence of PNI in CRC.

Recent studies have revealed that perineural invasion 
in cancer is not simply the spread of cancer cells along 
the connective tissue that covers nerves. Rather, it is a 
complex interaction between various neurotrophic and 
chemotactic factors present in the microenvironment 

surrounding cancer cells [6, 31]. PNI can lead to tumor 
invasion, local recurrence, and metastasis, ultimately 
resulting in poor prognosis. Despite its severity as an 
independent risk predictor for rectal cancer, PNI is chal-
lenging to determine preoperatively. Evidence from 
systematic reviews, meta-analyses, and other stud-
ies indicates that patients with PNI have significantly 
worse prognoses [14, 36–39]. In patients with resect-
able stage IV CRC undergoing curative surgery, PNI has 
been reported as a prognostic factor for survival and 
recurrence [40]. The prognostic significance is more 
pronounced in stage II and III than in stage IV. Stud-
ies have found that the order of worsening overall sur-
vival for patients is: PNI-negative stage II, PNI-positive 
stage II/PNI-negative stage III, and PNI-positive stage 
III. Therefore, it is recommended to subdivide stage II 
and III patients based on PNI status to provide person-
alized adjuvant therapy options [38]. It is worth noting 
that postoperative chemotherapy did not improve the 
5-year disease-free survival (DFS) in PNI-negative tumor 

Fig. 3 For the model performance generated by RFE, CV Train represents the average result of the K‑1 folder training data set in K‑folder 
cross‑validation. CV validation represents the average result of the 1‑folder dataset of the training set in K‑folder cross‑validation, Train represents 
the result by all training sets, and Test represents the result of the test set. a Receiver operating characteristic (ROC) curves of the model 
with different data sets. b Feature Explorer (FAE) software proposes candidate feature models according to the “one standard error” rule. c Features 
selected in diagnosis

Fig. 4 Model performance generated by RFE. a Receiver operating characteristic (ROC) curves of the model with different data sets. b Feature 
Explorer (FAE) software proposes candidate feature models according to the “one standard error” rule. c Features selected in diagnosis

Table 3 Clinical statistics in the diagnosis

Statistics value Statistics value

Accuracy 0.6102

AUC 0.6633

AUC 95% CIs [0.5042–0.8224]

NPV 0.6000

PPV 0.6455

Sensitivity 0.6400

Specificity 0.7917
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patients with stage II colon cancer. Conversely, the 5-year 
DFS of the PNI-positive chemotherapy group was higher. 
Hence, accurate prediction of PNI status is vital in evalu-
ating the prognosis of CRC patients. Currently, the only 
way to determine PNI status is through pathological 
examination of surgical specimens. Preoperative predic-
tion of PNI can help in the development of personalized 
treatment plans [18].

In this study, two feature selection methods were 
employed to distinguish between PNI-positive and 
PNI-negative cases. The parameters used mainly 
included first-order statistics (such as maximum, skew-
ness, mean, median) and GLSZM (LargeAreaHigh-
GrayLevelEmphasis) based on wavelet transform. 
These parameters describe the distribution of single 
voxel values, the statistical relationships between vox-
els with similar or different contrasts, and the texture 
frequency component data extracted from the energy 
calculated in the channel. Among these parameters, 

Wavelet-LHL-GLSZM-LargeAreaHighGrayLevelEm-
phasis demonstrated the highest diagnostic efficiency, 
indicating that the second-order parameter, LargeArea-
HighGrayLevelEmphasis based on wavelet transform, is 
more sensitive to nerve invasion in CRC. Therefore, we 
speculate that the effectiveness of Wavelet-LHL-GLSZM-
LargeAreaHighGrayLevelEmphasis stems from its ability 
to reflect the complex microstructure within the tumor 
and the heterogeneity of the entire tumor.

The RFE feature selection method addresses this issue 
by automatically removing irrelevant features and retain-
ing the most important ones from the current feature set. 
This process is repeated recursively on the reduced set 
until the desired number of features is reached. Gauss-
ian Processes for Machine Learning (GPML) is a gen-
eral supervised learning method primarily designed 
for solving regression problems [33]. In our study, we 
utilized RFE feature selection and GP classifiers in a 
10-fold cross-validation to enhance their performance on 

Fig. 5 Model performance generated by ANOVA. a Receiver operating characteristic (ROC) curves of the model with different data sets. b Feature 
Explorer (FAE) software proposes candidate feature models according to the “one standard error” rule. c Features selected in diagnosis

Fig. 6 RFE‑generated model performance, receiver operating characteristic (ROC) curves of the model under different data sets. a The ROC curve 
was evaluated in center 2 using RFE feature selection and the GP classifier. b The ROC curve was verified in center 2 using ANOVA feature selection 
and the GP classifier
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high-dimensional datasets. The results showed an accu-
racy of 0.653, sensitivity of 0.600, specificity of 0.833, and 
AUC of 0.699. Furthermore, when we applied the RFE 
feature selector and GP classifier on the validation data-
set, the AUC value was 0.640. These findings demonstrate 
the feasibility and stability of the ML-based approach in 
identifying PNI in CRC.

Previous studies have confirmed the correlation between 
CT radiomics features and PNI [27]. Guo et  al. [24] dis-
covered a significant association between CT radiomics 
features, based on logistic regression and gray level co-
occurrence matrix (GLCM), with PNI-positive patients. 
Chen et al. [23], using the least absolute shrinkage and selec-
tion operator (lasso) method, identified Maximum2Ddiam-
eterRow as the shape feature with the highest correlation 
coefficient with PNI. Liu et al. [41] reported that GLSZM, 
GLRLM, and first-order features were significantly corre-
lated with PNI, and their CT radiomics model successfully 
predicted the PNI status of CRC. In our study, we compared 
three feature selection methods and 10 classifiers using FAE 
and found that first-order features and GLSZM were corre-
lated with PNI. Among them, LargeAreaHighGrayLevelEm-
phasis based on GLSZM exhibited the highest performance 
in distinguishing CRC PNI. It is evident that ML based on 
CT radiomics features can capture the heterogeneity of 
CRC and predict PNI status; however, there is no consen-
sus on the optimal feature selection methods and classifiers 
across studies. Further multicenter studies with larger sam-
ple sizes are necessary to reach a consensus on the specific 
radiomics features correlated with PNI.

There are some limitations to this study. First, poten-
tial selection bias is inevitable due to the retrospective 
nature of the study. Secondly, although the machine 
learning classifier shows promise as a predictor, the small 
sample size in this study may somewhat compromise the 
credibility of the evaluation results. Thus, increasing the 
sample size at each center could make the results more 
robust. Finally, manual mapping of ROI can be time-
consuming, and there may be specific errors in the com-
plete delineation of tumor boundaries. Therefore, further 
research is required to explore the potential of deep 
learning for automatic segmentation of lesions.

In conclusion, the model demonstrated a certain 
degree of discriminative and calibration ability. The ML 
model based on CT-based radiomics developed in this 
study can identify the PNI status of CRC, indicating a 
correlation between radiomic features of CECT images 
and PNI status in CRC. This model may serve as a non-
invasive biomarker for preoperative assessment of PNI 
status in patients with colorectal cancer, as it can predict 
PNI in the majority of CRC patients and aid in the devel-
opment of more personalized treatment plans.

Conclusion
This study explores the feasibility of integrating artifi-
cial intelligence with radiological features to identify 
perineural invasion in colorectal cancer. Given its non-
invasive nature, this method holds broad application 
prospects in clinical medicine.
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